Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2

Size: px
Start display at page:

Download "Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2"

Transcription

1 Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2 Note: Whether we calculate confidence intervals or perform hypothesis tests we need the distribution of the statistic we will use. Below is a quick review of hypothesis testing. Please also see Chapters 5 and 6. Terminology statistical hypothesis - a conjecture about a population parameter. null hypothesis - symbolized by H 0. The null hypothesis indicates that a parameter is either equal to a specific value (often that value will be zero) or perhaps or. alternative hypothesis - symbolized by H A. For our purpose, will indicate that a parameter is not equal (or possibly > or <) to a specific value. statistical test - uses sample data to make a decision about H 0. test statistic - (a.k.a. test value) - is a value obtained from the sample data (for example x or s 2. level of significance - maximum probability of comitting a Type I error (usually denoted by α). critical value - separates the critical region (the range of values that would indicate a significant difference, and hence the rejection of H 0 ) from the noncritical region. Possible outcomes of a hypothesis test. H 0 is true H 0 is false Reject H 0 Type I Error correct decision Do Not Reject H 0 correct decision Type II Error Example - Hypothesis test for the mean using a t-test. A researcher is interested in testing the hypothesis that male freshman gain more than 5 lbs in their first academic year. 25 freshman participated in the study. Their beginning and ending weights are obtained. The difference between the ending and beginning weights are computed for each. The following statistics have been calculated. x = 7.5, s 2 = 56.25, n = 25. H 0 : µ 5 H A : µ > 5 test statistic: t = x µ 0 s 2 /n t-dist w/ d.f. = n - 1 1

2 For this example, t = 56.26/ = The critical value for α =.05 with 24 degrees of freedom is Since the t < c.v. we can not reject H 0. Conclusion: The evidence does not suggest weight gain of at least 5 lbs. Fig. 1 Inference about β 1 The distribution of the estimate of β 1 is given by ˆβ 1 N ( β 1, σ 2 ) Σ(x i x) 2 We will use an estimate of the variance of ˆβ 1. An estimate of σ 2 is given by the mean square error (MSE). Thus, s 2 ( ˆβ MSE 1 ) = Σ(x i x). 2 Using the distribution of our test statistic ˆβ 1 β 1 s 2 ( ˆβ 1 ) t (n 2) it follows that a (1 α)100% confidence interval for ˆβ 1 is given by where s 2 is previously defined above. ˆβ 1 ± t (1 α s 2,d.f.=n 2) 2 ( ˆβ 1 ) Example - We will use the SAS program reg example1.sas. The data represent 20 college entrance exam scores (our predictor variable) and the respective gpa (response) at the end of the freshman year. From the output we note the following: 2

3 ˆβ 1 = s 2 ( ˆβ 1 ) = We can construct a 95% confidence interval for β 1. For α =.05, the correct percentiles come from a t-dist with 20 2 = 18 degrees of freedom. Because of the symmetry of the t-dist, the 2.5th and 97.5th percentile are given by and , respectively. Our 95% confidence interval is calculated as ± (2.101) (.14405) which yields the interval ( , ). Interpretation: With 95% confidence, we estimate the mean increase in GPA to be between.54 and 1.14 (per unit increase in the entrance exam score). Does the 95% confidence for β 1 include 0? What does this mean? Testing for a linear relationship: The statistical hypothesis to test for a linear relationship (in the simple linear regression case) is given by H 0 : β 1 = 0 Vs H A : β 1 0 The test statistic is given by t = ˆβ 1 s 2 ( ˆβ t (n 2) 1 ) Recall from the SAS program reg example1.sas the following: ˆβ 1 = and s 2 ( ˆβ 1 ) = Our test statistic is given by t = = Our critical value for the test (based on α =.05 ) is from a t-dist with 18 degrees of freedom equals

4 Fig. 2 Conclusion: Reject H 0. There appears to be a linear relationship between entrance exam scores and grade point average. Inference about β 0. If the scope of the model includes x = 0, we may want to make inference about β 0. We will use the following to construct a confidence interval for β 0. ˆβ 0 = ȳ ˆβ 1 x. An estimate of the variance of ˆβ 0 is given by s 2 ( ˆβ 0 ) = MSE ( ) 1 n + x Σ i (x i x) 2 where MSE = SSE n 2. Recall that SSE is given by SSE = Σ n i=1e 2 i = Σ i (Y i Ŷi) 2. Using the above we have the following: ˆβ 0 β 0 s 2 ( ˆβ 0 ) t (n 2) A (1 α) 100 percent confidence interval for β 0 is given by ˆβ 0 ± t (1 α 2 ; df = n 2) s 2 ( ˆβ 0 ) 4

5 Notes on inference regarding β 0 and β 1. The sampling distributions of ˆβ 0 and ˆβ 1 will still be approximately normal for minor departures of normality. If departures from normality are serious, large sample sizes will still provide estimates of β 0 and β 1 that are asymptotically normal. Inference about β 0 and β 1 are made under the assumption of repeated sampling from the same scope of X. Interval Estimation of E[Y h ] Let x h be a value in the sample or w/i the scope of the model. Ŷh = ˆβ 0 + ˆβ 1 x h. An estimate of the variance of Ŷh is given by s 2 (Ŷh) = MSE ( 1 n + (x h x) 2 ) Σ i (x i x) 2 where MSE = SSE n 2. Using the above we have the following: Ŷ h E[Y h ] s 2 (Ŷh) t (n 2) A (1 α) 100 percent confidence interval for E[Y h ] is given by Ŷ h ± t (1 α 2 ; df = n 2) s 2 (Ŷh) Comments: Recall that Ŷi = ˆβ 0 + ˆβ 1 x i plots through ( x, ȳ). The variance of Ŷh increases as the distance between x h and x increases. The confidence interval formula for E[Ŷh] applies to a single mean response. We will use an alternate formula when we want simultaneous prediction intervals for several mean responses. Prediction of a New Observation for a given level of X Recall E[Y h ] represented the mean of Y at a given level of X and our interest was in estimating the mean of Y. 5

6 Y h(new) represents a prediction of a draw from the distribution of Y for a specific X h. Why can we not just use the confidence interval for E[Y h ]? We need to account for two sources of variation. Fig Y is a random variable - we must account for variation in location of the distribution of Y. (Think in terms of the model - only source of variation is model error variance) 2. Once the location of Y is fixed, we need to account for the variation within the distribution of Y. (Think in terms of estimating the model parameters - now we incorporate the variation from having to estimate the parameters) Let s 2 (pred) denote an estimate of the variance of predicting Y h(new). We can calculate s 2 (pred) using the following: s 2 (pred) = MSE ( n + (x h x) 2 ) Σ i (x i x) 2 A (1 α)100% confidence interval for a future value of Y at X h is given by Ŷ h(new) ± t (1 α 2 ; df = n 2) s 2 (pred) Note the two sources of variation accounted for in s 2 (pred). s 2 (pred) = MSE + MSE = MSE }{{} + s 2 (Ŷh) }{{} location w/i dist ( 1 n + (x h x) 2 ) Σ i (x i x) 2 6

7 Confidence Band for the Regression Line A confidence band encompasses the entire regression line. The confidence limits for E[Y h ] apply to a single value X h. The formula is similar to that of a confidence interval for E[Y h ] except for the multiplier W rather than percentile from a t-dist. Suppose W 2 = 2 F (1 α, 2, n 2) The boundary limits at X h for a given level of α are given by Ŷ h ± W s 2 (Ŷh) The result of using W rather than the percentile from a t-distribution results in a wider interval (we must encompass the entire regression line rather than a single point). Analysis of Variance (ANOVA) approach to regression We are only looking at ANOVA for a different perspective. This will make more sense in multiple regression. Breakdown of the Sums of Squares: Y i }{{ Ȳ = (Ŷi } Ȳ ) + (Y i }{{}}{{ Ŷi) } total deviation deviation of fit Vs mean deviation of obs. Vs fit After some algebra we have n n n (Y i Ȳ )2 = (Ŷi Ȳ )2 + (Y i Ŷi) 2 i=1 i=1 i=1 Total Sums of Squares (SST) = SS Reg + SSE The breakdown of degrees of freedom is as follows: SST = SSR + SSE General case n - 1 = p n - p Simple Lin Reg n - 1 = 1 + n - 2 7

8 ANOVA Table Source Sums of Squares df Mean Square (MS) F Regression SSR p - 1 SSR/(p - 1) MSR/MSE Error SSE n - p SSE/(n - p) Total SST n - 1 Comments: For the simple linear regression model we can use the F -statistic to test the following: H 0 : β 1 = 0 H A : β 1 0 The test statistic has the following distribution: t.s. = MSR MSE F (1 α; df1 = 1; df2 = n 2) See Table 8 on p of the text for tables of the F -distribution. We will reject H 0 if the following condition holds: t.s. > F (1 α; df1 = 1; df2 = n 2) Descriptive Measures of X and Y in the Regression Model Coefficient of Determination denoted by r 2 r 2 = SSR SST r 2 measures the proportion of variation explained by the model (recall what SSR and SST represent) the range of r 2 : 0 r 2 1. the closer r 2 is to 1, the closer the degree of a linear relationship between X and Y Coefficient of Correlation (a.k.a. correlation coefficient) r = ± r 2 Use a + if the sign of ˆβ 1 is + Use a - if the sign of ˆβ 1 is - the range of r: 1 r 1. 8

9 r is just a measure of association with no clear-cut interpretation. One can use it to make relative comparisons Example - Suppose we have corr(y, X 1 ) =.7 and corr(y, X 2 ) =.2. Thus, it seems that X 1 is more correlated to Y than X 2. Limitations of r 2 and r A high r does not imply the model is useful for predictions. Why? Due to variability, the confidence intervals could be too wide to be useful. A high r does not imply the estimated regression line has a good fit. Below is an example of where one may calculate a high r value but a curve explains the relationship between X and Y. r = 0 does not imply X and Y are not related. Below is an example where r = 0 but X and Y are quadratically related. Notes on applying regression analysis: Rejecting H 0 : β 1 0 does not imply a cause-and-effect relationship. Predictions using the estimated regression line are only valid w/i the scope of the data used in estimation. 9

Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares

Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation

More information

One-Way Analysis of Variance (ANOVA) Example Problem

One-Way Analysis of Variance (ANOVA) Example Problem One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means

More information

1 Simple Linear Regression I Least Squares Estimation

1 Simple Linear Regression I Least Squares Estimation Simple Linear Regression I Least Squares Estimation Textbook Sections: 8. 8.3 Previously, we have worked with a random variable x that comes from a population that is normally distributed with mean µ and

More information

Regression Analysis: A Complete Example

Regression Analysis: A Complete Example Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

More information

Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

More information

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

More information

Simple Linear Regression Inference

Simple Linear Regression Inference Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

More information

Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 13 Introduction to Linear Regression and Correlation Analysis Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

More information

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The

More information

12: Analysis of Variance. Introduction

12: Analysis of Variance. Introduction 1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider

More information

A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment

More information

Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA. Analysis Of Variance Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is

More information

Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl

Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic

More information

2. Simple Linear Regression

2. Simple Linear Regression Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

More information

Final Exam Practice Problem Answers

Final Exam Practice Problem Answers Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

More information

Using R for Linear Regression

Using R for Linear Regression Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

Module 5: Multiple Regression Analysis

Module 5: Multiple Regression Analysis Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

More information

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

More information

CHAPTER 13. Experimental Design and Analysis of Variance

CHAPTER 13. Experimental Design and Analysis of Variance CHAPTER 13 Experimental Design and Analysis of Variance CONTENTS STATISTICS IN PRACTICE: BURKE MARKETING SERVICES, INC. 13.1 AN INTRODUCTION TO EXPERIMENTAL DESIGN AND ANALYSIS OF VARIANCE Data Collection

More information

Estimation of σ 2, the variance of ɛ

Estimation of σ 2, the variance of ɛ Estimation of σ 2, the variance of ɛ The variance of the errors σ 2 indicates how much observations deviate from the fitted surface. If σ 2 is small, parameters β 0, β 1,..., β k will be reliably estimated

More information

Notes on Applied Linear Regression

Notes on Applied Linear Regression Notes on Applied Linear Regression Jamie DeCoster Department of Social Psychology Free University Amsterdam Van der Boechorststraat 1 1081 BT Amsterdam The Netherlands phone: +31 (0)20 444-8935 email:

More information

Study Guide for the Final Exam

Study Guide for the Final Exam Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

More information

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics. Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

More information

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

More information

One-Way Analysis of Variance

One-Way Analysis of Variance One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

More information

International Statistical Institute, 56th Session, 2007: Phil Everson

International Statistical Institute, 56th Session, 2007: Phil Everson Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA E-mail: peverso1@swarthmore.edu 1. Introduction

More information

August 2012 EXAMINATIONS Solution Part I

August 2012 EXAMINATIONS Solution Part I August 01 EXAMINATIONS Solution Part I (1) In a random sample of 600 eligible voters, the probability that less than 38% will be in favour of this policy is closest to (B) () In a large random sample,

More information

2. What is the general linear model to be used to model linear trend? (Write out the model) = + + + or

2. What is the general linear model to be used to model linear trend? (Write out the model) = + + + or Simple and Multiple Regression Analysis Example: Explore the relationships among Month, Adv.$ and Sales $: 1. Prepare a scatter plot of these data. The scatter plots for Adv.$ versus Sales, and Month versus

More information

Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

More information

Coefficient of Determination

Coefficient of Determination Coefficient of Determination The coefficient of determination R 2 (or sometimes r 2 ) is another measure of how well the least squares equation ŷ = b 0 + b 1 x performs as a predictor of y. R 2 is computed

More information

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

More information

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

More information

Univariate Regression

Univariate Regression Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

More information

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

 Y. Notation and Equations for Regression Lecture 11/4. Notation: Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

More information

Section 1: Simple Linear Regression

Section 1: Simple Linear Regression Section 1: Simple Linear Regression Carlos M. Carvalho The University of Texas McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

Statistics Review PSY379

Statistics Review PSY379 Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

More information

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance

More information

2013 MBA Jump Start Program. Statistics Module Part 3

2013 MBA Jump Start Program. Statistics Module Part 3 2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just

More information

1.5 Oneway Analysis of Variance

1.5 Oneway Analysis of Variance Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

More information

UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE TWO-WAY ANOVA UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

More information

Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) Limitations of the t-test Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

More information

1. The parameters to be estimated in the simple linear regression model Y=α+βx+ε ε~n(0,σ) are: a) α, β, σ b) α, β, ε c) a, b, s d) ε, 0, σ

1. The parameters to be estimated in the simple linear regression model Y=α+βx+ε ε~n(0,σ) are: a) α, β, σ b) α, β, ε c) a, b, s d) ε, 0, σ STA 3024 Practice Problems Exam 2 NOTE: These are just Practice Problems. This is NOT meant to look just like the test, and it is NOT the only thing that you should study. Make sure you know all the material

More information

Factors affecting online sales

Factors affecting online sales Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4

More information

Interaction between quantitative predictors

Interaction between quantitative predictors Interaction between quantitative predictors In a first-order model like the ones we have discussed, the association between E(y) and a predictor x j does not depend on the value of the other predictors

More information

Simple Regression Theory II 2010 Samuel L. Baker

Simple Regression Theory II 2010 Samuel L. Baker SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

More information

IAPRI Quantitative Analysis Capacity Building Series. Multiple regression analysis & interpreting results

IAPRI Quantitative Analysis Capacity Building Series. Multiple regression analysis & interpreting results IAPRI Quantitative Analysis Capacity Building Series Multiple regression analysis & interpreting results How important is R-squared? R-squared Published in Agricultural Economics 0.45 Best article of the

More information

Statistical Functions in Excel

Statistical Functions in Excel Statistical Functions in Excel There are many statistical functions in Excel. Moreover, there are other functions that are not specified as statistical functions that are helpful in some statistical analyses.

More information

Multiple Linear Regression in Data Mining

Multiple Linear Regression in Data Mining Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple

More information

Elementary Statistics Sample Exam #3

Elementary Statistics Sample Exam #3 Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to

More information

Unit 26: Small Sample Inference for One Mean

Unit 26: Small Sample Inference for One Mean Unit 26: Small Sample Inference for One Mean Prerequisites Students need the background on confidence intervals and significance tests covered in Units 24 and 25. Additional Topic Coverage Additional coverage

More information

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1) Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

More information

MULTIPLE REGRESSIONS ON SOME SELECTED MACROECONOMIC VARIABLES ON STOCK MARKET RETURNS FROM 1986-2010

MULTIPLE REGRESSIONS ON SOME SELECTED MACROECONOMIC VARIABLES ON STOCK MARKET RETURNS FROM 1986-2010 Advances in Economics and International Finance AEIF Vol. 1(1), pp. 1-11, December 2014 Available online at http://www.academiaresearch.org Copyright 2014 Academia Research Full Length Research Paper MULTIPLE

More information

Regression step-by-step using Microsoft Excel

Regression step-by-step using Microsoft Excel Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression

More information

Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software

Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software STATA Tutorial Professor Erdinç Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software 1.Wald Test Wald Test is used

More information

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1. General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n

More information

Causal Forecasting Models

Causal Forecasting Models CTL.SC1x -Supply Chain & Logistics Fundamentals Causal Forecasting Models MIT Center for Transportation & Logistics Causal Models Used when demand is correlated with some known and measurable environmental

More information

Section 14 Simple Linear Regression: Introduction to Least Squares Regression

Section 14 Simple Linear Regression: Introduction to Least Squares Regression Slide 1 Section 14 Simple Linear Regression: Introduction to Least Squares Regression There are several different measures of statistical association used for understanding the quantitative relationship

More information

Statistical Models in R

Statistical Models in R Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova

More information

17. SIMPLE LINEAR REGRESSION II

17. SIMPLE LINEAR REGRESSION II 17. SIMPLE LINEAR REGRESSION II The Model In linear regression analysis, we assume that the relationship between X and Y is linear. This does not mean, however, that Y can be perfectly predicted from X.

More information

Pearson's Correlation Tests

Pearson's Correlation Tests Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation

More information

Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test

Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test The t-test Outline Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test - Dependent (related) groups t-test - Independent (unrelated) groups t-test Comparing means Correlation

More information

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( ) Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

More information

Lecture Notes Module 1

Lecture Notes Module 1 Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific

More information

CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

More information

MULTIPLE REGRESSION WITH CATEGORICAL DATA

MULTIPLE REGRESSION WITH CATEGORICAL DATA DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 86 MULTIPLE REGRESSION WITH CATEGORICAL DATA I. AGENDA: A. Multiple regression with categorical variables. Coding schemes. Interpreting

More information

Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

More information

Simple linear regression

Simple linear regression Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

More information

SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

More information

11. Analysis of Case-control Studies Logistic Regression

11. Analysis of Case-control Studies Logistic Regression Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

More information

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r), Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

More information

Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Two-Sample T-Tests Assuming Equal Variance (Enter Means) Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

More information

STATISTICA Formula Guide: Logistic Regression. Table of Contents

STATISTICA Formula Guide: Logistic Regression. Table of Contents : Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

More information

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

More information

Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2

Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2 Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable

More information

Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

More information

General Regression Formulae ) (N-2) (1 - r 2 YX

General Regression Formulae ) (N-2) (1 - r 2 YX General Regression Formulae Single Predictor Standardized Parameter Model: Z Yi = β Z Xi + ε i Single Predictor Standardized Statistical Model: Z Yi = β Z Xi Estimate of Beta (Beta-hat: β = r YX (1 Standard

More information

False. Model 2 is not a special case of Model 1, because Model 2 includes X5, which is not part of Model 1. What she ought to do is estimate

False. Model 2 is not a special case of Model 1, because Model 2 includes X5, which is not part of Model 1. What she ought to do is estimate Sociology 59 - Research Statistics I Final Exam Answer Key December 6, 00 Where appropriate, show your work - partial credit may be given. (On the other hand, don't waste a lot of time on excess verbiage.)

More information

STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance

STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis

More information

Premaster Statistics Tutorial 4 Full solutions

Premaster Statistics Tutorial 4 Full solutions Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for

More information

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

More information

Recall this chart that showed how most of our course would be organized:

Recall this chart that showed how most of our course would be organized: Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

More information

A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution

A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 4: September

More information

X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1) CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

More information

Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS

Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple

More information

Example: Boats and Manatees

Example: Boats and Manatees Figure 9-6 Example: Boats and Manatees Slide 1 Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant

More information

Section Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini

Section Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building

More information

Hypothesis testing - Steps

Hypothesis testing - Steps Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

More information

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name: Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

More information

Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

More information

Chapter 4 and 5 solutions

Chapter 4 and 5 solutions Chapter 4 and 5 solutions 4.4. Three different washing solutions are being compared to study their effectiveness in retarding bacteria growth in five gallon milk containers. The analysis is done in a laboratory,

More information

Regression III: Advanced Methods

Regression III: Advanced Methods Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models

More information

Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures

Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone:

More information

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

More information

Exercise 1.12 (Pg. 22-23)

Exercise 1.12 (Pg. 22-23) Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

More information