What Makes Good Research in Software Engineering?
|
|
|
- Marjory Simpson
- 10 years ago
- Views:
Transcription
1 International Journal of Software Tools for Technology Transfer, 2002, vol. 4, no. 1, pp What Makes Good Research in Software Engineering? Mary Shaw School of Computer Science, Carnegie Mellon University, Pittsburgh PA USA Abstract. Physics, biology, and medicine have well-refined public explanations of their research processes. Even in simplified form, these provide guidance about what counts as "good research" both inside and outside the field. Software engineering has not yet explicitly identified and explained either our research processes or the ways we recognize excellent work. Science and engineering research fields can be characterized in terms of the kinds of questions they find worth investigating, the research methods they adopt, and the criteria by which they evaluate their results. I will present such a characterization for software engineering, showing the diversity of research strategies and the way they shift as ideas mature. Understanding these strategies should help software engineers design research plans and report the results clearly; it should also help explain the character of software engineering research to computer science at large and to other scientists. 1 Introduction Many sciences have good explanations of their research strategies. These explanations include not only detailed guidance for researchers but also simplified views for the public and other observers. Acceptance of their results relies on the process of obtaining the results as well as analysis of the results themselves. Schoolchildren learn the experimental model of physics: hypothesis, controlled experiment, analysis, and possible refutation. The public understands large-scale double-blind medical studies well enough to discuss the risks of experimental treatment, the ethics of withholding promising treatment from the control group, and the conflicts of interest that are addressed by the blinding process. Software engineering does not have this sort of well-understood guidance. Software engineering researchers rarely write explicitly about their paradigms of research and their standards for judging quality of results. A number of attempts to characterize software engineering research have contributed elements of the answer, but they do not yet paint a comprehensive picture. In 1980, I [7] examined the relation of engineering disciplines to their underlying craft and technology and laid out expectations for an engineering discipline for software. In , Redwine, Riddle, and others [5,6] proposed a model for the way software engineering technology evolves from research ideas to widespread practice. More recently, software engineering researchers
2 have criticized common practice in the field for failing to collect, analyze, and report experimental measurements in research reports [9,10,11,12]. In 2001 I [8] presented preliminary sketches of some of the successful paradigms for software engineering research, drawing heavily on examples from software architecture. Scientific and engineering research fields can be characterized by identifying what they value: What kinds of questions are "interesting"? What kinds of results help to answer these questions, and what research methods can produce these results? What kinds of evidence can demonstrate the validity of a result, and how are good results distinguished from bad ones? In this paper I attempt to make generally accepted research strategies in software engineering explicit by examining research in the area to identify what is widely accepted in practice. 1.1 Software Technology Maturation Redwine and Riddle [5,6] reviewed a number of software technologies to see how they develop and propagate. They found that it typically takes years for a technology to evolve from concept formulation to the point where it's ready for popularization. They identify six typical phases: Basic research. Investigate basic ideas and concepts, put initial structure on the problem, frame critical research questions. Concept formulation. Circulate ideas informally, develop a research community, converge on a compatible set of ideas, publish solutions to specific subproblems. Development and extension. Make preliminary use of the technology, clarify underlying ideas, generalize the approach. Internal enhancement and exploration. Extend approach to another domain, use technology for real problems, stabilize technology, develop training materials, show value in results. External enhancement and exploration. Similar to internal, but involving a broader community of people who weren t developers, show substantial evidence of value and applicability. Popularization. Develop production-quality, supported versions of the technology, commercialize and market technology, expand user community. Redwine and Riddle presented timelines for several software technologies as they progressed through these phases up until the mid-1980s. I presented a similar analysis for the maturation of software architecture in the 1990s [8]. Our interest here is in the first three phases, the research phases. Software engineering research is intended to help improve the practice of software development, so research planning should make provisions for the transition. The Redwine-Riddle data suggests that around 10 of the years of evolution are spent in concept formation
3 and in development and extension (still more time is spent in basic research, but it is very difficult to identify the beginning of this phase). As a result, full understanding of research strategy must account for the accumulation of evidence over time as well as for the form and content of individual projects and papers. The IMPACT project [3] is tracing the path from research into practice. The objectives of the project include identifying the kinds of contributions that have substantial impact and the types of research that are successful. Preliminary results are now being discussed at conferences. 1.2 Prior Reflections on Software Engineering and Related Research Software engineering research includes, but is not limited to, experimental research. Further, it resembles in some respects research in human-computer interaction Critiques of Experimental Software Engineering In 1993, Basili laid out experimental research paradigms appropriate for software engineering [1]. Later, Tichy [9,10] and colleagues criticized the lack of quantitative experimental validation reported in conference papers: "Computer scientists publish relatively few papers with experimentally validated results The low ratio of validated results appears to be a serious weakness in CS research. This weakness should be rectified." [9]They classified 246 papers in computer science and, for comparison, 147 papers in two other disciplines, according to the type of contribution in the article. The majority of the papers (259 of 403) produced design and modeling results. They then assess each paper's evaluation of its results on the basis of the fraction of the article's text devoted to evaluation. They found, for example, that hypothesis testing was rare in all samples, that a large fraction (43%) of computer science design and modeling papers lacked any experimental evaluation, and that software engineering samples were worse than computer science in general. Zelkowitz and Wallace [11,12] built on Basili's description of experimental paradigms and evaluated over 600 computer science papers and over 100 papers from other disciplines published over a 10-year period. Again, they found that too many papers have no experimental validation or only informal validation, though they did notice some progress over the 10-year period covered by their study. These critiques start from the premise that software engineering research should follow a classical experimental paradigm. Here I explore a different question: What are the characteristics of the software engineering research that the field recognizes as being of high quality? Analyzing Research Approaches with Pro Forma Abstracts Newman compared research in human-computer interaction (HCI) to research in engineering [4]. He characterized engineering practice, identified three main types of research contributions, and performed a preliminary survey of publications in five engineering fields. He found that over 90% of the contributions were of three kinds:
4 EM Enhanced analytical modeling techniques, based on relevant theory, that can be used to tell whether the design is practicable or to make performance predictions; ES Enhanced solutions that overcome otherwise insoluble aspects of problems, or that are easier to analyze with existing modeling techniques; ET Enhanced tools and methods for applying analytical models and for building functional models or prototypes. [4] Newman created pro forma abstracts -- templates for stylized abstracts what would capture the essence of the papers -- for each of these types of contributions. For example, the pro forma abstract for enhanced modeling techniques is "Existing <model-type> models are deficient in dealing with <properties> of <solution strategy>. An enhanced <model-type> is described, capable of providing more accurate analyses / predictions of <properties> in <solution strategy> designs. The model has been tested by comparing analyses / predictions with empirically measured values of <properties>." [4]He found that in order to account for a comparable fraction of the HCI literature, he needed two more templates, for "radical solutions" and for "experience and/or heuristics". Newman reported that in addition to helping to identify the kind of research reported in a paper, the pro forma abstracts also helped him focus his attention while reading the paper. It seems reasonable to assume that if authors were more consciously aware of typical paper types, they would find it easier to write papers that presented their results and supporting evidence clearly. The approach of characterizing papers through pro forma abstracts is also useful for software engineering, though a more expressive descriptive model as described below provides better matches with the papers Broad View of Research Brooks reflected on the tension in human computer interaction research between "narrow truths proved convincingly by statistically sound experiments, and broad 'truths', generally applicable, but supported only by possibly unrepresentative observations"[2]. The former satisfy the gold standard of science, but are few and narrow compared to the decisions designers make daily. The latter provide pragmatic guidance, but at risk of over-generalization. Brooks proposes to relieve the tension through a certainty-shell structure -- to recognize three nested classes of results, Findings: well-established scientific truths, judged by truthfulness and rigor; Observations: reports on actual phenomena, judged by interestingness; Rules of thumb: generalizations, signed by their author but perhaps incompletely supported by data, judged by usefulness with freshness as a criterion for all three. This tension is as real in software engineering as in human computer interaction. Observations and rules of thumb provide valuable guidance for practice when findings are not available. They also help to understand and area and lay the groundwork for the research that will, in time, yield findings.
5 2 Questions, Results, and Validation in Software Engineering Generally speaking, software engineering researchers seek better ways to develop and evaluate software. They are motivated by practical problems, and key objectives of the research are often quality, cost, and timeliness of software products. This section presents a model that explains software engineering research papers by classifying the types of research questions they ask, the types of results they produce, and the character of the validation they provide. This model has evolved over several years. It refines the version I presented at ICSE 2001 [8] based on discussion of the model in a graduate class and review of abstracts submitted to ICSE Its status is, in Brooks' sense, a set of observations, perhaps becoming generalization. 2.1 Types of Research Questions Research questions may be about methods for developing software, about methods for analyzing software, about the design, evaluation, or implementation of specific systems, about generalizations over whole classes of systems, or about the sheer feasibility of a task. Table 1 shows the types of research questions software engineers ask, together with some examples of specific typical questions. Among ICSE submissions, the most common kind of paper reports an improved method or means of developing software. Also fairly common are papers about methods for analysis, principally analysis of correctness (testing and verification). Looking back over the history of software engineering, there is some indication that the types of questions have changed as the field matures. For example, generalizations, especially in the form of more formal models, are becoming more common, and feasibility papers seem to be becoming less common as the field matures. Table 1. Research questions in software engineering Type of question Examples Method or means of How can we do/create (or automate doing) X? development What is a better way to do/create X? Method for analysis How can I evaluate the quality/correctness of X? How do I choose between X and Y? Design, evaluation, or What is a (better) design or implementation for application X? analysis of a particular instance How does X compare to Y? What is property X of artifact/method Y? What is the current state of X / practice of Y? Generalization or characterization Feasibility Given X, what will Y (necessarily) be? What, exactly, do we mean by X? What are the important characteristics of X? What is a good formal/empirical model for X? What are the varieties of X, how are they related? Does X even exist, and if so what is it like? Is it possible to accomplish X at all?
6 2.2 Types of Research Results Research yields new knowledge. This knowledge is expressed in the form of a particular result. The result may be a specific procedure or technique for software development or for analysis. It may be more general, capturing a number of specific results in a model; such models are of many degrees of precision and formality. Sometimes, the result is the solution to a specific problem or the outcome of a specific analysis. Finally, as Brooks observed, observations and rules of thumb may be good preliminary results. Table 2 lists these types, together with some examples of specific typical questions. By far, the most common kind of ICSE paper reports a new procedure or technique for software development or analysis. It may be described narratively, or it may be embodied in a tool. Analytic models and descriptive models are also common; analytic models support predictive analysis, whereas descriptive models explain the structure of a problem area or expose important design decisions. Empirical models backed up by good statistics are uncommon. Table 2. Research results in software engineering Type of result Procedure or technique Qualitative or descriptive model Empirical model Analytic model Notation or tool Specific solution Answer or judgment Report Examples New or better way to do some task, such as design, implementation, measurement, evaluation, selection from alternatives, Includes operational techniques for implementation, representation, management, and analysis, but not advice or guidelines Structure or taxonomy for a problem area; architectural style, framework, or design pattern; non-formal domain analysis Well-grounded checklists, well-argued informal generalizations, guidance for integrating other results, Empirical predictive model based on observed data Structural model precise enough to support formal analysis or automatic manipulation Formal language to support technique or model (should have a calculus, semantics, or other basis for computing or inference) Implemented tool that embodies a technique Solution to application problem that shows use of software engineering principles may be design, rather than implementation Careful analysis of a system or its development Running system that embodies a result; it may be the carrier of the result, or its implementation may illustrate a principle that can be applied elsewhere Result of a specific analysis, evaluation, or comparison Interesting observations, rules of thumb
7 2.3 Types of Research Validations Good research requires not only a result, but also clear and convincing evidence that the result is sound. This evidence should be based on experience or systematic analysis, not simply persuasive argument or textbook examples. Table 3 shows some common types of validation, indicating that validation in practice is not always clear and convincing. The most common kinds of validation among ICSE papers are experience in actual use and systematic analysis. A significant number of ICSE submissions depend only on blatant assertion to demonstrate the validity of their results, or offer no evidence at all; such submissions are only rarely accepted. Table 3. Validation techniques in software engineering Type of validation Analysis Experience Example Evaluation Persuasion Blatant assertion Examples I have analyzed my result and find it satisfactory through...ormal analysis) rigorous derivation and proof (empirical model) data on controlled use(controlled carefully designed statistical experiment) experiment My result has been used on real examples by someone other than me, and the evidence of its correctness / usefulness / effectiveness is alitative model) narrative(empirical model, data, usually statistical, on practice (notation, tool) comparison of this with similar results in technique) actual use Here s an example of how it works on (toy example) a toy example, perhaps motivated by reality (slice of life) a system that I have been developing Given the stated criteria, my result... (descriptive model) adequately describes the phenomena of interest (qualitative model) accounts for the phenomena of interest (empirical model) is able to predict because, or gives results that fit real data Includes feasibility studies, pilot projects I thought hard about this, and I believe... (technique) if you do it the following way, (system) a system constructed like this would (model) this model seems reasonable Note that if the original question was about feasibility, a working system, even without analysis, can be persuasive No serious attempt to evaluate result
8 3 Research Strategies Section 2 identifies the three important aspects of an individual research result as reported in a typical conference or journal paper. It is clear that the spectrum of good research strategies includes experimental computer science in the sense of [9,10,11, 12]; it is also clear that the spectrum is much broader than just experimental research. Of course, not all the combinations of question, result, and validation make sense. Inspection of Tables 1-3 suggests combinations that make sense. Continuing to report on what strategies are accepted, rather than setting a prescriptive standard, in this section I observe and comment on some of the patterns that appear in the literature. 3.1 Creating Research Strategies The most common research strategy in software engineering solves some aspect of a software development problem by producing a new procedure or technique and validating it by analysis or by discussing an example of its use; examples of use in actual practice are more compelling than examples of use on idealized problems. Another common research strategy provides a way to analyze some aspect of software development by developing an analytic, often formal, model and validating it through formal analysis or experience with its use. Table 4 shows the strategies for 40 research papers accepted for ICSE 2002, based on the submitted abstracts for those papers. Some papers are not included because the strategy was not clear from the abstract. These descriptions are consistent with Newman's pro forma abstracts. Those templates identify sets of compatible questions, results, and validations. For example, the "enhanced model" quoted in Section corresponds to a generalization or characterization question answered by an analytic or empirical (or precise descriptive) model, validated by empirical analysis or controlled experiment. By packaging several choices together and naming the set, Newman identifies the selected strategies clearly. However, attempts to apply them to the software engineering literature revealed shortcomings in coverage. 3.2 Building Good Results from Good Papers This discussion has focused on individual results as reported in conference and journal papers. Major results, however, gain credibility over time as successive papers provide incremental improvement of the result and progressively stronger credibility. Assessing the significance of software engineering results should be done in this larger context. As increments of progress appear, they offer assurance that continued investment in research will pay off. Thus initial reports in an area may be informal and qualitative but present a persuasive case for exploratory research, while later reports present empirical and later formal models that justify larger investment. This pattern of growth is consistent with the Redwine-Riddle model of technology maturation.
9 The model presented here does not address this cumulative confidence building. Table 4. Research strategies for ICSE 2002, based on submitted abstracts Question Result Validation Count Development method Procedure Analysis 3 Development method Procedure Experience 4 Development method Procedure Example 7 Development method Qualitative model Experience 2 Development method Qualitative model Persuasion 1 Development method Analytic model Experience 3 Development method Notation or tool Analysis 1 Development method Notation or tool Experience 1 Development method Notation or tool Example 2 Analysis method Procedure Analysis 1 Analysis method Procedure Experience 3 Analysis method Procedure Example 2 Analysis method Analytic model Analysis 1 Analysis method Analytic model Experience 1 Analysis method Analytic model Example 2 Analysis method Tool Example 1 Evaluation of instance Specific analysis Analysis 3 Evaluation of instance Specific analysis Example 1 Evaluation of instance Answer Analysis 1 4 Summary Software engineering will benefit from a better understanding of the research strategies that have been most successful. The model presented here reflects the character of the discipline: it identifies the types of questions software engineers find interesting, the types of results we produce in answering those questions, and the types of evidence that we use to evaluate the results. Research questions are of different kinds, and research strategies vary in response. The strategy of a research project should select a result, an approach to obtaining the result, and a validation strategy appropriate to the research question. More explicit awareness of these choices may help software engineers design research projects and report their results; it may also help readers read and evaluate the literature. The questions of interest change as the field matures. One indication that ideas are maturing is a shift from qualitative and empirical understanding to precise and quantitative models. This analysis has considered individual research reports, but major results that influence practice rely on accumulation of evidence from many projects. Each individual paper thus provides incremental knowledge, and collections of related research projects and reports provide both confirming and cumulative evidence.
10 Acknowledgement The development of these ideas has benefited from discussion with colleagues at Carnegie Mellon, at open discussion sessions at the FSE Conference, and with the program committee of ICSE The work has been supported by the A. J. Perlis Chair at Carnegie Mellon. References 1. Victor R. Basili. The experimental paradigm in software engineering. In Experimental Software Engineering Issues: Critical Assessment and Future Directives. Proc of Dagstuhl- Workshop, H. Dieter Rombach, Victor R. Basili, and Richard Selby (eds), published as Lecture Notes in Computer Science #706, Springer-Verlag Frederick P. Brooks, Jr. Grasping Reality Through Illusion -- Interactive Graphics Serving Science. Proc 1988 ACM SIGCHI Human Factors in Computer Systems Conference (CHI '88) pp Impact Project. "Determining the impact of software engineering research upon practice. Panel summary, Proc. 23rd International Conference on Software Engineering (ICSE 2001), William Newman. A preliminary analysis of the products of HCI research, using pro forma abstracts. Proc 1994 ACM SIGCHI Human Factors in Computer Systems Conference (CHI '94), pp Samuel Redwine, et al. DoD Related Software Technology Requirements, Practices, and Prospects for the Future. IDA Paper P-1788, June S. Redwine & W. Riddle. Software technology maturation. Proceedings of the Eighth International Conference on Software Engineering, May 1985, pp Mary Shaw. Prospects for an engineering discipline of software. IEEE Software, November 1990, pp Mary Shaw. The coming-of-age of software architecture research. Proc. 23rd International Conference on Software Engineering (ICSE 2001), pp a. 9. W. F. Tichy, P. Lukowicz, L. Prechelt, & E. A. Heinz. "Experimental evaluation in computer science: A quantitative study." Journal of Systems Software, Vol. 28, No. 1, 1995, pp Walter F. Tichy. "Should computer scientists experiment more? 16 reasons to avoid experimentation." IEEE Computer, Vol. 31, No. 5, May Marvin V. Zelkowitz and Delores Wallace. Experimental validation in software engineering. Information and Software Technology, Vol 39, no 11, 1997, pp Marvin V. Zelkowitz and Delores Wallace. Experimental models for validating technology. IEEE Computer, Vol. 31, No. 5, 1998, pp
The Role of Controlled Experiments in Software Engineering Research
The Role of Controlled Experiments in Software Engineering Research Victor R. Basili 1 The Experimental Discipline in Software Engineering Empirical studies play an important role in the evolution of the
Empirical Software Engineering Introduction & Basic Concepts
Empirical Software Engineering Introduction & Basic Concepts Dietmar Winkler Vienna University of Technology Institute of Software Technology and Interactive Systems [email protected]
Risk Knowledge Capture in the Riskit Method
Risk Knowledge Capture in the Riskit Method Jyrki Kontio and Victor R. Basili [email protected] / [email protected] University of Maryland Department of Computer Science A.V.Williams Building
Software Engineering from an Engineering Perspective: SWEBOK as a Study Object
Software Engineering from an Engineering Perspective: SWEBOK as a Study Object Alain Abran a,b, Kenza Meridji b, Javier Dolado a a Universidad del País Vasco/Euskal Herriko Unibertsitatea b Ecole de technologie
How To Monitor A Project
Module 4: Monitoring and Reporting 4-1 Module 4: Monitoring and Reporting 4-2 Module 4: Monitoring and Reporting TABLE OF CONTENTS 1. MONITORING... 3 1.1. WHY MONITOR?... 3 1.2. OPERATIONAL MONITORING...
Abstraction in Computer Science & Software Engineering: A Pedagogical Perspective
Orit Hazzan's Column Abstraction in Computer Science & Software Engineering: A Pedagogical Perspective This column is coauthored with Jeff Kramer, Department of Computing, Imperial College, London ABSTRACT
Methods Commission CLUB DE LA SECURITE DE L INFORMATION FRANÇAIS. 30, rue Pierre Semard, 75009 PARIS
MEHARI 2007 Overview Methods Commission Mehari is a trademark registered by the Clusif CLUB DE LA SECURITE DE L INFORMATION FRANÇAIS 30, rue Pierre Semard, 75009 PARIS Tél.: +33 153 25 08 80 - Fax: +33
Assurance Engagements
IFAC International Auditing and Assurance Standards Board March 2003 Exposure Draft Response Due Date June 30, 2003 Assurance Engagements Proposed International Framework For Assurance Engagements, Proposed
2 Computer Science and Information Systems Research Projects
2 Computer Science and Information Systems Research Projects This book outlines a general process for carrying out thesis projects, and it embraces the following components as fundamentally important:
Writing the Empirical Social Science Research Paper: A Guide for the Perplexed. Josh Pasek. University of Michigan.
Writing the Empirical Social Science Research Paper: A Guide for the Perplexed Josh Pasek University of Michigan January 24, 2012 Correspondence about this manuscript should be addressed to Josh Pasek,
STUDENT THESIS PROPOSAL GUIDELINES
STUDENT THESIS PROPOSAL GUIDELINES Thesis Proposal Students must work closely with their advisor to develop the proposal. Proposal Form The research proposal is expected to be completed during the normal
Keys to Writing Successful NIH Research and Career Development Grant Applications
Keys to Writing Successful NIH Research and Career Development Grant Applications Rick McGee, PhD Northwestern University Feinberg School of Medicine Outline Introduction to the NIH Grant Review Process
AIE: 85-86, 193, 217-218, 294, 339-340, 341-343, 412, 437-439, 531-533, 682, 686-687 SE: : 339, 434, 437-438, 48-454, 455-458, 680, 686
Knowledge and skills. (1) The student conducts laboratory investigations and fieldwork using safe, environmentally appropriate, and ethical practices. The student is expected to: (A) demonstrate safe practices
The Design and Improvement of a Software Project Management System Based on CMMI
Intelligent Information Management, 2012, 4, 330-337 http://dx.doi.org/10.4236/iim.2012.46037 Published Online November 2012 (http://www.scirp.org/journal/iim) The Design and Improvement of a Software
Methodological Issues for Interdisciplinary Research
J. T. M. Miller, Department of Philosophy, University of Durham 1 Methodological Issues for Interdisciplinary Research Much of the apparent difficulty of interdisciplinary research stems from the nature
The SWEBOK Initiative and Software Measurement Intentions
The SWEBOK Initiative and Software Measurement Intentions Abstract ALAIN ABRAN Executive Co-editor, SWEBOK Project Pierre Bourque, Robert Dupuis (Co-editors) Articulating a body of knowledge is an essential
Ph.D. Research Proposal
Ph.D. Research Proposal Doctoral Program in Information Science and Technology
Improving Knowledge-Based System Performance by Reordering Rule Sequences
Improving Knowledge-Based System Performance by Reordering Rule Sequences Neli P. Zlatareva Department of Computer Science Central Connecticut State University 1615 Stanley Street New Britain, CT 06050
(Refer Slide Time: 01:52)
Software Engineering Prof. N. L. Sarda Computer Science & Engineering Indian Institute of Technology, Bombay Lecture - 2 Introduction to Software Engineering Challenges, Process Models etc (Part 2) This
Related guides: 'Planning and Conducting a Dissertation Research Project'.
Learning Enhancement Team Writing a Dissertation This Study Guide addresses the task of writing a dissertation. It aims to help you to feel confident in the construction of this extended piece of writing,
Integrated Risk Management:
Integrated Risk Management: A Framework for Fraser Health For further information contact: Integrated Risk Management Fraser Health Corporate Office 300, 10334 152A Street Surrey, BC V3R 8T4 Phone: (604)
An Integrated Quality Assurance Framework for Specifying Business Information Systems
An Integrated Quality Assurance Framework for Specifying Business Information Systems Frank Salger 1, Stefan Sauer 2, Gregor Engels 1,2 1 Capgemini sd&m AG, Carl-Wery-Str. 42, D-81739 München, Germany
Keys to Writing Successful NIH Research, Fellowship, and Career Development Grant Applications
Keys to Writing Successful NIH Research, Fellowship, and Career Development Grant Applications Rick McGee, PhD Northwestern University Feinberg School of Medicine Associate Dean for Faculty Recruitment
Component Based Software Engineering: A Broad Based Model is Needed
Component Based Software Engineering: A Broad Based Model is Needed Allen Parrish ([email protected]) Brandon Dixon ([email protected]) David Hale ([email protected]) Department of Computer Science
How to introduce maturity in software change management $
How to introduce maturity in software change management $ Lars Bendix Department of Computer Science Fredrik Bajers Vej 7E Aalborg University Denmark E-mail: [email protected] Abstract: In this paper we
PhD by Published or Creative Work Handbook 2015-16
PhD by Published or Creative Work Handbook 2015-16 This handbook is for advice and guidance only and is not a substitute for the Research Degree Regulatory Framework. In case of any conflict these formal
A Systematic Review Process for Software Engineering
A Systematic Review Process for Software Engineering Paula Mian, Tayana Conte, Ana Natali, Jorge Biolchini and Guilherme Travassos COPPE / UFRJ Computer Science Department Cx. Postal 68.511, CEP 21945-970,
Analyzing Research Articles: A Guide for Readers and Writers 1. Sam Mathews, Ph.D. Department of Psychology The University of West Florida
Analyzing Research Articles: A Guide for Readers and Writers 1 Sam Mathews, Ph.D. Department of Psychology The University of West Florida The critical reader of a research report expects the writer to
IEEE SESC Architecture Planning Group: Action Plan
IEEE SESC Architecture Planning Group: Action Plan Foreward The definition and application of architectural concepts is an important part of the development of software systems engineering products. The
BUSINESS MANAGEMENT. Overview. Choice of topic
BUSINESS MANAGEMENT Overview An extended essay in business management provides students with an opportunity to carry out in-depth research in an area of personal interest relating to business management.
Asking Essential Questions
The Miniature Guide to The Art of Asking Essential Questions by Dr. Linda Elder and Dr. Richard Paul Based on Critical Thinking Concepts and Socratic Principles The Foundation for Critical Thinking The
Models of Dissertation Research in Design
Models of Dissertation Research in Design S. Poggenpohl Illinois Institute of Technology, USA K. Sato Illinois Institute of Technology, USA Abstract This paper is a meta-level reflection of actual experience
Undergraduate Psychology Major Learning Goals and Outcomes i
Undergraduate Psychology Major Learning Goals and Outcomes i Goal 1: Knowledge Base of Psychology Demonstrate familiarity with the major concepts, theoretical perspectives, empirical findings, and historical
Using qualitative research to explore women s responses
Using qualitative research to explore women s responses Towards meaningful assistance - how evidence from qualitative studies can help to meet survivors needs Possible questions Why do survivors of SV
Thesis Statement Script
Thesis Statement Script This workshop has been designed for a 50-minute class, and should last no more than 45 minutes if run as efficiently as possible. In longer classes, this leaves extra time which
Evaluation and Integration of Risk Management in CMMI and ISO/IEC 15504
Evaluation and Integration of Risk Management in CMMI and ISO/IEC 15504 Dipak Surie, Email : [email protected] Computing Science Department Umea University, Umea, Sweden Abstract. During software development,
Master s Programme in International Administration and Global Governance
Programme syllabus for the Master s Programme in International Administration and Global Governance 120 higher education credits Second Cycle Confirmed by the Faculty Board of Social Sciences 2015-05-11
C. Wohlin and B. Regnell, "Achieving Industrial Relevance in Software Engineering Education", Proceedings Conference on Software Engineering
C. Wohlin and B. Regnell, "Achieving Industrial Relevance in Software Engineering Education", Proceedings Conference on Software Engineering Education & Training, pp. 16-25, New Orleans, Lousiana, USA,
Announcements. Project status demo in class
Web Design cs465 Announcements Project status demo in class Why? You will likely be involved in Web design You have many of the skills necessary Understand similarities and differences between GUI design
Georgia Department of Education
Epidemiology Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy is
Name of pattern types 1 Process control patterns 2 Logic architectural patterns 3 Organizational patterns 4 Analytic patterns 5 Design patterns 6
The Researches on Unified Pattern of Information System Deng Zhonghua,Guo Liang,Xia Yanping School of Information Management, Wuhan University Wuhan, Hubei, China 430072 Abstract: This paper discusses
PERIODICAL EVALUATION AND FUNDING OF FCT R&D UNITS - Review Panels Stage 2 - Final Meeting Guidelines
PERIODICAL EVALUATION AND FUNDING OF FCT R&D UNITS - Review Panels Stage 2 - Final Meeting Guidelines 19/11/2014 1 CONTENTS Evaluation Structure - Panels... 3 Inputs... 3 Review Panel meetings (November
DEFINING, TEACHING AND ASSESSING LIFELONG LEARNING SKILLS
DEFINING, TEACHING AND ASSESSING LIFELONG LEARNING SKILLS Nikos J. Mourtos Abstract - Lifelong learning skills have always been important in any education and work setting. However, ABET EC recently put
Research competences in University education: profile of Master's Programs
Research competences in University education: profile of Master's Programs V. Bishimbayev, I. Yefimova M.Auezov South Kazakhstan State University (Kazakhstan) [email protected], [email protected] 1. To the
Training and Development (T & D): Introduction and Overview
Training and Development (T & D): Introduction and Overview Recommended textbook. Goldstein I. L. & Ford K. (2002) Training in Organizations: Needs assessment, Development and Evaluation (4 th Edn.). Belmont:
Practical Research. Paul D. Leedy Jeanne Ellis Ormrod. Planning and Design. Tenth Edition
Practical Research Planning and Design Tenth Edition Paul D. Leedy Jeanne Ellis Ormrod 2013, 2010, 2005, 2001, 1997 Pearson Education, Inc. All rights reserved. Chapter 1 The Nature and Tools of Research
A. The Science-Practice Relationship in Professional Psychology and the Shift from a Practitioner Scholar to Practitioner Scientist.
Switching to the PhD: Explaining the Change from Practitioner-Scholar to Practitioner-Scientist Model and Planned Transition from Awarding Degree from PsyD to PhD Since the early 2000s, our program faculty
MIDLAND ISD ADVANCED PLACEMENT CURRICULUM STANDARDS AP ENVIRONMENTAL SCIENCE
Science Practices Standard SP.1: Scientific Questions and Predictions Asking scientific questions that can be tested empirically and structuring these questions in the form of testable predictions SP.1.1
Research and Digital Game- based Play: A Review of Martha Madison
Research and Digital Game- based Play: A Review of Martha Madison White Paper Compiled by Anne Snyder, Ph.D. Second Avenue Learning is a certified women- owned business, specializing in the creation of
Software Engineering. What is a system?
What is a system? Software Engineering Software Processes A purposeful collection of inter-related components working together to achieve some common objective. A system may include software, mechanical,
How to gather and evaluate information
09 May 2016 How to gather and evaluate information Chartered Institute of Internal Auditors Information is central to the role of an internal auditor. Gathering and evaluating information is the basic
Current Research Topic In Software Engineering
Current Research Topic In Software Engineering A PROJECT REPORT Submitted by MD. Mithun Ahamed Id: 13-96937-2 Under the guidance of DR. Dip Nandi in partial fulfillment for the award of the degre of Master
These subject guidelines should be read in conjunction with the Introduction, Outline and Details all essays sections of this guide.
Criterion J: abstract The abstract is judged on the clarity with which it presents an overview of the research and the essay, not on the quality of the research question itself, nor on the quality of the
How to write your research proposal
How to write your research proposal by Maria Joyce, Lecturer, Faculty of Health and Social Care, University of Hull June 2004 The writing of a research proposal is generally understood to be a part of
SCHOOL of TOURISM Tourism Management Department Promotion and Tenure Standards
SCHOOL of TOURISM Tourism Management Department Promotion and Tenure Standards TABLE OF CONTENTS I. Preamble... 2 II. Weighting... 2 III. Appointment Criteria for Tripartite Faculty (see 6.10.7.1)... 3
THE IMPACT OF INHERITANCE ON SECURITY IN OBJECT-ORIENTED DATABASE SYSTEMS
THE IMPACT OF INHERITANCE ON SECURITY IN OBJECT-ORIENTED DATABASE SYSTEMS David L. Spooner Computer Science Department Rensselaer Polytechnic Institute Troy, New York 12180 The object-oriented programming
Ontological Representations of Software Patterns
Ontological Representations of Software Patterns Jean-Marc Rosengard and Marian F. Ursu University of London http://w2.syronex.com/jmr/ Abstract. This paper 1 is based on and advocates the trend in software
Software Engineering/Courses Description Introduction to Software Engineering Credit Hours: 3 Prerequisite: 0306211(Computer Programming 2).
0305203 0305280 0305301 0305302 Software Engineering/Courses Description Introduction to Software Engineering Prerequisite: 0306211(Computer Programming 2). This course introduces students to the problems
Module 2. Software Life Cycle Model. Version 2 CSE IIT, Kharagpur
Module 2 Software Life Cycle Model Lesson 4 Prototyping and Spiral Life Cycle Models Specific Instructional Objectives At the end of this lesson the student will be able to: Explain what a prototype is.
MOUNTAIN VIEW COLLEGE CORE CURRICULUM EVALUATION COMMITTEE STUDENT LEARNING OUTCOMES COURSE LEVEL VICTOR J. SOTO INSTRUCTIONAL DESIGNER PREPARED BY
1 MOUNTAIN VIEW COLLEGE CORE CURRICULUM EVALUATION COMMITTEE WRITING INSTRUCTIONAL OBJECTIVES STUDENT LEARNING OUTCOMES COURSE LEVEL PREPARED BY VICTOR J. SOTO INSTRUCTIONAL DESIGNER 2 WRITING INSTRUCTIONAL
Thesis and Dissertation Proposals. University Learning Centre Writing Help Ron Cooley, Professor of English [email protected]
Thesis and Dissertation Proposals University Learning Centre Writing Help Ron Cooley, Professor of English [email protected] A highly regarded guide to academic writing A template-based approach. Thesis
A Comparison of Computer Science and Software Engineering Programmes in English Universities
A Comparison of Computer Science and Software Engineering Programmes in English Universities Farid Meziane and Sunil Vadera School of Computing, Science and Engineering University of Salford, Salford M5
Introducing Formal Methods. Software Engineering and Formal Methods
Introducing Formal Methods Formal Methods for Software Specification and Analysis: An Overview 1 Software Engineering and Formal Methods Every Software engineering methodology is based on a recommended
ABSTRACT 1.1. BACKGROUND WAYS OF DEFINING A DOMAIN
Two Axes of Domains for Domain Analysis Joseph T. Tennis Information School University of Washington Seattle, WA 98195-2840 ABSTRACT This paper adds two analytical devices to domain analysis. It claims
A Process Model for Software Architecture
272 A Process Model for Software A. Rama Mohan Reddy Associate Professor Dr. P Govindarajulu Professor Dr. M M Naidu Professor Department of Computer Science and Engineering Sri Venkateswara University
Monitoring and Evaluation Plan Primer for DRL Grantees
Monitoring and Evaluation Plan Primer for DRL Grantees I. What is a monitoring and evaluation plan? A monitoring and evaluation plan (M&E plan), sometimes also referred to as a performance monitoring or
Observing and describing the behavior of a subject without influencing it in any way.
HOW TO CHOOSE FROM THE DIFFERENT RESEARCH METHODS* The design is the structure of any scientific work. It gives direction and systematizes the research. The method you choose will affect your results and
INTERNATIONAL FRAMEWORK FOR ASSURANCE ENGAGEMENTS CONTENTS
INTERNATIONAL FOR ASSURANCE ENGAGEMENTS (Effective for assurance reports issued on or after January 1, 2005) CONTENTS Paragraph Introduction... 1 6 Definition and Objective of an Assurance Engagement...
APPENDIX F Science and Engineering Practices in the NGSS
APPENDIX F Science and Engineering Practices in the NGSS A Science Framework for K-12 Science Education provides the blueprint for developing the Next Generation Science Standards (NGSS). The Framework
Report on Game Design and Development Courses Meeting Knowledge Areas
Report on Game Design and Development Courses Meeting Knowledge Areas Brent M. Dingle Summer 2014 Revised Fall 2014 and Spring 2015 Abstract This document approaches a Game Design and Development (GDD)
CREDIT TRANSFER: GUIDELINES FOR STUDENT TRANSFER AND ARTICULATION AMONG MISSOURI COLLEGES AND UNIVERSITIES
CREDIT TRANSFER: GUIDELINES FOR STUDENT TRANSFER AND ARTICULATION AMONG MISSOURI COLLEGES AND UNIVERSITIES With Revisions as Proposed by the General Education Steering Committee [Extracts] A. RATIONALE
Industrial Engineering Definition of Tuning
Industrial Engineering Definition of Tuning Tuning is a faculty-led pilot project designed to define what students must know, understand, and be able to demonstrate after completing a degree in a specific
The Advantages and Disadvantages of Using Software Engineering Standards
1 Introduction and Overview INTRODUCTION Many companies, in their push to complete successful Level 2 Capability Maturity Model (CMM ) 1 or Capability Maturity Model Integration (CMMI ) 2 appraisals, have
Chapter 2 Conceptualizing Scientific Inquiry
Chapter 2 Conceptualizing Scientific Inquiry 2.1 Introduction In order to develop a strategy for the assessment of scientific inquiry in a laboratory setting, a theoretical construct of the components
How to Develop a Research Protocol
How to Develop a Research Protocol Goals & Objectives: To explain the theory of science To explain the theory of research To list the steps involved in developing and conducting a research protocol Outline:
The Role of Modelling in Teaching Formal Methods for Software Engineering
The Role of Modelling in Teaching Formal Methods for Software Engineering A. J. Cowling Department of Computer Science University of Sheffield Sheffield, England [email protected] Abstract. This
For example, estimate the population of the United States as 3 times 10⁸ and the
CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number
Proposal Writing: The Business of Science By Wendy Sanders
Proposal Writing: The Business of Science By Wendy Sanders The NIH System of Review The NIH has a dual system of review. The first (and most important) level of review is carried out by a designated study
A Guide. to Assessment of Learning Outcomes. for ACEJMC Accreditation
A Guide to Assessment of Learning Outcomes for ACEJMC Accreditation Accrediting Council on Education in Journalism and Mass Communications, 2012 This guide explains ACEJMC s expectations of an assessment
Empirical study of Software Quality Evaluation in Agile Methodology Using Traditional Metrics
Empirical study of Software Quality Evaluation in Agile Methodology Using Traditional Metrics Kumi Jinzenji NTT Software Innovation Canter NTT Corporation Tokyo, Japan [email protected] Takashi
BUILDING A BUSINESS GAMES AND TOYS
INTERMEDIATE TASKS BUILDING A BUSINESS GAMES AND TOYS E Sc M So INTERDISCIPLINARY 3 GRADE 3 This guide links the Building a Business unit to the Texas Essential Knowledge and Skills (TEKS) for third graders.
