Memory Management. In most schemes, the kernel occupies some fixed portion of main memory and the rest is shared by multiple processes
|
|
|
- Helen Hamilton
- 9 years ago
- Views:
Transcription
1 Memory Management Is the task carried out by the OS and hardware to accommodate multiple processes in main memory If only a few processes can be kept in main memory, then much of the time all processes will be waiting for I/O and the CPU will be idle Hence, memory needs to be allocated efficiently in order to pack as many processes into memory as possible 1
2 Memory Management In most schemes, the kernel occupies some fixed portion of main memory and the rest is shared by multiple processes 2
3 Memory Management Requirements Relocation programmer cannot know where the program will be placed in memory when it is executed a process may be (often) relocated in main memory due to swapping swapping enables the OS to have a larger pool of ready-to-execute processes memory references in code (for both instructions and data) must be translated to actual physical memory address 3
4 Memory Management Requirements Protection processes should not be able to reference memory locations in another process without permission impossible to check addresses at compile time in programs since the program could be relocated address references must be checked at run time by hardware 4
5 Memory Management Requirements Sharing must allow several processes to access a common portion of main memory without compromising protection cooperating processes may need to share access to the same data structure better to allow each process to access the same copy of the program rather than have their own separate copy 5
6 Memory Management Requirements Logical Organization users write programs in modules with different characteristics instruction modules are execute-only data modules are either read-only or read/write some modules are private others are public To effectively deal with user programs, the OS and hardware should support a basic form of module to provide the required protection and sharing 6
7 Memory Management Requirements Physical Organization secondary memory is the long term store for programs and data while main memory holds program and data currently in use moving information between these two levels of memory is a major concern of memory management (OS) it is highly inefficient to leave this responsibility to the application programmer 7
8 Simple Memory Management In this chapter we study the simpler case where there is no virtual memory An executing process must be loaded entirely in main memory (if overlays are not used) Although the following simple memory management techniques are not used in modern OS, they lay the ground for a proper discussion of virtual memory (next chapter) fixed partitioning dynamic partitioning simple paging simple segmentation 8
9 Fixed Partitioning Partition main memory into a set of non overlapping regions called partitions Partitions can be of equal or unequal sizes 9
10 Fixed Partitioning any process whose size is less than or equal to a partition size can be loaded into the partition if all partitions are occupied, the operating system can swap a process out of a partition a program may be too large to fit in a partition. The programmer must then design the program with overlays when the module needed is not present the user program must load that module into the program s partition, overlaying whatever program or data are there 10
11 Fixed Partitioning Main memory use is inefficient. Any program, no matter how small, occupies an entire partition. This is called internal fragmentation. Unequal-size partitions lessens these problems but they still remain... Equal-size partitions was used in early IBM s OS/MFT (Multiprogramming with a Fixed number of Tasks) 11
12 Placement Algorithm with Partitions Equal-size partitions If there is an available partition, a process can be loaded into that partition because all partitions are of equal size, it does not matter which partition is used If all partitions are occupied by blocked processes, choose one process to swap out to make room for the new process 12
13 Placement Algorithm with Partitions Unequal-size partitions: use of multiple queues assign each process to the smallest partition within which it will fit A queue for each partition size tries to minimize internal fragmentation Problem: some queues will be empty if no processes within a size range is present 13
14 Placement Algorithm with Partitions Unequal-size partitions: use of a single queue When its time to load a process into main memory the smallest available partition that will hold the process is selected increases the level of multiprogramming at the expense of internal fragmentation 14
15 Dynamic Partitioning Partitions are of variable length and number Each process is allocated exactly as much memory as it requires Eventually holes are formed in main memory. This is called external fragmentation Must use compaction to shift processes so they are contiguous and all free memory is in one block Used in IBM s OS/MVT (Multiprogramming with a Variable number of Tasks) 15
16 Dynamic Partitioning: an example A hole of 64K is left after loading 3 processes: not enough room for another process Eventually each process is blocked. The OS swaps out process 2 to bring in process 4 16
17 Dynamic Partitioning: an example another hole of 96K is created Eventually each process is blocked. The OS swaps out process 1 to bring in again process 2 and another hole of 96K is created... Compaction would produce a single hole of 256K 17
18 Placement Algorithm Used to decide which free block to allocate to a process Goal: to reduce usage of compaction (time consuming) Possible algorithms: Best-fit: choose smallest hole First-fit: choose first hole from beginning Next-fit: choose first hole from last placement 18
19 Placement Algorithm: comments Next-fit often leads to allocation of the largest block at the end of memory First-fit favors allocation near the beginning: tends to create less fragmentation then Next-fit Best-fit searches for smallest block: the fragment left behind is small as possible main memory quickly forms holes too small to hold any process: compaction generally needs to be done more often 19
20 Replacement Algorithm When all processes in main memory are blocked, the OS must choose which process to replace A process must be swapped out (to a Blocked- Suspend state) and be replaced by a new process or a process from the Ready-Suspend queue We will discuss later such algorithms for memory management schemes using virtual memory 20
21 Relocation Because of swapping and compaction, a process may occupy different main memory locations during its lifetime Hence physical memory references by a process cannot be fixed This problem is solved by distinguishing between logical address and physical address 21
22 Address Types A physical address (absolute address) is a physical location in main memory A logical address is a reference to a memory location independent of the physical structure/organization of memory Compilers produce code in which all memory references are logical addresses A relative address is an example of logical address in which the address is expressed as a location relative to some known point in the program (ex: the beginning) 22
23 Address Translation Relative address is the most frequent type of logical address used in pgm modules (ie: executable files) Such modules are loaded in main memory with all memory references in relative form Physical addresses are calculated on the fly as the instructions are executed For adequate performance, the translation from relative to physical address must by done by hardware 23
24 Simple example of hardware translation of addresses When a process is assigned to the running state, a base register (in CPU) gets loaded with the starting physical address of the process A bound register gets loaded with the process s ending physical address When a relative addresses is encountered, it is added with the content of the base register to obtain the physical address which is compared with the content of the bound register This provides hardware protection: each process can only access memory within its process image 24
25 Example Hardware for Address Translation 25
26 Simple Paging Main memory is partition into equal fixedsized chunks (of relatively small size) Trick: each process is also divided into chunks of the same size called pages The process pages can thus be assigned to the available chunks in main memory called frames (or page frames) Consequence: a process does not need to occupy a contiguous portion of memory 26
27 Example of process loading Now suppose that process B is swapped out 27
28 Example of process loading (cont.) When process A and C are blocked, the pager loads a new process D consisting of 5 pages Process D does not occupied a contiguous portion of memory There is no external fragmentation Internal fragmentation consist only of the last page of each process 28
29 Page Tables The OS now needs to maintain (in main memory) a page table for each process Each entry of a page table consist of the frame number where the corresponding page is physically located The page table is indexed by the page number to obtain the frame number A free frame list, available for pages, is maintained 29
30 Logical address used in paging Within each program, each logical address must consist of a page number and an offset within the page A CPU register always holds the starting physical address of the page table of the currently running process Presented with the logical address (page number, offset) the processor accesses the page table to obtain the physical address (frame number, offset) 30
31 Logical address in paging The logical address becomes a relative address when the page size is a power of 2 Ex: if 16 bits addresses are used and page size = 1K, we need 10 bits for offset and have 6 bits available for page number Then the 16 bit address obtained with the 10 least significant bit as offset and 6 most significant bit as page number is a location relative to the beginning of the process 31
32 Logical address in paging By using a page size of a power of 2, the pages are invisible to the programmer, compiler/assembler, and the linker Address translation at run-time is then easy to implement in hardware logical address (n,m) gets translated to physical address (k,m) by indexing the page table and appending the same offset m to the frame number k 32
33 Logical-to-Physical Address Translation in Paging 33
34 Simple Segmentation Each program is subdivided into blocks of non-equal size called segments When a process gets loaded into main memory, its different segments can be located anywhere Each segment is fully packed with instructs/data: no internal fragmentation There is external fragmentation; it is reduced when using small segments 34
35 Simple Segmentation In contrast with paging, segmentation is visible to the programmer provided as a convenience to organize logically programs (ex: data in one segment, code in another segment) must be aware of segment size limit The OS maintains a segment table for each process. Each entry contains: the starting physical addresses of that segment. the length of that segment (for protection) 35
36 Logical address used in segmentation When a process enters the Running state, a CPU register gets loaded with the starting address of the process s segment table. Presented with a logical address (segment number, offset) = (n,m), the CPU indexes (with n) the segment table to obtain the starting physical address k and the length l of that segment The physical address is obtained by adding m to k (in contrast with paging) the hardware also compares the offset m with the length l of that segment to determine if the address is valid 36
37 Logical-to-Physical Address Translation in segmentation 37
38 Simple segmentation and paging comparison Segmentation requires more complicated hardware for address translation Segmentation suffers from external fragmentation Paging only yield a small internal fragmentation Segmentation is visible to the programmer whereas paging is transparent Segmentation can be viewed as commodity offered to the programmer to organize logically a program into segments and using different kinds of protection (ex: execute-only for code but read-write for data) for this we need to use protection bits in segment table entries 38
Chapter 7 Memory Management
Operating Systems: Internals and Design Principles Chapter 7 Memory Management Eighth Edition William Stallings Frame Page Segment A fixed-length block of main memory. A fixed-length block of data that
Chapter 7 Memory Management
Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 7 Memory Management Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Memory Management Subdividing
Memory management basics (1) Requirements (1) Objectives. Operating Systems Part of E1.9 - Principles of Computers and Software Engineering
Memory management basics (1) Requirements (1) Operating Systems Part of E1.9 - Principles of Computers and Software Engineering Lecture 7: Memory Management I Memory management intends to satisfy the following
Operating Systems, 6 th ed. Test Bank Chapter 7
True / False Questions: Chapter 7 Memory Management 1. T / F In a multiprogramming system, main memory is divided into multiple sections: one for the operating system (resident monitor, kernel) and one
OPERATING SYSTEM - MEMORY MANAGEMENT
OPERATING SYSTEM - MEMORY MANAGEMENT http://www.tutorialspoint.com/operating_system/os_memory_management.htm Copyright tutorialspoint.com Memory management is the functionality of an operating system which
Memory Management Outline. Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging
Memory Management Outline Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging 1 Background Memory is a large array of bytes memory and registers are only storage CPU can
Chapter 2: OS Overview
Chapter 2: OS Overview CmSc 335 Operating Systems 1. Operating system objectives and functions Operating systems control and support the usage of computer systems. a. usage users of a computer system:
Memory unit sees only the addresses, and not how they are generated (instruction counter, indexing, direct)
Memory Management 55 Memory Management Multitasking without memory management is like having a party in a closet. Charles Petzold. Programming Windows 3.1 Programs expand to fill the memory that holds
The Deadlock Problem. Deadlocks. Deadlocks. Bridge Crossing Example
The Deadlock Problem Deadlocks A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set. Example System has 2 tape drives. P 1 and P 2 each
CS5460: Operating Systems
CS5460: Operating Systems Lecture 13: Memory Management (Chapter 8) Where are we? Basic OS structure, HW/SW interface, interrupts, scheduling Concurrency Memory management Storage management Other topics
Page 1 of 5. IS 335: Information Technology in Business Lecture Outline Operating Systems
Lecture Outline Operating Systems Objectives Describe the functions and layers of an operating system List the resources allocated by the operating system and describe the allocation process Explain how
OPERATING SYSTEM - VIRTUAL MEMORY
OPERATING SYSTEM - VIRTUAL MEMORY http://www.tutorialspoint.com/operating_system/os_virtual_memory.htm Copyright tutorialspoint.com A computer can address more memory than the amount physically installed
& Data Processing 2. Exercise 3: Memory Management. Dipl.-Ing. Bogdan Marin. Universität Duisburg-Essen
Folie a: Name & Data Processing 2 3: Memory Management Dipl.-Ing. Bogdan Marin Fakultät für Ingenieurwissenschaften Abteilung Elektro-und Informationstechnik -Technische Informatik- Objectives Memory Management
Chapter 12. Paging an Virtual Memory Systems
Chapter 12 Paging an Virtual Memory Systems Paging & Virtual Memory Virtual Memory - giving the illusion of more physical memory than there really is (via demand paging) Pure Paging - The total program
OPERATING SYSTEMS MEMORY MANAGEMENT
OPERATING SYSTEMS MEMORY MANAGEMENT Jerry Breecher 8: Memory Management 1 OPERATING SYSTEM Memory Management What Is In This Chapter? Just as processes share the CPU, they also share physical memory. This
Memory Management 1. Memory Management. Multitasking without memory management is like having a party in a closet.
Memory Management 1 Memory Management Multitasking without memory management is like having a party in a closet. Charles Petzold. Programming Windows 3.1 Programs expand to fill the memory that holds them.
Memory Allocation. Static Allocation. Dynamic Allocation. Memory Management. Dynamic Allocation. Dynamic Storage Allocation
Dynamic Storage Allocation CS 44 Operating Systems Fall 5 Presented By Vibha Prasad Memory Allocation Static Allocation (fixed in size) Sometimes we create data structures that are fixed and don t need
Operating Systems. Virtual Memory
Operating Systems Virtual Memory Virtual Memory Topics. Memory Hierarchy. Why Virtual Memory. Virtual Memory Issues. Virtual Memory Solutions. Locality of Reference. Virtual Memory with Segmentation. Page
Record Storage and Primary File Organization
Record Storage and Primary File Organization 1 C H A P T E R 4 Contents Introduction Secondary Storage Devices Buffering of Blocks Placing File Records on Disk Operations on Files Files of Unordered Records
2) Write in detail the issues in the design of code generator.
COMPUTER SCIENCE AND ENGINEERING VI SEM CSE Principles of Compiler Design Unit-IV Question and answers UNIT IV CODE GENERATION 9 Issues in the design of code generator The target machine Runtime Storage
CS0206 OPERATING SYSTEMS Prerequisite CS0201, CS0203
CS0206 OPERATING SYSTEMS Prerequisite CS0201, CS0203 L T P C 3 0 0 3 PURPOSE Every computer professional should have a basic understanding of how an operating system controls the computing resources and
Operating System Tutorial
Operating System Tutorial OPERATING SYSTEM TUTORIAL Simply Easy Learning by tutorialspoint.com tutorialspoint.com i ABOUT THE TUTORIAL Operating System Tutorial An operating system (OS) is a collection
Convenience: An OS makes a computer more convenient to use. Efficiency: An OS allows the computer system resources to be used in an efficient manner.
Introduction to Operating System PCSC-301 (For UG students) (Class notes and reference books are required to complete this study) Release Date: 27.12.2014 Operating System Objectives and Functions An OS
CS 61C: Great Ideas in Computer Architecture Virtual Memory Cont.
CS 61C: Great Ideas in Computer Architecture Virtual Memory Cont. Instructors: Vladimir Stojanovic & Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/ 1 Bare 5-Stage Pipeline Physical Address PC Inst.
Windows Server Performance Monitoring
Spot server problems before they are noticed The system s really slow today! How often have you heard that? Finding the solution isn t so easy. The obvious questions to ask are why is it running slowly
Introduction. What is an Operating System?
Introduction What is an Operating System? 1 What is an Operating System? 2 Why is an Operating System Needed? 3 How Did They Develop? Historical Approach Affect of Architecture 4 Efficient Utilization
Memory management. Chapter 4: Memory Management. Memory hierarchy. In an ideal world. Basic memory management. Fixed partitions: multiple programs
Memory management Chater : Memory Management Part : Mechanisms for Managing Memory asic management Swaing Virtual Page relacement algorithms Modeling age relacement algorithms Design issues for aging systems
Operating Systems OBJECTIVES 7.1 DEFINITION. Chapter 7. Note:
Chapter 7 OBJECTIVES Operating Systems Define the purpose and functions of an operating system. Understand the components of an operating system. Understand the concept of virtual memory. Understand the
Two Parts. Filesystem Interface. Filesystem design. Interface the user sees. Implementing the interface
File Management Two Parts Filesystem Interface Interface the user sees Organization of the files as seen by the user Operations defined on files Properties that can be read/modified Filesystem design Implementing
Segmentation. 16.1 Segmentation: Generalized Base/Bounds
16 Segmentation So far we have been putting the entire address space of each process in memory. With the base and bounds registers, the OS can easily relocate processes to different parts of physical memory.
CHAPTER 17: File Management
CHAPTER 17: File Management The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides
Part III Storage Management. Chapter 11: File System Implementation
Part III Storage Management Chapter 11: File System Implementation 1 Layered File System 2 Overview: 1/4 A file system has on-disk and in-memory information. A disk may contain the following for implementing
Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings
Operatin g Systems: Internals and Design Principle s Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles Bear in mind,
Chapter 11 I/O Management and Disk Scheduling
Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 11 I/O Management and Disk Scheduling Dave Bremer Otago Polytechnic, NZ 2008, Prentice Hall I/O Devices Roadmap Organization
Chapter 3: Operating-System Structures. System Components Operating System Services System Calls System Programs System Structure Virtual Machines
Chapter 3: Operating-System Structures System Components Operating System Services System Calls System Programs System Structure Virtual Machines Operating System Concepts 3.1 Common System Components
Technical Properties. Mobile Operating Systems. Overview Concepts of Mobile. Functions Processes. Lecture 11. Memory Management.
Overview Concepts of Mobile Operating Systems Lecture 11 Concepts of Mobile Operating Systems Mobile Business I (WS 2007/08) Prof Dr Kai Rannenberg Chair of Mobile Business and Multilateral Security Johann
Lesson Objectives. To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization
Lesson Objectives To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization AE3B33OSD Lesson 1 / Page 2 What is an Operating System? A
Virtual Memory. Virtual Memory. Paging. CSE 380 Computer Operating Systems. Paging (1)
Virtual Memory CSE 380 Computer Operating Systems Instructor: Insup Lee University of Pennsylvania Fall 2003 Lecture Note: Virtual Memory (revised version) 1 Recall: memory allocation with variable partitions
Secondary Storage. Any modern computer system will incorporate (at least) two levels of storage: magnetic disk/optical devices/tape systems
1 Any modern computer system will incorporate (at least) two levels of storage: primary storage: typical capacity cost per MB $3. typical access time burst transfer rate?? secondary storage: typical capacity
Operating system Dr. Shroouq J.
3 OPERATING SYSTEM STRUCTURES An operating system provides the environment within which programs are executed. The design of a new operating system is a major task. The goals of the system must be well
Scheduling. Yücel Saygın. These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum
Scheduling Yücel Saygın These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum 1 Scheduling Introduction to Scheduling (1) Bursts of CPU usage alternate with periods
Chapter 13 Disk Storage, Basic File Structures, and Hashing.
Chapter 13 Disk Storage, Basic File Structures, and Hashing. Copyright 2004 Pearson Education, Inc. Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files
Linux Process Scheduling Policy
Lecture Overview Introduction to Linux process scheduling Policy versus algorithm Linux overall process scheduling objectives Timesharing Dynamic priority Favor I/O-bound process Linux scheduling algorithm
Buffer Management 5. Buffer Management
5 Buffer Management Copyright 2004, Binnur Kurt A journey of a byte Buffer Management Content 156 A journey of a byte Suppose in our program we wrote: outfile
Operating Systems 4 th Class
Operating Systems 4 th Class Lecture 1 Operating Systems Operating systems are essential part of any computer system. Therefore, a course in operating systems is an essential part of any computer science
1 File Management. 1.1 Naming. COMP 242 Class Notes Section 6: File Management
COMP 242 Class Notes Section 6: File Management 1 File Management We shall now examine how an operating system provides file management. We shall define a file to be a collection of permanent data with
OS OBJECTIVE QUESTIONS
OS OBJECTIVE QUESTIONS Which one of the following is Little s formula Where n is the average queue length, W is the time that a process waits 1)n=Lambda*W 2)n=Lambda/W 3)n=Lambda^W 4)n=Lambda*(W-n) Answer:1
1 Organization of Operating Systems
COMP 730 (242) Class Notes Section 10: Organization of Operating Systems 1 Organization of Operating Systems We have studied in detail the organization of Xinu. Naturally, this organization is far from
Process Description and Control. 2004-2008 william stallings, maurizio pizzonia - sistemi operativi
Process Description and Control 1 Process A program in execution (running) on a computer The entity that can be assigned to and executed on a processor A unit of activity characterized by a at least one
Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan
Chapter 2 Basic Structure of Computers Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Functional Units Basic Operational Concepts Bus Structures Software
Outline: Operating Systems
Outline: Operating Systems What is an OS OS Functions Multitasking Virtual Memory File Systems Window systems PC Operating System Wars: Windows vs. Linux 1 Operating System provides a way to boot (start)
System Virtual Machines
System Virtual Machines Introduction Key concepts Resource virtualization processors memory I/O devices Performance issues Applications 1 Introduction System virtual machine capable of supporting multiple
Traditional IBM Mainframe Operating Principles
C H A P T E R 1 7 Traditional IBM Mainframe Operating Principles WHEN YOU FINISH READING THIS CHAPTER YOU SHOULD BE ABLE TO: Distinguish between an absolute address and a relative address. Briefly explain
Chapter 14 MS-DOS Operating System
Understanding Operating Systems, Fifth Edition 14-1 Chapter 14 MS-DOS Operating System At a Glance Instructor s Manual Table of Contents Overview Objectives s Quick Quizzes Class Discussion Topics Additional
Introduction. Scheduling. Types of scheduling. The basics
Introduction In multiprogramming systems, when there is more than one runable (i.e., ready), the operating system must decide which one to activate. The decision is made by the part of the operating system
Chapter 1: Introduction. What is an Operating System?
Chapter 1: Introduction What is an Operating System? Mainframe Systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered System Real -Time Systems Handheld Systems Computing Environments
Stack Allocation. Run-Time Data Structures. Static Structures
Run-Time Data Structures Stack Allocation Static Structures For static structures, a fixed address is used throughout execution. This is the oldest and simplest memory organization. In current compilers,
Chapter 12 File Management
Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 12 File Management Dave Bremer Otago Polytechnic, N.Z. 2008, Prentice Hall Roadmap Overview File organisation and Access
Disk Space Management Methods
Volume 1, Issue 1, June 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com Disk Space Management Methods Ramakrishna
Chapter 12 File Management. Roadmap
Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 12 File Management Dave Bremer Otago Polytechnic, N.Z. 2008, Prentice Hall Overview Roadmap File organisation and Access
Amoeba Distributed Operating System
Amoeba Distributed Operating System Matt Ramsay Tim Kiegel Heath Memmer CS470 Case Study Paper 4/19/02 Amoeba Introduction The Amoeba operating system began as a research project at Vrije Universiteit
Operating System: Scheduling
Process Management Operating System: Scheduling OS maintains a data structure for each process called Process Control Block (PCB) Information associated with each PCB: Process state: e.g. ready, or waiting
APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM
152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented
Virtual vs Physical Addresses
Virtual vs Physical Addresses Physical addresses refer to hardware addresses of physical memory. Virtual addresses refer to the virtual store viewed by the process. virtual addresses might be the same
Kernel. What is an Operating System? Systems Software and Application Software. The core of an OS is called kernel, which. Module 9: Operating Systems
Module 9: Operating Systems Objective What is an operating system (OS)? OS kernel, and basic functions OS Examples: MS-DOS, MS Windows, Mac OS Unix/Linux Features of modern OS Graphical operating system
Chapter 13. Chapter Outline. Disk Storage, Basic File Structures, and Hashing
Chapter 13 Disk Storage, Basic File Structures, and Hashing Copyright 2007 Ramez Elmasri and Shamkant B. Navathe Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files
I/O Management. General Computer Architecture. Goals for I/O. Levels of I/O. Naming. I/O Management. COMP755 Advanced Operating Systems 1
General Computer Architecture I/O Management COMP755 Advanced Operating Systems Goals for I/O Users should access all devices in a uniform manner. Devices should be named in a uniform manner. The OS, without
Origins of Operating Systems OS/360. Martin Grund HPI
Origins of Operating Systems OS/360 HPI Table of Contents IBM System 360 Functional Structure of OS/360 Virtual Machine Time Sharing 2 Welcome to Big Blue 3 IBM System 360 In 1964 IBM announced the IBM-360
Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6
Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Winter Term 2008 / 2009 Jun.-Prof. Dr. André Brinkmann [email protected] Universität Paderborn PC² Agenda Multiprocessor and
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 13-1
Slide 13-1 Chapter 13 Disk Storage, Basic File Structures, and Hashing Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files Hashed Files Dynamic and Extendible
Operating System Components
Lecture Overview Operating system software introduction OS components OS services OS structure Operating Systems - April 24, 2001 Operating System Components Process management Memory management Secondary
Uses for Virtual Machines. Virtual Machines. There are several uses for virtual machines:
Virtual Machines Uses for Virtual Machines Virtual machine technology, often just called virtualization, makes one computer behave as several computers by sharing the resources of a single computer between
INTRODUCTION The collection of data that makes up a computerized database must be stored physically on some computer storage medium.
Chapter 4: Record Storage and Primary File Organization 1 Record Storage and Primary File Organization INTRODUCTION The collection of data that makes up a computerized database must be stored physically
Building Applications Using Micro Focus COBOL
Building Applications Using Micro Focus COBOL Abstract If you look through the Micro Focus COBOL documentation, you will see many different executable file types referenced: int, gnt, exe, dll and others.
Chapter 3: Operating-System Structures. Common System Components
Chapter 3: Operating-System Structures System Components Operating System Services System Calls System Programs System Structure Virtual Machines System Design and Implementation System Generation 3.1
Chapter 11 I/O Management and Disk Scheduling
Operatin g Systems: Internals and Design Principle s Chapter 11 I/O Management and Disk Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles An artifact can
File Management. Chapter 12
Chapter 12 File Management File is the basic element of most of the applications, since the input to an application, as well as its output, is usually a file. They also typically outlive the execution
Chapter 1 FUNDAMENTALS OF OPERATING SYSTEM
Chapter 1 FUNDAMENTALS OF OPERATING SYSTEM An operating system is a program that acts as an intermediary between a user of a computer and the computer hardware. The purpose of an operating system is to
Avoiding Performance Bottlenecks in Hyper-V
Avoiding Performance Bottlenecks in Hyper-V Identify and eliminate capacity related performance bottlenecks in Hyper-V while placing new VMs for optimal density and performance Whitepaper by Chris Chesley
COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters
COSC 6374 Parallel I/O (I) I/O basics Fall 2012 Concept of a clusters Processor 1 local disks Compute node message passing network administrative network Memory Processor 2 Network card 1 Network card
OPERATING SYSTEMS SCHEDULING
OPERATING SYSTEMS SCHEDULING Jerry Breecher 5: CPU- 1 CPU What Is In This Chapter? This chapter is about how to get a process attached to a processor. It centers around efficient algorithms that perform
Distributed File Systems
Distributed File Systems Paul Krzyzanowski Rutgers University October 28, 2012 1 Introduction The classic network file systems we examined, NFS, CIFS, AFS, Coda, were designed as client-server applications.
Computer-System Architecture
Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection General System Architecture 2.1 Computer-System Architecture 2.2 Computer-System
Components of a Computing System. What is an Operating System? Resources. Abstract Resources. Goals of an OS. System Software
What is an Operating System? An operating system (OS) is a collection of software that acts as an intermediary between users and the computer hardware One can view an OS as a manager of system resources
Chapter 13. Disk Storage, Basic File Structures, and Hashing
Chapter 13 Disk Storage, Basic File Structures, and Hashing Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files Hashed Files Dynamic and Extendible Hashing
An Introduction to Computer Science and Computer Organization Comp 150 Fall 2008
An Introduction to Computer Science and Computer Organization Comp 150 Fall 2008 Computer Science the study of algorithms, including Their formal and mathematical properties Their hardware realizations
How To Understand And Understand An Operating System In C Programming
ELEC 377 Operating Systems Thomas R. Dean Instructor Tom Dean Office:! WLH 421 Email:! [email protected] Hours:! Wed 14:30 16:00 (Tentative)! and by appointment! 6 years industrial experience ECE Rep
CPU Scheduling. CPU Scheduling
CPU Scheduling Electrical and Computer Engineering Stephen Kim ([email protected]) ECE/IUPUI RTOS & APPS 1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling
Overview and History of Operating Systems
Overview and History of Operating Systems These are the notes for lecture 1. Please review the Syllabus notes before these. Overview / Historical Developments An Operating System... Sits between hardware
CS 377: Operating Systems. Outline. A review of what you ve learned, and how it applies to a real operating system. Lecture 25 - Linux Case Study
CS 377: Operating Systems Lecture 25 - Linux Case Study Guest Lecturer: Tim Wood Outline Linux History Design Principles System Overview Process Scheduling Memory Management File Systems A review of what
Objectives. Distributed Databases and Client/Server Architecture. Distributed Database. Data Fragmentation
Objectives Distributed Databases and Client/Server Architecture IT354 @ Peter Lo 2005 1 Understand the advantages and disadvantages of distributed databases Know the design issues involved in distributed
Peter J. Denning, Naval Postgraduate School, Monterey, California
VIRTUAL MEMORY Peter J. Denning, Naval Postgraduate School, Monterey, California January 2008 Rev 6/5/08 Abstract: Virtual memory is the simulation of a storage space so large that users do not need to
Contributions to Gang Scheduling
CHAPTER 7 Contributions to Gang Scheduling In this Chapter, we present two techniques to improve Gang Scheduling policies by adopting the ideas of this Thesis. The first one, Performance- Driven Gang Scheduling,
OPERATING SYSTEM SERVICES
OPERATING SYSTEM SERVICES USER INTERFACE Command line interface(cli):uses text commands and a method for entering them Batch interface(bi):commands and directives to control those commands are entered
1 The Java Virtual Machine
1 The Java Virtual Machine About the Spec Format This document describes the Java virtual machine and the instruction set. In this introduction, each component of the machine is briefly described. This
Computer Science 4302 Operating Systems. Student Learning Outcomes
Computer Science 4302 Operating Systems Student Learning Outcomes 1. The student will learn what operating systems are, what they do, and how they are designed and constructed. The student will be introduced
The Truth Behind IBM AIX LPAR Performance
The Truth Behind IBM AIX LPAR Performance Yann Guernion, VP Technology EMEA HEADQUARTERS AMERICAS HEADQUARTERS Tour Franklin 92042 Paris La Défense Cedex France +33 [0] 1 47 73 12 12 [email protected] www.orsyp.com
Chapter 11: File System Implementation. Chapter 11: File System Implementation. Objectives. File-System Structure
Chapter 11: File System Implementation Chapter 11: File System Implementation File-System Structure File-System Implementation Directory Implementation Allocation Methods Free-Space Management Efficiency
Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2
Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of
