multiparadigm programming Multiparadigm Data Storage for Enterprise Applications

Size: px
Start display at page:

Download "multiparadigm programming Multiparadigm Data Storage for Enterprise Applications"

Transcription

1 focus multiparadigm programming Multiparadigm Data Storage for Enterprise Applications Debasish Ghosh, Anshin Software Storing data the same way it s used in an application simplifies the programming model, making it easier to decentralize data processing. Emerging NoSQL data-storage engines support this strategy. Regardless of the paradigm used to model the application domain, most enterprise applications use the relational model for data storage. Relational technology is mature, widely understood, and successfully deployed in countless applications. However, its dominance has also had some undesirable consequences for application development. For an application that models the business logic in an object-oriented way, the developer faces an impedance mismatch between the application s object model and the data s relational model. Object-relational mapping (ORM) frameworks exist to bridge this divide, but ORMs aren t trivial to use and often introduce more complexity than the problem they solve. 1 Relational s use a generic storage model based on tables and columns, so it s no wonder they don t scale well for all data types. Google designed BigTable 2 and Amazon came up with Dynamo 3 specifically to address these issues. Both were implemented as distributed data stores designed to scale to a very large size. Recent experiences in data modeling with social networking applications such as Facebook, 4 Twitter, 5,6 and Digg 7 also demonstrate this deficiency. One way to address this problem is to model data so that it remains closer to the way the application uses it. On the basis of practical experiences, I describe a multiparadigm data-storage model that permits applications to work with data in a way that s semantically closer to its usage patterns. Toward a Semantically Richer Data Storage Consider an enterprise application module that must handle document sets that can have many optional attributes for example, an Address Book that can have fields like Name, House Number, Street Name, City, Zip Code, and Country Code. It can optionally include a list of telephone numbers and addresses as well. With a relational model, you design it as a table with nullable attributes for optional items. For repeating entries, you use normalization techniques and store data in multiple tables to avoid data redundancy and inconsistent updates and deletes. Distributing data across multiple tables has the effect of destructuring the semantics of the way your application looks at the data. The application would prefer to store the Address Book in a single structure that keeps the document whole and consistent with the way the domain model would use it. Today, we have data stores that let us model /10/$ IEEE September/October 2010 IEEE SOFTWARE 57

2 The idea is to use each data store s strengths to meet your data model s requirements. our data layer exactly this way. CouchDB ( couchdb.org) and MongoDB ( store data in JavaScript Object Notation (JSON, documents and let applications manipulate document structures directly through their query engines. Consider another example where your application must store various routes across cities to find optimal shipping strategies for your clients. Typically, you think of this as a graph, with the cities being the nodes and the connecting routes being the edges. You could store the structure in a relational and use SQL queries that employ complicated joins across multiple tables. Or you could store the data in a graph like Neo4J ( that offers nodes and relationships as first-class abstractions and various graph-manipulation APIs for use directly within the application layer. Both of these examples have one thing in common. They express a need for a data model much richer than the universal table/columnbased representation that a relational offers a need for a specialized representation of each individual data type used in your application. Specialized representation also implies specific query languages for each data store. This is a benefit in that you can use the most expressive language to query your data structures, but it also means learning a multitude of languages and their best practices. SQL is no longer the universal query interface, so these new data stores are popularly referred to as NoSQL stores. NoSQL has many connotations, but the most popular one today is Not Only SQL. Multiparadigm Programming with Data When you re using multiple data-representation techniques, you need the right tool for the right job. When you re working on a large-scale application, use data stores that meet your application s accesspattern requirements and offer the desired level of scalability and performance guarantees. A relational management system (RD- BMS) engine is the right tool for handling relational data used in transactions requiring atomicity, consistency, isolation, and durability (ACID). However, an RDBMS isn t an ideal platform for modeling complicated social data networks that involve huge volumes, network partitioning, and replication. Graph s like Neo4J model such relationships much better. CouchDB offers offline data-processing capabilities through replication techniques and allows synchronization with other copies at a later time. MongoDB has blazing-fast in-memory operations. Cassandra ( supports decentralized data storage for efficient columnar access from your application. It has the fault tolerance of Dynamo while offering a more advanced data model. For applications that need huge write scalability, Cassandra has proved to be a very good option. If you need write scalability, Riak ( basho.com) is another option that models a keyvalue data store and offers decentralized access, availability, and network-partition tolerance. The underlying idea is to use each data store s strengths to meet your data model s requirements. This brings the data s storage model closer to the application-domain model that uses it. Plus, it gives you the scalability benefits these engines offer. The result is a multiparadigm strategy for data management. With all these NoSQL stores acting as the interface to your application s domain model, you might still need an underlying relational to serve as the system of record for generating reports and audit trails, running of other batch processes, and so on. NoSQL stores don t scale well for such jobs, and the RDBMS world offers lots of tool support in these areas. for Eventual Consistency However, one question still remains: How do you keep the underlying relational store in sync with the other data stores? One option is to use asynchronous messaging as the backbone for an integration layer. By combining asynchronous messaging with the actor communication model, 11 we can establish an architecture for achieving eventual consistency between the underlying and the online domainspecific data stores. Figure 1 gives the overall architecture for such a multiparadigm infrastructure. In this approach, asynchronous messaging replicates necessary changes in individual data stores in the main relational. The application determines which changes must be propagated to the underlying store as the system of record. For example, if you re using MongoDB as a data store for online processing, the business components will store all your transaction data in MongoDB collections. When the application logic updates a collection online, the messaging system will trigger downstream updates to schedule jobs on the queue. These jobs are 58 IEEE SOFTWARE

3 processed asynchronously and keep the underlying relational data store consistent with the frontal online stores. The overall application architecture benefits from asynchronous updates in a couple of ways. First, it scales well, because asynchronous processing doesn t block and can even be scheduled as offline threads of execution. Second, it guarantees delivery of updates to the underlying store within a specified time interval. The two stores might be inconsistent for a short time, but many applications can tolerate this delay to meet other scalability objectives. In other words, the consistency isn t instant, so it s called eventual consistency. In a sense, the frontal data store is like a cache between the application and the of record that is, the SQL store. However, unlike a traditional cache, the frontal store can provide a persistence abstraction that best fits the application. This multilevel model is also useful when the application requires an SQL store of record for nontechnical business reasons. NoSQL Stores: A User s Point of View You must consider two important aspects of your application and infrastructure requirements before selecting a NoSQL storage engine. First, every data store needs a user-friendly query interface. Unlike the relational world where SQL provides the universal query language, the NoSQL world has no such unifying query language. Every data store provides query interfaces in multiple host languages Java, Ruby, Python, and so on. The languages vary significantly across storage engines, and the query mechanisms differ across the various stores. Stores like MongoDB offer user-friendly query APIs as part of the client library implementation. In CouchDB, you must write views, using a map/ reduce paradigm, to get data from the. 12 CouchDB comes with a default view-engine implementation in JavaScript. However, its view architecture is decoupled from the core server, so you can write your own view server using your preferred language. So, every data store has its own query model and language that might be optimal for its underlying engine, yet, the absence of a unified query model like SQL in the relational world could deter early adoption of NoSQL data stores. The second important consideration when selecting a data store is scalability requirements. Each candidate data store has different strengths Neo4J Graph-structured domain rules Columnar data access with decentralization Cassandra Module 1 Module 2 Asynchronous message passing Relational and weaknesses, which you will need to align with your application requirements. Some features for determining your selection are throughput requirements of reads and writes for your application, whether your application needs to handle data distributed across nodes and serve query requests from users even when some nodes fail, whether your application needs offline dataprocessing capabilities, your application s availability requirements, and your application s data consistency requirements. A complete analysis of all the stores with respect to distribution and scalability is beyond this article s scope. For more details, see the documentation for each product. Advantages of Architectural blueprints like the one in Figure 1 are becoming more common. In one project at Anshin Software, we use MongoDB for document storage in collaboration with Oracle as the underlying system of record. The implementation archi- Module 3 Module 4 MongoDB Document structures Document structures with offline processing CouchDB Figure 1. Architecture for a multiparadigm infrastructure. The application uses multiple frontal data stores, depending on the way each component uses the data. Message-oriented middleware uses asynchronous replication to achieve eventual consistency with the underlying relational management system. September/October 2010 IEEE SOFTWARE 59

4 About the Author Debasish Ghosh is the chief technology evangelist at Anshinsoft ( com), where he specializes in leading delivery of enterprise-scale solutions for clients ranging from small to Fortune 500 companies. His research interests are functional programming, domain-specific languages, and NoSQL s. Debasish received his bachelor s degree in computer science and engineering from Jadavpur University, India. He s a senior member of the ACM and author of the book DSLs In Action, to be published this year by Manning. Read his programming blog at and contact him at [email protected]. When eventual consistency is sufficient for your application, asynchronous messaging provides a robust, scalable way to synchronize data between different data stores. It lets you decentralize data processing and store data in structures that are more closely aligned with the application logic. This leads to prospects for a much simpler programming model without the incidental complexities that additional glue frameworks bring to an application. tecture benefited from this model, first, because it stores the data in a model that s closest to the data-access pattern. This minimizes the impedance mismatch between the data and the application layer. Furthermore, because application-layer data access is simpler and more direct, the application code base is much more expressive, concise, and maintainable. Using asynchronous messaging as the binding glue to manage back-end data consistency also gives us a horizontally scalable infrastructure. Finally, it distributes online data-processing load across multiple data stores. There s no single point of failure as there is when a single RDBMS handles all the loads. Challenges of As with any architectural paradigm, there are a host of pitfalls to be aware of. First, not all systems are suitable for enforcing an eventually consistent model. If your application requires all operations to be immediately available from the underlying relational, this model isn t for you. A typical example of such a use case is handling a banking system s debit and credit transactions, which must be ACID consistent. Second, the NoSQL systems discussed here are relatively immature compared to the well-known SQL systems. Many of them are still evolving rapidly. All of them are being used in production systems, but few have reached a version 1.0 level. You can expect these systems to make some incompatible changes in the near term. Furthermore, if the application or data architect doesn t use the architecture pattern carefully, the result could turn into a cacophony. Finally, traditional architects, accustomed to using a single RDBMS for an application, will have to be convinced of the wisdom of a multiparadigm strategy. References 1. T. Neward, The Vietnam of Computer Science, blog, June 2006, The+Vietnam+Of+Computer+Science.aspx. 2. F. Chang et al., BigTable: A Distributed Storage System for Structured Data, Proc. 7th Symp. Operating System Design and Implementation (OSDI 06), Usenix Assoc., 2006; chang.html. 3. G. DeCandia et al., Dynamo: Amazon s Highly Available Key-value Store, ACM SIGOPS Operating Systems Rev., vol. 41, no. 6, 2007, pp ; amazon-dynamo-sosp2007.pdf. 4. A. Lakshman, P. Malik, and K. Ranganathan, Cassandra: A Structured Storage System on a P2P Network, slide presentation at ACM SIGMOD Int l Conf. Management of Data (SIGMOD 08), 2008; net/jhammerb/data-presentations-cassandra-sigmod. 5. J. Adams, Billions of Hits: Scaling Twitter, slide presentation presented at the Chirp 2010 Official Twitter Developer Conf., 2010; billions-of-hits-scaling-twitter. 6. N. Kallen, Big Data in Real-Time at Twitter, slide presentation, 2010; q-con I. Eure, Looking to the Future with Cassandra, blog, 9 Sept. 2009, looking-future-cassandra. 8. C. Hewitt, P. Bishop, and R. Steiger, A Universal Modular ACTOR Formalism for Artificial Intelligence, Proc. 3rd Int l Joint Conf. Artificial Intelligence, Morgan Kaufmann, 1973, pp S. Helmberger, Introduction to CouchDB Views, 2 Apr. 2010; couchdb/introduction_to_couchdb_views. NEXT ISSUE: Software Architecture: Framing Stakeholders Concerns 60 IEEE SOFTWARE

5 This article was featured in For access to more content from the IEEE Computer Society, see computingnow.computer.org. Top articles, podcasts, and more. computingnow.computer.org

Composite Data Virtualization Composite Data Virtualization And NOSQL Data Stores

Composite Data Virtualization Composite Data Virtualization And NOSQL Data Stores Composite Data Virtualization Composite Data Virtualization And NOSQL Data Stores Composite Software October 2010 TABLE OF CONTENTS INTRODUCTION... 3 BUSINESS AND IT DRIVERS... 4 NOSQL DATA STORES LANDSCAPE...

More information

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems

More information

Slave. Master. Research Scholar, Bharathiar University

Slave. Master. Research Scholar, Bharathiar University Volume 3, Issue 7, July 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper online at: www.ijarcsse.com Study on Basically, and Eventually

More information

extensible record stores document stores key-value stores Rick Cattel s clustering from Scalable SQL and NoSQL Data Stores SIGMOD Record, 2010

extensible record stores document stores key-value stores Rick Cattel s clustering from Scalable SQL and NoSQL Data Stores SIGMOD Record, 2010 System/ Scale to Primary Secondary Joins/ Integrity Language/ Data Year Paper 1000s Index Indexes Transactions Analytics Constraints Views Algebra model my label 1971 RDBMS O tables sql-like 2003 memcached

More information

NoSQL Databases. Polyglot Persistence

NoSQL Databases. Polyglot Persistence The future is: NoSQL Databases Polyglot Persistence a note on the future of data storage in the enterprise, written primarily for those involved in the management of application development. Martin Fowler

More information

NoSQL systems: introduction and data models. Riccardo Torlone Università Roma Tre

NoSQL systems: introduction and data models. Riccardo Torlone Università Roma Tre NoSQL systems: introduction and data models Riccardo Torlone Università Roma Tre Why NoSQL? In the last thirty years relational databases have been the default choice for serious data storage. An architect

More information

Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world

Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world Analytics March 2015 White paper Why NoSQL? Your database options in the new non-relational world 2 Why NoSQL? Contents 2 New types of apps are generating new types of data 2 A brief history of NoSQL 3

More information

Cloud Scale Distributed Data Storage. Jürmo Mehine

Cloud Scale Distributed Data Storage. Jürmo Mehine Cloud Scale Distributed Data Storage Jürmo Mehine 2014 Outline Background Relational model Database scaling Keys, values and aggregates The NoSQL landscape Non-relational data models Key-value Document-oriented

More information

A Brief Analysis on Architecture and Reliability of Cloud Based Data Storage

A Brief Analysis on Architecture and Reliability of Cloud Based Data Storage Volume 2, No.4, July August 2013 International Journal of Information Systems and Computer Sciences ISSN 2319 7595 Tejaswini S L Jayanthy et al., Available International Online Journal at http://warse.org/pdfs/ijiscs03242013.pdf

More information

Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1

Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1 Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots

More information

NoSQL Data Base Basics

NoSQL Data Base Basics NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS

More information

Cassandra A Decentralized, Structured Storage System

Cassandra A Decentralized, Structured Storage System Cassandra A Decentralized, Structured Storage System Avinash Lakshman and Prashant Malik Facebook Published: April 2010, Volume 44, Issue 2 Communications of the ACM http://dl.acm.org/citation.cfm?id=1773922

More information

NoSQL Database Options

NoSQL Database Options NoSQL Database Options Introduction For this report, I chose to look at MongoDB, Cassandra, and Riak. I chose MongoDB because it is quite commonly used in the industry. I chose Cassandra because it has

More information

How graph databases started the multi-model revolution

How graph databases started the multi-model revolution How graph databases started the multi-model revolution Luca Garulli Author and CEO @OrientDB QCon Sao Paulo - March 26, 2015 Welcome to Big Data 90% of the data in the world today has been created in the

More information

Introduction to NOSQL

Introduction to NOSQL Introduction to NOSQL Université Paris-Est Marne la Vallée, LIGM UMR CNRS 8049, France January 31, 2014 Motivations NOSQL stands for Not Only SQL Motivations Exponential growth of data set size (161Eo

More information

Facebook: Cassandra. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation

Facebook: Cassandra. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation Facebook: Cassandra Smruti R. Sarangi Department of Computer Science Indian Institute of Technology New Delhi, India Smruti R. Sarangi Leader Election 1/24 Outline 1 2 3 Smruti R. Sarangi Leader Election

More information

Reference Model for Cloud Applications CONSIDERATIONS FOR SW VENDORS BUILDING A SAAS SOLUTION

Reference Model for Cloud Applications CONSIDERATIONS FOR SW VENDORS BUILDING A SAAS SOLUTION October 2013 Daitan White Paper Reference Model for Cloud Applications CONSIDERATIONS FOR SW VENDORS BUILDING A SAAS SOLUTION Highly Reliable Software Development Services http://www.daitangroup.com Cloud

More information

BIG DATA TOOLS. Top 10 open source technologies for Big Data

BIG DATA TOOLS. Top 10 open source technologies for Big Data BIG DATA TOOLS Top 10 open source technologies for Big Data We are in an ever expanding marketplace!!! With shorter product lifecycles, evolving customer behavior and an economy that travels at the speed

More information

NoSQL Databases. Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015

NoSQL Databases. Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015 NoSQL Databases Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015 Database Landscape Source: H. Lim, Y. Han, and S. Babu, How to Fit when No One Size Fits., in CIDR,

More information

Comparison of the Frontier Distributed Database Caching System with NoSQL Databases

Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Dave Dykstra [email protected] Fermilab is operated by the Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359

More information

Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase

Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform

More information

NoSQL Databases. Nikos Parlavantzas

NoSQL Databases. Nikos Parlavantzas !!!! NoSQL Databases Nikos Parlavantzas Lecture overview 2 Objective! Present the main concepts necessary for understanding NoSQL databases! Provide an overview of current NoSQL technologies Outline 3!

More information

ENZO UNIFIED SOLVES THE CHALLENGES OF OUT-OF-BAND SQL SERVER PROCESSING

ENZO UNIFIED SOLVES THE CHALLENGES OF OUT-OF-BAND SQL SERVER PROCESSING ENZO UNIFIED SOLVES THE CHALLENGES OF OUT-OF-BAND SQL SERVER PROCESSING Enzo Unified Extends SQL Server to Simplify Application Design and Reduce ETL Processing CHALLENGES SQL Server does not scale out

More information

Making Sense ofnosql A GUIDE FOR MANAGERS AND THE REST OF US DAN MCCREARY MANNING ANN KELLY. Shelter Island

Making Sense ofnosql A GUIDE FOR MANAGERS AND THE REST OF US DAN MCCREARY MANNING ANN KELLY. Shelter Island Making Sense ofnosql A GUIDE FOR MANAGERS AND THE REST OF US DAN MCCREARY ANN KELLY II MANNING Shelter Island contents foreword preface xvii xix acknowledgments xxi about this book xxii Part 1 Introduction

More information

Lecture Data Warehouse Systems

Lecture Data Warehouse Systems Lecture Data Warehouse Systems Eva Zangerle SS 2013 PART C: Novel Approaches in DW NoSQL and MapReduce Stonebraker on Data Warehouses Star and snowflake schemas are a good idea in the DW world C-Stores

More information

GigaSpaces Real-Time Analytics for Big Data

GigaSpaces Real-Time Analytics for Big Data GigaSpaces Real-Time Analytics for Big Data GigaSpaces makes it easy to build and deploy large-scale real-time analytics systems Rapidly increasing use of large-scale and location-aware social media and

More information

On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform

On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform Page 1 of 16 Table of Contents Table of Contents... 2 Introduction... 3 NoSQL Databases... 3 CumuLogic NoSQL Database Service...

More information

these three NoSQL databases because I wanted to see a the two different sides of the CAP

these three NoSQL databases because I wanted to see a the two different sides of the CAP Michael Sharp Big Data CS401r Lab 3 For this paper I decided to do research on MongoDB, Cassandra, and Dynamo. I chose these three NoSQL databases because I wanted to see a the two different sides of the

More information

The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect

The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect IT Insight podcast This podcast belongs to the IT Insight series You can subscribe to the podcast through

More information

Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB

Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what

More information

Loose Coupling between Cloud Computing Applications and Databases: A Challenge to be Hit

Loose Coupling between Cloud Computing Applications and Databases: A Challenge to be Hit International Journal of Computer Systems (ISSN: 2394-1065), Volume 2 Issue 3, March, 2015 Available at http://www.ijcsonline.com/ Loose Coupling between Cloud Computing Applications and Databases: A Challenge

More information

2.1.5 Storing your application s structured data in a cloud database

2.1.5 Storing your application s structured data in a cloud database 30 CHAPTER 2 Understanding cloud computing classifications Table 2.3 Basic terms and operations of Amazon S3 Terms Description Object Fundamental entity stored in S3. Each object can range in size from

More information

Database Management System Choices. Introduction To Database Systems CSE 373 Spring 2013

Database Management System Choices. Introduction To Database Systems CSE 373 Spring 2013 Database Management System Choices Introduction To Database Systems CSE 373 Spring 2013 Outline Introduction PostgreSQL MySQL Microsoft SQL Server Choosing A DBMS NoSQL Introduction There a lot of options

More information

NoSQL Evaluation. A Use Case Oriented Survey

NoSQL Evaluation. A Use Case Oriented Survey 2011 International Conference on Cloud and Service Computing NoSQL Evaluation A Use Case Oriented Survey Robin Hecht Chair of Applied Computer Science IV University ofbayreuth Bayreuth, Germany robin.hecht@uni

More information

High Throughput Computing on P2P Networks. Carlos Pérez Miguel [email protected]

High Throughput Computing on P2P Networks. Carlos Pérez Miguel carlos.perezm@ehu.es High Throughput Computing on P2P Networks Carlos Pérez Miguel [email protected] Overview High Throughput Computing Motivation All things distributed: Peer-to-peer Non structured overlays Structured

More information

How to Choose Between Hadoop, NoSQL and RDBMS

How to Choose Between Hadoop, NoSQL and RDBMS How to Choose Between Hadoop, NoSQL and RDBMS Keywords: Jean-Pierre Dijcks Oracle Redwood City, CA, USA Big Data, Hadoop, NoSQL Database, Relational Database, SQL, Security, Performance Introduction A

More information

Big Data JAMES WARREN. Principles and best practices of NATHAN MARZ MANNING. scalable real-time data systems. Shelter Island

Big Data JAMES WARREN. Principles and best practices of NATHAN MARZ MANNING. scalable real-time data systems. Shelter Island Big Data Principles and best practices of scalable real-time data systems NATHAN MARZ JAMES WARREN II MANNING Shelter Island contents preface xiii acknowledgments xv about this book xviii ~1 Anew paradigm

More information

X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released

X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released General announcements In-Memory is available next month http://www.oracle.com/us/corporate/events/dbim/index.html X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released

More information

Introduction to NoSQL

Introduction to NoSQL Introduction to NoSQL NoSQL Seminar 2012 @ TUT Arto Salminen What is NoSQL? Class of database management systems (DBMS) "Not only SQL" Does not use SQL as querying language Distributed, fault-tolerant

More information

Introducing DocumentDB

Introducing DocumentDB David Chappell Introducing DocumentDB A NoSQL Database for Microsoft Azure Sponsored by Microsoft Corporation Copyright 2014 Chappell & Associates Contents Why DocumentDB?... 3 The DocumentDB Data Model...

More information

MongoDB in the NoSQL and SQL world. Horst Rechner [email protected] Berlin, 2012-05-15

MongoDB in the NoSQL and SQL world. Horst Rechner horst.rechner@fokus.fraunhofer.de Berlin, 2012-05-15 MongoDB in the NoSQL and SQL world. Horst Rechner [email protected] Berlin, 2012-05-15 1 MongoDB in the NoSQL and SQL world. NoSQL What? Why? - How? Say goodbye to ACID, hello BASE You

More information

Sentimental Analysis using Hadoop Phase 2: Week 2

Sentimental Analysis using Hadoop Phase 2: Week 2 Sentimental Analysis using Hadoop Phase 2: Week 2 MARKET / INDUSTRY, FUTURE SCOPE BY ANKUR UPRIT The key value type basically, uses a hash table in which there exists a unique key and a pointer to a particular

More information

Structured Data Storage

Structured Data Storage Structured Data Storage Xgen Congress Short Course 2010 Adam Kraut BioTeam Inc. Independent Consulting Shop: Vendor/technology agnostic Staffed by: Scientists forced to learn High Performance IT to conduct

More information

NoSQL and Hadoop Technologies On Oracle Cloud

NoSQL and Hadoop Technologies On Oracle Cloud NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath

More information

A Review of Column-Oriented Datastores. By: Zach Pratt. Independent Study Dr. Maskarinec Spring 2011

A Review of Column-Oriented Datastores. By: Zach Pratt. Independent Study Dr. Maskarinec Spring 2011 A Review of Column-Oriented Datastores By: Zach Pratt Independent Study Dr. Maskarinec Spring 2011 Table of Contents 1 Introduction...1 2 Background...3 2.1 Basic Properties of an RDBMS...3 2.2 Example

More information

Advanced Data Management Technologies

Advanced Data Management Technologies ADMT 2014/15 Unit 15 J. Gamper 1/44 Advanced Data Management Technologies Unit 15 Introduction to NoSQL J. Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE ADMT 2014/15 Unit 15

More information

Highly available, scalable and secure data with Cassandra and DataStax Enterprise. GOTO Berlin 27 th February 2014

Highly available, scalable and secure data with Cassandra and DataStax Enterprise. GOTO Berlin 27 th February 2014 Highly available, scalable and secure data with Cassandra and DataStax Enterprise GOTO Berlin 27 th February 2014 About Us Steve van den Berg Johnny Miller Solutions Architect Regional Director Western

More information

wow CPSC350 relational schemas table normalization practical use of relational algebraic operators tuple relational calculus and their expression in a declarative query language relational schemas CPSC350

More information

Practical Cassandra. Vitalii Tymchyshyn [email protected] @tivv00

Practical Cassandra. Vitalii Tymchyshyn tivv00@gmail.com @tivv00 Practical Cassandra NoSQL key-value vs RDBMS why and when Cassandra architecture Cassandra data model Life without joins or HDD space is cheap today Hardware requirements & deployment hints Vitalii Tymchyshyn

More information

So What s the Big Deal?

So What s the Big Deal? So What s the Big Deal? Presentation Agenda Introduction What is Big Data? So What is the Big Deal? Big Data Technologies Identifying Big Data Opportunities Conducting a Big Data Proof of Concept Big Data

More information

INTERNATIONAL JOURNAL of RESEARCH GRANTHAALAYAH A knowledge Repository

INTERNATIONAL JOURNAL of RESEARCH GRANTHAALAYAH A knowledge Repository A NOVEL TECHNIQUE IN NoSQL DATA EXTRACTION Renu Chaudhary * 1, Gagangeet Singh 2 *1 Computer, Chandigarh Engineering College, Landran, Punjab, INDIA 2 Computer, Chandigarh Engineering College, Landran,

More information

An Approach to Implement Map Reduce with NoSQL Databases

An Approach to Implement Map Reduce with NoSQL Databases www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh

More information

nosql and Non Relational Databases

nosql and Non Relational Databases nosql and Non Relational Databases Image src: http://www.pentaho.com/big-data/nosql/ Matthias Lee Johns Hopkins University What NoSQL? Yes no SQL.. Atleast not only SQL Large class of Non Relaltional Databases

More information

Not Relational Models For The Management of Large Amount of Astronomical Data. Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF)

Not Relational Models For The Management of Large Amount of Astronomical Data. Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF) Not Relational Models For The Management of Large Amount of Astronomical Data Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF) What is a DBMS A Data Base Management System is a software infrastructure

More information

Big Data Solutions. Portal Development with MongoDB and Liferay. Solutions

Big Data Solutions. Portal Development with MongoDB and Liferay. Solutions Big Data Solutions Portal Development with MongoDB and Liferay Solutions Introduction Companies have made huge investments in Business Intelligence and analytics to better understand their clients and

More information

CitusDB Architecture for Real-Time Big Data

CitusDB Architecture for Real-Time Big Data CitusDB Architecture for Real-Time Big Data CitusDB Highlights Empowers real-time Big Data using PostgreSQL Scales out PostgreSQL to support up to hundreds of terabytes of data Fast parallel processing

More information

Domain driven design, NoSQL and multi-model databases

Domain driven design, NoSQL and multi-model databases Domain driven design, NoSQL and multi-model databases Java Meetup New York, 10 November 2014 Max Neunhöffer www.arangodb.com Max Neunhöffer I am a mathematician Earlier life : Research in Computer Algebra

More information

A COMPARATIVE STUDY OF NOSQL DATA STORAGE MODELS FOR BIG DATA

A COMPARATIVE STUDY OF NOSQL DATA STORAGE MODELS FOR BIG DATA A COMPARATIVE STUDY OF NOSQL DATA STORAGE MODELS FOR BIG DATA Ompal Singh Assistant Professor, Computer Science & Engineering, Sharda University, (India) ABSTRACT In the new era of distributed system where

More information

INTRODUCTION TO CASSANDRA

INTRODUCTION TO CASSANDRA INTRODUCTION TO CASSANDRA This ebook provides a high level overview of Cassandra and describes some of its key strengths and applications. WHAT IS CASSANDRA? Apache Cassandra is a high performance, open

More information

How To Handle Big Data With A Data Scientist

How To Handle Big Data With A Data Scientist III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution

More information

Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related

Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing

More information

Eventually Consistent

Eventually Consistent Historical Perspective In an ideal world there would be only one consistency model: when an update is made all observers would see that update. The first time this surfaced as difficult to achieve was

More information

Cassandra A Decentralized Structured Storage System

Cassandra A Decentralized Structured Storage System Cassandra A Decentralized Structured Storage System Avinash Lakshman, Prashant Malik LADIS 2009 Anand Iyer CS 294-110, Fall 2015 Historic Context Early & mid 2000: Web applicaoons grow at tremendous rates

More information

This paper defines as "Classical"

This paper defines as Classical Principles of Transactional Approach in the Classical Web-based Systems and the Cloud Computing Systems - Comparative Analysis Vanya Lazarova * Summary: This article presents a comparative analysis of

More information

NoSQL and Graph Database

NoSQL and Graph Database NoSQL and Graph Database Biswanath Dutta DRTC, Indian Statistical Institute 8th Mile Mysore Road R. V. College Post Bangalore 560059 International Conference on Big Data, Bangalore, 9-20 March 2015 Outlines

More information

NoSQL. Thomas Neumann 1 / 22

NoSQL. Thomas Neumann 1 / 22 NoSQL Thomas Neumann 1 / 22 What are NoSQL databases? hard to say more a theme than a well defined thing Usually some or all of the following: no SQL interface no relational model / no schema no joins,

More information

Object Oriented Database Management System for Decision Support System.

Object Oriented Database Management System for Decision Support System. International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 3, Issue 6 (June 2014), PP.55-59 Object Oriented Database Management System for Decision

More information

The Quest for Extreme Scalability

The Quest for Extreme Scalability The Quest for Extreme Scalability In times of a growing audience, very successful internet applications have all been facing the same database issue: while web servers can be multiplied without too many

More information

Benchmarking and Analysis of NoSQL Technologies

Benchmarking and Analysis of NoSQL Technologies Benchmarking and Analysis of NoSQL Technologies Suman Kashyap 1, Shruti Zamwar 2, Tanvi Bhavsar 3, Snigdha Singh 4 1,2,3,4 Cummins College of Engineering for Women, Karvenagar, Pune 411052 Abstract The

More information

JAVASCRIPT CHARTING. Scaling for the Enterprise with Metric Insights. 2013 Copyright Metric insights, Inc.

JAVASCRIPT CHARTING. Scaling for the Enterprise with Metric Insights. 2013 Copyright Metric insights, Inc. JAVASCRIPT CHARTING Scaling for the Enterprise with Metric Insights 2013 Copyright Metric insights, Inc. A REVOLUTION IS HAPPENING... 3! Challenges... 3! Borrowing From The Enterprise BI Stack... 4! Visualization

More information

Preparing Your Data For Cloud

Preparing Your Data For Cloud Preparing Your Data For Cloud Narinder Kumar Inphina Technologies 1 Agenda Relational DBMS's : Pros & Cons Non-Relational DBMS's : Pros & Cons Types of Non-Relational DBMS's Current Market State Applicability

More information

Enterprise Mobility Space

Enterprise Mobility Space MBaaS How MBaaS is Shaping up the Enterprise Mobility Space A RapidValue Solutions Whitepaper Contents Executive Summary... What is Mobile Backend as a Service (MBaaS)?... Primary Building Blocks of MBaaS...

More information

Framework Adoption for Java Enterprise Application Development

Framework Adoption for Java Enterprise Application Development Framework Adoption for Java Enterprise Application Development Clarence Ho Independent Consultant, Author, Java EE Architect http://www.skywidesoft.com [email protected] Presentation can be downloaded

More information

Data sharing in the Big Data era

Data sharing in the Big Data era www.bsc.es Data sharing in the Big Data era Anna Queralt and Toni Cortes Storage System Research Group Introduction What ignited our research Different data models: persistent vs. non persistent New storage

More information

MEAP Edition Manning Early Access Program Neo4j in Action MEAP version 3

MEAP Edition Manning Early Access Program Neo4j in Action MEAP version 3 MEAP Edition Manning Early Access Program Neo4j in Action MEAP version 3 Copyright 2012 Manning Publications For more information on this and other Manning titles go to www.manning.com brief contents PART

More information

From the Monolith to Microservices: Evolving Your Architecture to Scale. Randy Shoup @randyshoup linkedin.com/in/randyshoup

From the Monolith to Microservices: Evolving Your Architecture to Scale. Randy Shoup @randyshoup linkedin.com/in/randyshoup From the Monolith to Microservices: Evolving Your Architecture to Scale Randy Shoup @randyshoup linkedin.com/in/randyshoup Background Consulting CTO at Randy Shoup Consulting o o Helping companies from

More information

Performance Evaluation of NoSQL Systems Using YCSB in a resource Austere Environment

Performance Evaluation of NoSQL Systems Using YCSB in a resource Austere Environment International Journal of Applied Information Systems (IJAIS) ISSN : 2249-868 Performance Evaluation of NoSQL Systems Using YCSB in a resource Austere Environment Yusuf Abubakar Department of Computer Science

More information

Logical Data Models for Cloud Computing Architectures

Logical Data Models for Cloud Computing Architectures Logical Data Models for Cloud Computing Architectures Augustine (Gus) Samba, Kent State University Describing generic logical data models for two existing cloud computing architectures, the author helps

More information

Introduction to Apache Cassandra

Introduction to Apache Cassandra Introduction to Apache Cassandra White Paper BY DATASTAX CORPORATION JULY 2013 1 Table of Contents Abstract 3 Introduction 3 Built by Necessity 3 The Architecture of Cassandra 4 Distributing and Replicating

More information

CloudDB: A Data Store for all Sizes in the Cloud

CloudDB: A Data Store for all Sizes in the Cloud CloudDB: A Data Store for all Sizes in the Cloud Hakan Hacigumus Data Management Research NEC Laboratories America http://www.nec-labs.com/dm www.nec-labs.com What I will try to cover Historical perspective

More information

The NoSQL Ecosystem, Relaxed Consistency, and Snoop Dogg. Adam Marcus MIT CSAIL [email protected] / @marcua

The NoSQL Ecosystem, Relaxed Consistency, and Snoop Dogg. Adam Marcus MIT CSAIL marcua@csail.mit.edu / @marcua The NoSQL Ecosystem, Relaxed Consistency, and Snoop Dogg Adam Marcus MIT CSAIL [email protected] / @marcua About Me Social Computing + Database Systems Easily Distracted: Wrote The NoSQL Ecosystem in

More information

CS 4604: Introduc0on to Database Management Systems. B. Aditya Prakash Lecture #13: NoSQL and MapReduce

CS 4604: Introduc0on to Database Management Systems. B. Aditya Prakash Lecture #13: NoSQL and MapReduce CS 4604: Introduc0on to Database Management Systems B. Aditya Prakash Lecture #13: NoSQL and MapReduce Announcements HW4 is out You have to use the PGSQL server START EARLY!! We can not help if everyone

More information

Microsoft Azure Data Technologies: An Overview

Microsoft Azure Data Technologies: An Overview David Chappell Microsoft Azure Data Technologies: An Overview Sponsored by Microsoft Corporation Copyright 2014 Chappell & Associates Contents Blobs... 3 Running a DBMS in a Virtual Machine... 4 SQL Database...

More information

Understanding Neo4j Scalability

Understanding Neo4j Scalability Understanding Neo4j Scalability David Montag January 2013 Understanding Neo4j Scalability Scalability means different things to different people. Common traits associated include: 1. Redundancy in the

More information

NoSQL in der Cloud Why? Andreas Hartmann

NoSQL in der Cloud Why? Andreas Hartmann NoSQL in der Cloud Why? Andreas Hartmann 17.04.2013 17.04.2013 2 NoSQL in der Cloud Why? Quelle: http://res.sys-con.com/story/mar12/2188748/cloudbigdata_0_0.jpg Why Cloud??? 17.04.2013 3 NoSQL in der Cloud

More information

Integrating Big Data into the Computing Curricula

Integrating Big Data into the Computing Curricula Integrating Big Data into the Computing Curricula Yasin Silva, Suzanne Dietrich, Jason Reed, Lisa Tsosie Arizona State University http://www.public.asu.edu/~ynsilva/ibigdata/ 1 Overview Motivation Big

More information

Data Modeling for Big Data

Data Modeling for Big Data Data Modeling for Big Data by Jinbao Zhu, Principal Software Engineer, and Allen Wang, Manager, Software Engineering, CA Technologies In the Internet era, the volume of data we deal with has grown to terabytes

More information

GRAPH DATABASE SYSTEMS. h_da Prof. Dr. Uta Störl Big Data Technologies: Graph Database Systems - SoSe 2016 1

GRAPH DATABASE SYSTEMS. h_da Prof. Dr. Uta Störl Big Data Technologies: Graph Database Systems - SoSe 2016 1 GRAPH DATABASE SYSTEMS h_da Prof. Dr. Uta Störl Big Data Technologies: Graph Database Systems - SoSe 2016 1 Use Case: Route Finding Source: Neo Technology, Inc. h_da Prof. Dr. Uta Störl Big Data Technologies:

More information

Glassfish Architecture.

Glassfish Architecture. Glassfish Architecture. First part Introduction. Over time, GlassFish has evolved into a server platform that is much more than the reference implementation of the Java EE specifcations. It is now a highly

More information

Can the Elephants Handle the NoSQL Onslaught?

Can the Elephants Handle the NoSQL Onslaught? Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented

More information

Understanding NoSQL on Microsoft Azure

Understanding NoSQL on Microsoft Azure David Chappell Understanding NoSQL on Microsoft Azure Sponsored by Microsoft Corporation Copyright 2014 Chappell & Associates Contents Data on Azure: The Big Picture... 3 Relational Technology: A Quick

More information

Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料

Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料 Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料 美 國 13 歲 學 生 用 Big Data 找 出 霸 淩 熱 點 Puri 架 設 網 站 Bullyvention, 藉 由 分 析 Twitter 上 找 出 提 到 跟 霸 凌 相 關 的 詞, 搭 配 地 理 位 置

More information