Issues Using OLS with Time Series Data. Time series data NOT randomly sampled in same way as cross sectional each obs not i.i.d
|
|
|
- Ophelia Butler
- 9 years ago
- Views:
Transcription
1 These noes largely concern auocorrelaion Issues Using OLS wih Time Series Daa Recall main poins from Chaper 10: Time series daa NOT randomly sampled in same way as cross secional each obs no i.i.d Why? Daa is a sochasic process we have one realizaion of he process from a se of all possible realizaions Leads o a Number of Common problems: 1. Errors correlaed over ime high errors oday high nex ime (biased sandard errors bu no biased coefficiens) 2. Effecs may ake a while o appear difficul o know how long should wai o see effecs (ax cus is growh in Clinon years due o Clinon? Reagan?) (specificaion problem) 3. Feedback effecs (x y bu afer seeing y, policy makers adjus x) (specificaion problem can lead o biased coeffs) 4. Trending daa over ime daa series can look like hey are relaed, bu really is spurious (biased coeffs) Relaed Issue: Predicion ofen wan a predicion of fuure prices, GDP, ec. Need o use properies of exising series o make ha predicion
2 Recall Chaper 10 Models These models deal wih problems 2 and 4 lised above 1. Saic model-- Change in z has an immediae effec in same period on y y = z + u =1,2, n 2. Finie Disribued lag Model y = + 0 z + 1 z z -2 + u Know number of lags =1,2, n 3. Trending Daa: Add a rend y = e, = 1,2 Or Derend he daa Noe ha if DO NOT correcly specify he model (e.g., wih lagged daa), can generae serial correlaion. Correc specificaion is he firs problem o address.
3 P&R 6.2 Serial Correlaion: Wha is serial correlaion and why is i a problem? Serial correlaion comes when errors from one ime period are carried over ino fuure ime periods (problem # 1 lised above) Can also occur spaially errors in his area are correlaed wih errors in adjacen area Mos auhors use serial and auo-correlaion inerchangeably. Some use auo corr o refer o serial correlaion wihin a series isel and serial correlaion o refer o lagged correlaion beween wo ime series. I ll use hem inerchangeably. Posiive serial correlaion ofen caused by --Ineria some economic ime series have momenum (?) --Correlaion in omied variables over ime --Correlaion in measuremen error componen of error erm --Theoreical predicions--adapive expecaions, some parial adjusmen process --Misspecificaion e.g., omied dynamic erms (lagged dependen or independen variables, rends) --Daa is already inerpolaed (e.g., daa beween Census years) --Non-saionariy will discuss laer
4 Example: AR(1) Process Very common form of serial correlaion Firs Order Auoregressive process: AR(1) True model: y = β 0 +β 1 x 1 + β 2 x β k X k + = -1 + v 0 1 [If had 2 lags, would be AR(2)] v is he idiosyncraic par of he error, Indep of oher errors over ime, N(0, 2 v) e is NOT indep of oher errors over ime, N(0, 2 ) error in ime is deermined by he diminishing value of error in previous period ( ) + addiion of random variable v, wih EV(0) Implies ha error in any period is refleced in all fuure periods Var( ) = E( 2 ) = E[( -1 + v ) 2 ] = E[ v v ] = 2 E( 2-1) + E(v 2 ) b/c -1 and v are indep Var( ) = 2 Var( ) + 2 v if ( ) is homoskedasic Var( )= Var( -1 ) Algebra Var( )= 2 v /(1-2 ) Noe ha when =0, no auocorrel. How are he errors relaed over ime? Cov(, -1 ) = E(, -1 )= E[( -1 + v ) -1 ] = E( v ) = E( 2-1) = Var( ) = 2 Similarly, Cov(, -2 )= 2 2, Cov(, -3 )= 3 2 Similarly, Cov(, -s )= s 2
5 Noe ha is he correlaion coefficien beween errors a ime and -1. Also known as coefficien of auocorrelaion a lag 1 Saionariy: Criical ha <1 oherwise hese variances and covariances are undefined. If <1, we say ha he series is saionary. If =1, nonsaionary. Chaper 11 in your book discusses concep of saionariy. For now, brief definiion. If mean, variance, and covariance of a series are ime invarian, series is saionary. Will discuss laer ess of saionariy and wha o do if daa series is no saionary. Serial correlaion leads o biased sandard errors If y is posiively serially correlaed and x is posiively serially correlaed, will undersae he errors Show figure 6.1 for why Noe ha 1 s case have posiive error iniially, second case have negaive error iniially Boh cases equally likely o occur unbiased Bu OLS line fis he daa poins beer han rue line Wih algebra: Usual OLS Esimaor y = β 0 +β 1 x 1 + ( )
6 Wih AR(1) ( ) [ ] How does his compare wih sandard errors in OLS case? Depends on sign of p and ype of auocorrelaion in xs If x is posiively correlaed over ime and p is posiive, OLS will undersae rue errors T, F sas all wrong R2 wrong See Gujarai for a Mone Carlo experimen on how large hese misakes can be
7 Tess for Serial Correlaion 1. Graphical mehod Graph (residuals) errors in he equaion---very commonly done. Can also plo residuals agains lagged residuals see Gujarai fig Durbin Wason Tes Oldes es for serial correlaion P&R goes hrough exension when have lagged y s in model see for deails Null hypohesis: No serial correlaion =0 Alernaive: 0 (wo ailed) >0 (one ailed) Tes saisic: Sep 1: Run OLS model y = β 0 +β 1 x 1 + β 2 x β k X k + Sep 2: Calculae prediced residuals Sep 3: Form es saisic T 2 ( ˆ ˆ 1) 2 DW 2(1 ˆ) (See Gujarai pg 435 o derive) T 2 ( ˆ ) 1 Assumpions: 1. Regression includes inercep erm 2. Xs are fixed in repeaed sampling non-sochasic (problemaic in ime series conex) 3. Can only be used for 1 s order auoregression processes 4. Errors are normally disribued 5. No lagged dependen variables no applicable in hose models 6. No missing obs
8 This saisic ranges from 0 o 4 ˆ are close o each oher Posiive serial correlaion DW will be close o zero (below 2) No serial correlaion DW will be close o 2 Negaive serial correlaion DW will be large (above 2) Exac inerpreaion difficul because sequence of prediced error erms depends on x s as well if x s are serially correlaed, correlaion of prediced errors may be relaed o his and no serial correlaion of s 2 criical values d L and d U --see book for char STATA: esa dwsa
9 3. Breusch-Godfrey es This is ye anoher example of an LM es Null hypohesis: Errors are serially independen up o order p One X: Sep 1: Run OLS model y = β 0 +β 1 x 1 + (Regression run under he null) Sep 2: Sep 3: Sep 4: Calculae prediced residuals Run auxiliary regression ˆ 1 2X ˆ v T-es on ˆ 1 STATA: esa bgodfrey, lags(**) Muliple X, muliple lags Sep 1: Run OLS model y = β 0 +β 1 x 1 + β 2 x β k X k + (Regression run under he null) Sep 2: Sep 3: Sep 4: Calculae prediced residuals Run auxiliary regression ˆ 1 2Xs ˆ ˆ... p ˆ wih higher order lags Bruesch-Godfrey es (n-p)r 2 ~ χ 2 (p) p v BP es is more general han DW es cam include laggesd Ys, moving average models Do need o know p order or he lag. Will alk some abou his choice laer.
10 Correcing for Serial Correlaion 1. Check is i model misspecificaion? --rend variable? --quadraics? --lagged variables? 2. Use GLS esimaor see below 3. Use Newey Wes sandard errors like robus sandard errors GLS Esimaors: Correcion1: Known : Adjus OLS regression o ge efficien parameer esimaes Wan o ransform he model so ha errors are independen = -1 + v wan o ge rid of -1 par How? Linear model holds for all ime periods. y -1 = β 0 +β 1 x β 2 x β k X k Muliply above by 2. Subrac from base model: y* = β 0 (1- ) + β 1 x* 1 + β 2 x* β k X* k + v Where y* = y - y -1, same for xs Noe ha his is like a firs difference, only are subracing par and no whole of y-1 Generalized differences Now error has a mean =0 and a consan variance Apply OLS o his ransformed model efficien esimaes This is he BLUE esimaor PROBLEM: don know
11 Correcion2: Don Know --Cochrane-Orcu Idea: sar wih a guess of and ierae o make beer and beer guesses Sep 1: Run ols on original model y = β 0 +β 1 x 1 + β 2 x β k X k + Sep 2: Obain prediced residuals and run following regression ˆ ˆ v 1 Sep 3: Obain prediced value of. Transform daa using * generalized differencing ransformaion y y ˆ y 1, same for X* Sep 4: Rerun regression using ransformed daa y * ( 1 ˆ) x... x 0 1 * 1 Obain new esimaes of beas-- ˆ k * k v Sep 5: Form new esimaed residuals using newly esimaed beas and ORIGINAL daa (no ransformed daa) y ( ˆ ˆ x... ˆ x ˆ Ierae unil new esimaes of are close o old esimaes (differ by.01 or.005) k k Correcion3: Don Know --Hildreh-Lu (less popular) Numerical minimizaion mehod Minimize sum of squared residuals for various guesses of for y* = β 0 (1- ) + β 1 x* 1 + β 2 x* β k X* k + v Choose range of poenial (e.g., 0,.1,.2,.3,...., 1.0), idenify bes one (e.g.,.3), pick oher numbers close by (e.g.,.25,.26,...,.35), ierae
12 Correcion 4: Firs difference Model lies beween 0 and 1. Could run a firs differenced model as he oher exreme. This is he appropriae correcion when series is non-saionary alk abou nex ime. Recall: Correcing for Serial Correlaion 1. Check is i model misspecificaion? --rend variable? --quadraics? --lagged variables? 2. Use GLS esimaor see below 3. Use Newey Wes sandard errors like robus sandard errors Newey Wes sandard errors Exension of Whie sandard errors for heeroskedasiciy Only valid in large samples Final Noes: Should you use OLS or FGLS or Newey-Wes errors? OLS: --unbiased --consisen --asympoically normal --,F, r2 no appropriae FGLS/Newey Wes --efficien --small sample properies no well documened no unbiased --in small samples, hen, migh be worse
13 --Griliches and Rao rule of humb is sample is small (<20, iffy 20-50) and <.3, OLS beer han FGLS
Cointegration: The Engle and Granger approach
Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be non-saionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require
Chapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
Stability. Coefficients may change over time. Evolution of the economy Policy changes
Sabiliy Coefficiens may change over ime Evoluion of he economy Policy changes Time Varying Parameers y = α + x β + Coefficiens depend on he ime period If he coefficiens vary randomly and are unpredicable,
Vector Autoregressions (VARs): Operational Perspectives
Vecor Auoregressions (VARs): Operaional Perspecives Primary Source: Sock, James H., and Mark W. Wason, Vecor Auoregressions, Journal of Economic Perspecives, Vol. 15 No. 4 (Fall 2001), 101-115. Macroeconomericians
Chapter 7. Response of First-Order RL and RC Circuits
Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
Usefulness of the Forward Curve in Forecasting Oil Prices
Usefulness of he Forward Curve in Forecasing Oil Prices Akira Yanagisawa Leader Energy Demand, Supply and Forecas Analysis Group The Energy Daa and Modelling Cener Summary When people analyse oil prices,
Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
Chapter 8 Student Lecture Notes 8-1
Chaper Suden Lecure Noes - Chaper Goals QM: Business Saisics Chaper Analyzing and Forecasing -Series Daa Afer compleing his chaper, you should be able o: Idenify he componens presen in a ime series Develop
MTH6121 Introduction to Mathematical Finance Lesson 5
26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random
Lecture 13 Auto/cross-correlation
Lecure 13 Auo/cross-correlaion 1 Generalized Regression Model The generalized regression model's assumpions: (A1) DGP: y = X + is correcly specified. (A) E[ X] = 0 (A3 ) Var[ X] = Σ =. (A4) X has full
Acceleration Lab Teacher s Guide
Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion
11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements
Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge
The Relationship between Stock Return Volatility and. Trading Volume: The case of The Philippines*
The Relaionship beween Sock Reurn Volailiy and Trading Volume: The case of The Philippines* Manabu Asai Faculy of Economics Soka Universiy Angelo Unie Economics Deparmen De La Salle Universiy Manila May
Time Series Analysis using In a Nutshell
1 Time Series Analysis using In a Nushell dr. JJM J.J.M. Rijpkema Eindhoven Universiy of Technology, dep. Mahemaics & Compuer Science P.O.Box 513, 5600 MB Eindhoven, NL 2012 [email protected] Sochasic
The naive method discussed in Lecture 1 uses the most recent observations to forecast future values. That is, Y ˆ t + 1
Business Condiions & Forecasing Exponenial Smoohing LECTURE 2 MOVING AVERAGES AND EXPONENTIAL SMOOTHING OVERVIEW This lecure inroduces ime-series smoohing forecasing mehods. Various models are discussed,
CHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS
DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper
Hedging with Forwards and Futures
Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buy-side of a forward/fuures
INTRODUCTION TO FORECASTING
INTRODUCTION TO FORECASTING INTRODUCTION: Wha is a forecas? Why do managers need o forecas? A forecas is an esimae of uncerain fuure evens (lierally, o "cas forward" by exrapolaing from pas and curren
Chapter 4: Exponential and Logarithmic Functions
Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion
Time Series Analysis Using SAS R Part I The Augmented Dickey-Fuller (ADF) Test
ABSTRACT Time Series Analysis Using SAS R Par I The Augmened Dickey-Fuller (ADF) Tes By Ismail E. Mohamed The purpose of his series of aricles is o discuss SAS programming echniques specifically designed
Chapter 6: Business Valuation (Income Approach)
Chaper 6: Business Valuaion (Income Approach) Cash flow deerminaion is one of he mos criical elemens o a business valuaion. Everyhing may be secondary. If cash flow is high, hen he value is high; if he
Journal Of Business & Economics Research September 2005 Volume 3, Number 9
Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: [email protected]), George Washingon Universiy Yi-Kang Liu, ([email protected]), George Washingon Universiy ABSTRACT The advanage of Mone Carlo
ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS
ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,
Supplementary Appendix for Depression Babies: Do Macroeconomic Experiences Affect Risk-Taking?
Supplemenary Appendix for Depression Babies: Do Macroeconomic Experiences Affec Risk-Taking? Ulrike Malmendier UC Berkeley and NBER Sefan Nagel Sanford Universiy and NBER Sepember 2009 A. Deails on SCF
Estimating Time-Varying Equity Risk Premium The Japanese Stock Market 1980-2012
Norhfield Asia Research Seminar Hong Kong, November 19, 2013 Esimaing Time-Varying Equiy Risk Premium The Japanese Sock Marke 1980-2012 Ibboson Associaes Japan Presiden Kasunari Yamaguchi, PhD/CFA/CMA
Permutations and Combinations
Permuaions and Combinaions Combinaorics Copyrigh Sandards 006, Tes - ANSWERS Barry Mabillard. 0 www.mah0s.com 1. Deermine he middle erm in he expansion of ( a b) To ge he k-value for he middle erm, divide
Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.
Principal componens of sock marke dynamics Mehodology and applicaions in brief o be updaed Andrei Bouzaev, [email protected] Why principal componens are needed Objecives undersand he evidence of more han one
Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur
Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,
Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.
Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa
A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation
A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion
Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
Chapter 1 Overview of Time Series
Chaper 1 Overview of Time Series 1.1 Inroducion 1 1.2 Analysis Mehods and SAS/ETS Sofware 2 1.2.1 Opions 2 1.2.2 How SAS/ETS Sofware Procedures Inerrelae 4 1.3 Simple Models: Regression 6 1.3.1 Linear
A Probability Density Function for Google s stocks
A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural
DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR
Invesmen Managemen and Financial Innovaions, Volume 4, Issue 3, 7 33 DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR Ahanasios
Present Value Methodology
Presen Value Mehodology Econ 422 Invesmen, Capial & Finance Universiy of Washingon Eric Zivo Las updaed: April 11, 2010 Presen Value Concep Wealh in Fisher Model: W = Y 0 + Y 1 /(1+r) The consumer/producer
cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
Time Varying Coefficient Models; A Proposal for selecting the Coefficient Driver Sets
Time Varying Coefficien Models; A Proposal for selecing he Coefficien Driver Ses Sephen G. Hall, Universiy of Leiceser P. A. V. B. Swamy George S. Tavlas, Bank of Greece Working Paper No. 14/18 December
AP Calculus BC 2010 Scoring Guidelines
AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board
TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS
TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS RICHARD J. POVINELLI AND XIN FENG Deparmen of Elecrical and Compuer Engineering Marquee Universiy, P.O.
RC (Resistor-Capacitor) Circuits. AP Physics C
(Resisor-Capacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED
Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary
Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes
9. Capacitor and Resistor Circuits
ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren
Differential Equations and Linear Superposition
Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y
Individual Health Insurance April 30, 2008 Pages 167-170
Individual Healh Insurance April 30, 2008 Pages 167-170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve
Small and Large Trades Around Earnings Announcements: Does Trading Behavior Explain Post-Earnings-Announcement Drift?
Small and Large Trades Around Earnings Announcemens: Does Trading Behavior Explain Pos-Earnings-Announcemen Drif? Devin Shanhikumar * Firs Draf: Ocober, 2002 This Version: Augus 19, 2004 Absrac This paper
Inductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
Measuring macroeconomic volatility Applications to export revenue data, 1970-2005
FONDATION POUR LES ETUDES ET RERS LE DEVELOPPEMENT INTERNATIONAL Measuring macroeconomic volailiy Applicaions o expor revenue daa, 1970-005 by Joël Cariolle Policy brief no. 47 March 01 The FERDI is a
Why Did the Demand for Cash Decrease Recently in Korea?
Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in
ARCH 2013.1 Proceedings
Aricle from: ARCH 213.1 Proceedings Augus 1-4, 212 Ghislain Leveille, Emmanuel Hamel A renewal model for medical malpracice Ghislain Léveillé École d acuaria Universié Laval, Québec, Canada 47h ARC Conference
PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
Purchasing Power Parity (PPP), Sweden before and after EURO times
School of Economics and Managemen Purchasing Power Pariy (PPP), Sweden before and afer EURO imes - Uni Roo Tes - Coinegraion Tes Masers hesis in Saisics - Spring 2008 Auhors: Mansoor, Rashid Smora, Ami
Statistical Analysis with Little s Law. Supplementary Material: More on the Call Center Data. by Song-Hee Kim and Ward Whitt
Saisical Analysis wih Lile s Law Supplemenary Maerial: More on he Call Cener Daa by Song-Hee Kim and Ward Whi Deparmen of Indusrial Engineering and Operaions Research Columbia Universiy, New York, NY 17-99
How To Calculate Price Elasiciy Per Capia Per Capi
Price elasiciy of demand for crude oil: esimaes for 23 counries John C.B. Cooper Absrac This paper uses a muliple regression model derived from an adapaion of Nerlove s parial adjusmen model o esimae boh
Economics Honors Exam 2008 Solutions Question 5
Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I
Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The
COMPUTATION OF CENTILES AND Z-SCORES FOR HEIGHT-FOR-AGE, WEIGHT-FOR-AGE AND BMI-FOR-AGE
COMPUTATION OF CENTILES AND Z-SCORES FOR HEIGHT-FOR-AGE, WEIGHT-FOR-AGE AND BMI-FOR-AGE The mehod used o consruc he 2007 WHO references relied on GAMLSS wih he Box-Cox power exponenial disribuion (Rigby
Uni Rodeo and Economic Loss Analysis
Do Propery-Casualy Insurance Underwriing Margins Have Uni Roos? Sco E. Harringon* Moore School of Business Universiy of Souh Carolina Columbia, SC 98 [email protected] (83) 777-495 Tong Yu College
Term Structure of Prices of Asian Options
Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 1-1-1 Nojihigashi, Kusasu, Shiga 525-8577, Japan E-mail:
Analysis of tax effects on consolidated household/government debts of a nation in a monetary union under classical dichotomy
MPRA Munich Personal RePEc Archive Analysis of ax effecs on consolidaed household/governmen debs of a naion in a moneary union under classical dichoomy Minseong Kim 8 April 016 Online a hps://mpra.ub.uni-muenchen.de/71016/
The Kinetics of the Stock Markets
Asia Pacific Managemen Review (00) 7(1), 1-4 The Kineics of he Sock Markes Hsinan Hsu * and Bin-Juin Lin ** (received July 001; revision received Ocober 001;acceped November 001) This paper applies he
The Identification of the Response of Interest Rates to Monetary Policy Actions Using Market-Based Measures of Monetary Policy Shocks
The Idenificaion of he Response of Ineres Raes o Moneary Policy Acions Using Marke-Based Measures of Moneary Policy Shocks Daniel L. Thornon Federal Reserve Bank of S. Louis Phone (314) 444-8582 FAX (314)
II.1. Debt reduction and fiscal multipliers. dbt da dpbal da dg. bal
Quarerly Repor on he Euro Area 3/202 II.. Deb reducion and fiscal mulipliers The deerioraion of public finances in he firs years of he crisis has led mos Member Saes o adop sizeable consolidaion packages.
CLASSICAL TIME SERIES DECOMPOSITION
Time Series Lecure Noes, MSc in Operaional Research Lecure CLASSICAL TIME SERIES DECOMPOSITION Inroducion We menioned in lecure ha afer we calculaed he rend, everyhing else ha remained (according o ha
4. International Parity Conditions
4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency
The Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
Chapter 2 Kinematics in One Dimension
Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how
Imagine a Source (S) of sound waves that emits waves having frequency f and therefore
heoreical Noes: he oppler Eec wih ound Imagine a ource () o sound waes ha emis waes haing requency and hereore period as measured in he res rame o he ource (). his means ha any eecor () ha is no moing
Mortality Variance of the Present Value (PV) of Future Annuity Payments
Morali Variance of he Presen Value (PV) of Fuure Annui Pamens Frank Y. Kang, Ph.D. Research Anals a Frank Russell Compan Absrac The variance of he presen value of fuure annui pamens plas an imporan role
17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides
7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion
Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m
Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m
A Note on the Impact of Options on Stock Return Volatility. Nicolas P.B. Bollen
A Noe on he Impac of Opions on Sock Reurn Volailiy Nicolas P.B. Bollen ABSTRACT This paper measures he impac of opion inroducions on he reurn variance of underlying socks. Pas research generally finds
When Do TIPS Prices Adjust to Inflation Information?
When Do TIPS Prices Adjus o Inflaion Informaion? Quenin C. Chu a, *, Deborah N. Piman b, Linda Q. Yu c Augus 15, 2009 a Deparmen of Finance, Insurance, and Real Esae. The Fogelman College of Business and
SHB Gas Oil. Index Rules v1.3 Version as of 1 January 2013
SHB Gas Oil Index Rules v1.3 Version as of 1 January 2013 1. Index Descripions The SHB Gasoil index (he Index ) measures he reurn from changes in he price of fuures conracs, which are rolled on a regular
Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities
Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17
MALAYSIAN FOREIGN DIRECT INVESTMENT AND GROWTH: DOES STABILITY MATTER? Jarita Duasa 1
Journal of Economic Cooperaion, 8, (007), 83-98 MALAYSIAN FOREIGN DIRECT INVESTMENT AND GROWTH: DOES STABILITY MATTER? Jaria Duasa 1 The objecive of he paper is wofold. Firs, is o examine causal relaionship
Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.
Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given
The Maturity Structure of Volatility and Trading Activity in the KOSPI200 Futures Market
The Mauriy Srucure of Volailiy and Trading Aciviy in he KOSPI200 Fuures Marke Jong In Yoon Division of Business and Commerce Baekseok Univerisy Republic of Korea Email: [email protected] Received Sepember
Implied Equity Duration: A New Measure of Equity Risk *
Implied Equiy Duraion: A New Measure of Equiy Risk * Paricia M. Dechow The Carleon H. Griffin Deloie & Touche LLP Collegiae Professor of Accouning, Universiy of Michigan Business School Richard G. Sloan
Journal Of Business & Economics Research Volume 1, Number 11
Profis From Buying Losers And Selling Winners In The London Sock Exchange Anonios Anoniou (E-mail: [email protected]), Universiy of Durham, UK Emilios C. Galariois (E-mail: [email protected]),
Forecasting Sales: A Model and Some Evidence from the Retail Industry. Russell Lundholm Sarah McVay Taylor Randall
Forecasing Sales: A odel and Some Evidence from he eail Indusry ussell Lundholm Sarah cvay aylor andall Why forecas financial saemens? Seems obvious, bu wo common criicisms: Who cares, can we can look
Morningstar Investor Return
Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion
Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling
Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: -Solving Exponenial Equaions (The Mehod of Common Bases) -Solving Exponenial Equaions (Using Logarihms)
Steps for D.C Analysis of MOSFET Circuits
10/22/2004 Seps for DC Analysis of MOSFET Circuis.doc 1/7 Seps for D.C Analysis of MOSFET Circuis To analyze MOSFET circui wih D.C. sources, we mus follow hese five seps: 1. ASSUME an operaing mode 2.
Payment Plans of Reverse Mortgage System in the Korean. Housing Market. Deokho Cho a, Seungryul Ma b,
1 Paymen Plans of Reverse Morgage Sysem in he Korean Housing Marke Deokho Cho a, Seungryul Ma b, a Deparmen of Public Adminisraion, Daegu Universiy, Gyeongbuk, Souh Korea b Deparmen of Insurance and Finance,
Evidence from the Stock Market
UK Fund Manager Cascading and Herding Behaviour: New Evidence from he Sock Marke Yang-Cheng Lu Deparmen of Finance, Ming Chuan Universiy 250 Sec.5., Zhong-Shan Norh Rd., Taipe Taiwan E-Mail [email protected],
CLASSIFICATION OF REINSURANCE IN LIFE INSURANCE
CLASSIFICATION OF REINSURANCE IN LIFE INSURANCE Kaarína Sakálová 1. Classificaions of reinsurance There are many differen ways in which reinsurance may be classified or disinguished. We will discuss briefly
ABSTRACT KEYWORDS. Term structure, duration, uncertain cash flow, variable rates of return JEL codes: C33, E43 1. INTRODUCTION
THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS BY FRANK DE JONG 1 AND JACCO WIELHOUWER ABSTRACT Variable rae savings accouns have wo main feaures. The ineres rae paid on he accoun is variable
Risk Modelling of Collateralised Lending
Risk Modelling of Collaeralised Lending Dae: 4-11-2008 Number: 8/18 Inroducion This noe explains how i is possible o handle collaeralised lending wihin Risk Conroller. The approach draws on he faciliies
When Is Growth Pro-Poor? Evidence from a Panel of Countries
Forhcoming, Journal of Developmen Economics When Is Growh Pro-Poor? Evidence from a Panel of Counries Aar Kraay The World Bank Firs Draf: December 2003 Revised: December 2004 Absrac: Growh is pro-poor
