Stand-alone Photovoltaic System for a Cabin in Marsa-allam

Size: px
Start display at page:

Download "Stand-alone Photovoltaic System for a Cabin in Marsa-allam"

Transcription

1 Stand-alone Photovoltaic System for a Cabin in Marsa-allam 1,2 Hammad Abo-Zied Mohammed 1 Electrical Engineering Department, Assiut University, Assiut, Egypt 2 On leave to Al Jouf University, Al Jouf, Skaka, Saudi Arabia Abstract- This paper presents the complete design of a stand-alone Photovoltaic (PV) system to supply electric power for a cabin in Marsa-allam city, Egypt according to its energy requirements. Typical energy consumption daily profiles for the two seasons (Autumn and summer) are assumed when the cabin is most used. This system can be installed on the roof and the south side of the cabin. Homer software is used as the sizing and optimization tool to determine the size and specifications of photovoltaic system components, system cost and estimation of corresponding produced electrical power. The results ow that the sizing of PV stand-alone system depends on the load data, the solar resource data and the investment cost of system components. This system provides electricity to the cabins in Marsa-allam. It is found that, the system is very economical. Also, this system has the advantage of maintaining a clean environment. Simulation results and analyses are presented to validate the proposed system configuration. Keywords: Photovoltaic, standalone system, Maximum Power point tracking, Boost Converter. I. INTRODUCTION Conventional methods of generating electricity can produce pollutants such as carbon dioxide, the main gas responsible for global warming. The only resource needed to power a solar cell is sunlight; through the photovoltaic effect the energy contained in the sun light can be converted directly to electrical energy. Photovoltaic systems represent a silent, safe, not pollutant and renewable source of electrical energy [1]. The central component of any photovoltaic power system is the solar cell. It is the transducer that directly converts the sun's radiant energy into electricity. The technology for using solar cells to produce usable electrical energy is known and proven. Since its initiation in 1975, the U.S. Department of Energy (DOE) National Photovoltaic program has sponsored the design and implementation of nearly 40 system applications classed as "stand-alone" systems with less than 15 kw peak in power rating. The purpose of this paper is to enable a system design engineer to perform the preliminary system engineering of the stand-alone Photovoltaic Power System (PVPS). This preliminary system engineering includes the determination of overall system cost-effectiveness, the initial sizing of arrays and battery systems, and the considerations which must be specifically addressed in the subsequent detailed engineering stage of the project. As a stand-alone electrical system, the PVPS will be a self-sufficient system which includes an array field, power conditioning and control; battery storage, instrumentation and converter. While the intent of this paper is for low-power applications, serving loads up to 15 kw in size, the theory and sizing methods are not dependent upon the generating capacity of the system or the peak demand of the loads, but only on the desired reliability criteria chosen. This paper provides a design of stand-alone PV system for a cabin in Marsa-allam City including suggested load profiles, sizing of a PV system for supplying the electrical load of the cabin using Hybrid Optimization Model for Electric Renewable (Homer) software. Homer contains a number of energy component models and evaluates suitable technology options based on cost and availability of resource. Analysis with Homer requires information on economic constraints and control methods. It also requires input on component types, their numbers, costs, efficiency, lifetime, etc. Sensitivity analysis could be done with variables having a range of values instead of a specific number. This allows one to aertain the effects of change in a certain parameter on the overall system [2]. II. PV SYSTEM SIZING Sizing of stand-alone PV system starts by data collection of the available solar energy radiation of the selected location and estimating the energy consumption of the cabin. To get optimum design of PV system, it is important to collect meteorological data (solar radiation and temperature) for the site under consideration (the Marsa-allam). Table I ows the monthly average values of global solar radiation over Marsa-Alam [3]. It is clear from the table that solar energy incident on the region is very high especially during summer months, when the 47

2 cabin is most used, with average daily radiation during June 8.01 KWh/m 2 /day. Table I - The monthly average values of daily global solar radiation (Kwh/m 2 /day) in Marsa-Alam Month Daily Radiation in Kwh/m 2 /day January 3.8 February 4.65 March 5.8 April 6.9 May 7.6 June 8.2 July 8 August 7.6 September 6.7 October 5.1 November 3.95 December 3.1 have the energy consumption (6.120 KWh /day). The typical daily load profile during the two seasons is own in Fig. (1). Load type Table III The daily load energy consumption No. Of Units Rated Power (W) Hours Used/ day Summer KWh/day Autumn KWh/day Lights Refrigerator Television Microwave Kettle Total KWh/day The electrical loads of cabin consist of four lamps, refrigerator, television, microwave, and kettle. The preferred method for determining PV system loads is a bottom-up approach in which every daily load is anticipated and summed to yield an average daily total. For PV systems designed to power simple loads, such as electric light or other appliance, this method is easy. Simply look at the nameplate power rating on the appliance to calculate its power consumption in watt. The total load demand of the cabin is about 760 W as own in table II. However, these loads do not work all at one time on the contrary, working for a ort time. Table II Typical electrical appliances in a cabin Appliance Watts Lights, 4 Fluoreents 4x15 Refrigerator 200 Television 100 Microwave 200 Kettle 200 Total Load 760 Finally all the different loads in the building need to be estimated on a typical day and sum them. Table III provides the calculations of the power and energy of the cabin. The daily load profiles were determined by calculating the power demand (Kwh/day) for all load types in the Cabin during the two seasons (Autumn and Summer). The estimated daily energy consumption is given in Table III. It is own that, autumn and summer 48 Fig. 1 Daily load profile during the Summer and Autumn The sizing procedure is as follow [4]: 1- PV Array sizing For a PV system powering loads that will be used every day, the size of the array is determined by the daily energy requirement divided by the sun-hours per day. For systems designed for non-continuous use (such as hools, governmental offices, etc.), multiply the result by the days per week the loads will be active divided by the total number of days in the week. Also, the PV array out power can be determined by equation (1) [5,6]. (1) Where: P pv : PV array output power E : The average daily load energy consumption KWh/day Ps : the peak solar power intensity ɳ BS : the efficiency of the system balance Ra : the average solar radiation (KWh/m 2 /day) K : Loss factor The value of the loss factor (K) depends on the circuit losses, module temperature losses, and dust. The value of the system balance efficiency depends on the inverter losses and wiring losses.

3 The number of series modules is determined by dividing the designed system voltage and the module voltage. The number of string in parallel is calculated by dividing the design array output power by the selected module output power and the number of the series module [6, 7]. 2- Inverter The function of an inverter is to convert the DC voltage to AC voltage at desired magnitude and frequency. For stand-alone systems the inverter ould be sized to provide 125% of the maximum loads you wi to run simultaneously at any one moment. III. SYSTEM ANALYSIS The PV system is analysis by using HOMER program. A stand-alone PV system consists of a primary renewable energy source (solar energy), batteries for energy storage and power inverter to maintain the flow of energy between the AC and DC sides. Figure (2) ows the proposed heme as implemented in the Homer simulation tool. Monthly average data of global solar radiation in the Marsa-allam are used as the solar energy resource. This is own in Fig. (3). Fig. 3 Monthly average data of global solar radiation in the Marsa-allam 1- Economic and constraints The installation, replacement and maintenance cost of all components of PV system are own in table IV. Table IV Cost of different components of PV system Initial cost PV 4500 Converter 800 Battery 100 h Cost Replacement Maintenance 0 40 $/year 5 $/year Fig. 2 HOMER implementation of the stand alone PV system From HOMER program, the net present cost consists of the installation, replacement and maintenance cost of the all components of the PV system. The net present cost is own in Fig. 4. The live time of PV arrays is 20 years. The value of the interest rate is 10 %. The battery Surrette battery Engineering SuretteTM 6CS25P models (6V, 1156Ah, 6.94KWh) are considered in the model. 49

4 Fig.6 Monthly average electric production Fig. 4 the net present cost The optimizing result of HOMER simulates for the given solar radiation, load data, economics and constraints is own in Fig. 5. This configuration is a stand-alone PV system that supplies the electrical energy to the load with the lowest net present cost. Fig. 5 The optimization result of HOMER IV. SOLAR ARRAY CHARACTERISTICS Solar cells are devices that convert photon into electrical potential in a PN junction, of which equivalent circuit is own in Fig. 7. Due to the complex physical phenomena inside the solar cell, manufacturers usually present a family of operating curves (V-I) as own in Fig. 8. These characteristics are obtained by measuring the array volt-ampere for a different illumination values. From these characteristics, the optimum voltage or current, corresponding to the maximum power point, can be determined. It is clearly seen in Fig. 8 that the current increases as the irradiance levels increase. The maximum power point increases with a steep positive slope proportional to the illumination. The design data of a battery is: The battery Surrette battery Engineering 6CS25P models (6V, 1156Ah, 6.94KWh) The number of batteries is one SuretteTM R s I The design data of a solar cell is: The rating is 1 KW 2- Electrical Energy production The monthly average electric production is own in Fig. 6. The annual output energy production of PV array is 1661 KWh/year. The annual electrical load consumption is 1162 KWh/year. The excess electricity is 267 KWh/year about 16 % of the total PV energy production. I D R Fig.7 Equivalent circuit of PV array. V 50

5 PV power in Watt Pv voltage in Volt INTERNATIONAL JOURNAL OF CONTROL, AUTOMATION AND SYSTEMS VOL.2 NO.3 October G=0.2 G=0.4 G=0.6 G=0.8 G=1 Where the coefficient K 1, K 2 and m are defined as: K , K K /( ) 2 4 V oc m, K4 ln(( K1 1)/ K1), K ln[( I(1 K1) Impp)/ K1I m ln( K / K 3 4)/ln( V mpp / V oc) 3 ], PV current in Amp G=0.2 G=0.4 G=0.6 G= PV current in Amp Fig. 8 V-I and P-I characteristics at constant temperature. G=1 I mpp is the current at maximum output power, V mpp is the voltage at maximum power, I is the ort circuit current and Voc is the open circuit voltage of the array. Equation (3) is only applicable at one particular operating condition of illumination G and cell temperature T c.the parameter variations can be calculated by measuring the variation of the ort-circuit current and the open-circuit voltage in these conditions using the parameters at the normal illumination and cell temperature. Equation (3) is used for the I-V and P-V characteristics for various illumination and fixed temperature ( 25[ o C] ) in Fig. 8. The main parameters which influence the illumination levels on a surface at a fixed tilt on earth are the daily and seasonal solar path, the presence of clouds, mist, smog and dust between the surface and the sunlight, and the ade of the object positioned such that the illumination level is reduced, etc. The equation of the PV output current I is expressed as a function of the array voltagev I I q( V IRs ) KTk I o e -1}- ( V IRs )/ - R Where V and I represent the PV output voltage and current, respectively; R and R are the series and s (2) unt resistance of the cell (in Fig. 7); q is the electronic charge; I is the light-generated current; Io is the reverse Saturation current; K is the Boltzman constant, and T is the temperature in K. Equation (2) can be k written in another form as [7, 8, 9] 1 [ e K V m 1]}- ( V IRs )/ 2 I I { 1 K R (3) V. CONCLUSIONS This paper is focused on the modeling, design, and simulation of a stand-alone PV system for supplying the electrical load for a cabin in Marsa-Allam city. The paper suggested load profiles, sizing of a PV system for supplying the electrical load of the cabin using Hybrid Optimization Model for Electric Renewable (Homer) software. The required data for Hybrid optimization model are daily load profile, and The monthly average values of daily global solar radiation (Kwh/m 2 /day) in Marsa-Alam. Also, the type and the cost of the system elements like as PV, batteries, and the converter. Then by using the Homer software, the complete design will be completed. The system design means that the rating and the number of the PV unit will be calculated, and the rating, type of batteries will be determined. Also the rating of the converter will be determined. This includes sizing, simulation and economic estimation of the system. The results ow that stand-alone PV system sizing depends on load data, solar radiation, and investment cost of the system components. The results ow that (design data) a 1 KW PV array capacity and 1 (6V, 1156 Ah, 6.94 KWh) batteries are needed to supply 51

6 the electrical load of the cabin. PV systems are renewable and environmental friendly power sources. For further work which can be done in the same area, using small solar energy in villages as units of energy and used in operating units of agricultural mechanization. References [1] D. Cruz Martins, R. Demonti and R. Ruther, "Analysis of utility interactive photovoltaic generation system using a single power static inverter", Photovoltaic Specialists Conference. Conference Record of the Twenty-Eighth IEEE, Page(s): , [2] Soeren B. Kjaer, John K. Pedersen and Frede Blaabjerg, A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules, IEEE Transactions on Industry Applications, Vol. 41, No. 5, Sep [3] Egyptian solar radiation atlas, Cairo, Egypt, [4] A. A. Hassan1, A. A. Nafeh1, F. H. Fahmy, Mohamed A. El-Sayed, "Stand-Alone Photovoltaic System for an Emergency Health Clinic," Proc. International Conference on Renewable Energies and Power Quality (ICREPQ 10), March [5] G.E. Ahmad, "Photovoltaic-powered rural zone family house in Egypt", Renewable Energy, volume 26, page(s): , [6] Friedrich Sick and Thomas Erge, "Photovoltaics in Buildings- A Design Handbook for Architects and Engineers", Freiburg, Germany, [7] B. G. YU, A. G. Abo-Khalil, M. Matsui, G. J Yu, Sensorless Fuzzy Logic Controller for Maximum Power point Tracking of Grid, IEEE proc. of International Conference on Electrical Machines and Systems, vol. 1, Dec [8] F. Shu-Min and Z. Xieng-Peng, A Novel Maximum-Power-Point Tracking Control Method for Photovoltaic Grid-Connected System, IEEE Electrical and Control Engineering Conference (ICECE), June 2010, pp [9] M. A. Elgendy, B. Zahawi and D. J. Atkinson, Assessment of P&O MPPT Algorithm Implementation Techniques for PV Pumping Applications, IEEE Transactions on Sustainable Energy, Vol. 3, No. 1, Jan. 2012, pp Authors Profiles Hammad abu-zied was born in Assiut, Egypt, in He received the B.S. and M.S. degrees in Electrical Engineering from Assiut University in 1993 and 1998 respectively. The Ph.D. degree in Electrical engineering from Assiut University, and Darmstadt university, Germany, in 2004 (Cotutelle). Since 2004, he has been a staff member at the department of electrical engineering, Faculty of Engineering, Assiut university. His main fields of interest are Electric motors drives, power electronics applications, and renewable energy systems. He was lecturer in Omar El-Moktar university, Lybya from 2005 to Since September 2013, he is assistance professor in faculty of engineering, Al-Goof university, Saudi Arabia He is the author of one book, and more than 40 articles. Assiut university, Electrical Engineering Department, faculty of Engineering, Assiut, Egypt. 52

Hybrid Micro-Power Energy Station; Design and Optimization by Using HOMER Modeling Software

Hybrid Micro-Power Energy Station; Design and Optimization by Using HOMER Modeling Software Hybrid Micro-Power Energy Station; Design and Optimization by Using HOMER Modeling Software Iyad. M. Muslih 1, Yehya Abdellatif 2 1 Department of Mechanical and Industrial Engineering, Applied Science

More information

OFF-GRID ELECTRICITY GENERATION WITH HYBRID RENEWABLE ENERGY TECHNOLOGIES IN IRAQ: AN APPLICATION OF HOMER

OFF-GRID ELECTRICITY GENERATION WITH HYBRID RENEWABLE ENERGY TECHNOLOGIES IN IRAQ: AN APPLICATION OF HOMER Diyala Journal of Engineering Sciences ISSN 1999-8716 Printed in Iraq Second Engineering Scientific Conference College of Engineering University of Diyala 16-17 December. 2015, pp. 277-286 OFF-GRID ELECTRICITY

More information

Performance Assessment of 100 kw Solar Power Plant Installed at Mar Baselios College of Engineering and Technology

Performance Assessment of 100 kw Solar Power Plant Installed at Mar Baselios College of Engineering and Technology Performance Assessment of 100 kw Solar Power Plant Installed at Mar Baselios College of Engineering and Technology Prakash Thomas Francis, Aida Anna Oommen, Abhijith A.A, Ruby Rajan and Varun S. Muraleedharan

More information

K.Vijaya Bhaskar,Asst. Professor Dept. of Electrical & Electronics Engineering

K.Vijaya Bhaskar,Asst. Professor Dept. of Electrical & Electronics Engineering Incremental Conductance Based Maximum Power Point Tracking (MPPT) for Photovoltaic System M.Lokanadham,PG Student Dept. of Electrical & Electronics Engineering Sri Venkatesa Perumal College of Engg & Tech

More information

Feasibility Study of Brackish Water Desalination in the Egyptian Deserts and Rural Regions Using PV Systems

Feasibility Study of Brackish Water Desalination in the Egyptian Deserts and Rural Regions Using PV Systems Feasibility Study of Brackish Water Desalination in the Egyptian Deserts and Rural Regions Using PV Systems G.E. Ahmad, *J. Schmid National Research Centre, Solar Energy Department P.O. Box 12622, El-Tahrir

More information

Implementation of the Movable Photovoltaic Array to Increase Output Power of the Solar Cells

Implementation of the Movable Photovoltaic Array to Increase Output Power of the Solar Cells Implementation of the Movable Photovoltaic Array to Increase Output Power of the Solar Cells Hassan Moghbelli *, Robert Vartanian ** * Texas A&M University, Dept. of Mathematics **Iranian Solar Energy

More information

Additional Solar System Information and Resources

Additional Solar System Information and Resources Additional Solar System Information and Resources Background information a. Roughly 400 schools in NJ already have solar systems, producing more than 91 MW, out of approximately 2500 K- 12 schools in NJ.

More information

Design of Grid Connect PV systems. Palau Workshop 8 th -12 th April

Design of Grid Connect PV systems. Palau Workshop 8 th -12 th April Design of Grid Connect PV systems Palau Workshop 8 th -12 th April INTRODUCTION The document provides the minimum knowledge required when designing a PV Grid connect system. The actual design criteria

More information

Maximum Power Tracking for Photovoltaic Power Systems

Maximum Power Tracking for Photovoltaic Power Systems Tamkang Journal of Science and Engineering, Vol. 8, No 2, pp. 147 153 (2005) 147 Maximum Power Tracking for Photovoltaic Power Systems Joe-Air Jiang 1, Tsong-Liang Huang 2, Ying-Tung Hsiao 2 * and Chia-Hong

More information

FREE ONLINE APPLICATION OF CALCULATION

FREE ONLINE APPLICATION OF CALCULATION HELPS YOU TO CALCULATE, OF RAPID AND EASY WAY, AN ISOLATED PHOTOVOLTAIC SOLAR, LOCATED IN ANY PART OF PLANET. FREE ONLINE APPLICATION OF CALCULATION EXAMPLE 4: CALCULATION OF SOLAR PHOTOVOLTAIC INSTALLATION

More information

Simulations of Hybrid Renewable Energy Systems and Environmental Impact for Qena Al-Gadida City

Simulations of Hybrid Renewable Energy Systems and Environmental Impact for Qena Al-Gadida City Simulations of Hybrid Renewable Energy Systems and Environmental Impact for Qena Al-Gadida City Abdelrahman Atallah Z. Saleh 1, Loai S. Nasrat 2, Barakat M. Hasaneen 3, Ibrahim A.I. Nassar 4 1 Department

More information

A Stable DC Power Supply for Photovoltaic Systems

A Stable DC Power Supply for Photovoltaic Systems Int. J. of Thermal & Environmental Engineering Volume 12, No. 1 (216) 67-71 A Stable DC Power Supply for Photovoltaic Systems Hussain A. Attia*, Beza Negash Getu, and Nasser A. Hamad Department of Electrical,

More information

Stand Alone PV System Sizing Worksheet (example)

Stand Alone PV System Sizing Worksheet (example) Stand Alone PV System Sizing Worksheet (example) Application: Stand alone camp system 7 miles off grid Location: Baton Rouge, La Latitude: 31.53 N A. Loads A1 Inverter efficiency 85 A2 Battery Bus voltage

More information

Design and Economic Analysis of a Stand-Alone PV System to Electrify a Remote Area Household in Egypt

Design and Economic Analysis of a Stand-Alone PV System to Electrify a Remote Area Household in Egypt The Open Renewable Energy Journal, 2009, 2, 3337 33 Open Access Design and Economic Analysis of a StandAlone PV System to Electrify a Remote Area Household in Egypt Abd ElShafy A. afeh* Electronics Research

More information

An Isolated Multiport DC-DC Converter for Different Renewable Energy Sources

An Isolated Multiport DC-DC Converter for Different Renewable Energy Sources An Isolated Multiport DC-DC Converter for Different Renewable Energy Sources K.Pradeepkumar 1, J.Sudesh Johny 2 PG Student [Power Electronics & Drives], Dept. of EEE, Sri Ramakrishna Engineering College,

More information

Application Note: String sizing Conext CL Series

Application Note: String sizing Conext CL Series : String sizing Conext CL Series 965-0066-01-01 Rev A DANGER RISK OF FIRE, ELECTRIC SHOCK, EXPLOSION, AND ARC FLASH This Application Note is in addition to, and incorporates by reference, the installation

More information

Impact of Reflectors on Solar Energy Systems

Impact of Reflectors on Solar Energy Systems Impact of Reflectors on Solar Energy Systems J. Rizk, and M. H. Nagrial Abstract The paper aims to show that implementing different types of reflectors in solar energy systems, will dramatically improve

More information

Photovoltaic Solar Energy Unit EESFB

Photovoltaic Solar Energy Unit EESFB Technical Teaching Equipment Photovoltaic Solar Energy Unit EESFB Products Products range Units 5.-Energy Electronic console PROCESS DIAGRAM AND UNIT ELEMENTS ALLOCATION Worlddidac Member ISO 9000: Quality

More information

A Design of DC/DC Converter of Photovoltaic Generation System for Streetcars

A Design of DC/DC Converter of Photovoltaic Generation System for Streetcars Journal of International Council on Electrical Engineering Vol. 3, No. 2, pp.164~168, 2013 http://dx.doi.org/10.5370/jicee.2013.3.2.164 A Design of DC/DC Converter of Photovoltaic Generation System for

More information

SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM

SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM J.Godson 1,M.Karthick 2,T.Muthukrishnan 3,M.S.Sivagamasundari 4 Final year UG students, Department of EEE,V V College of Engineering,Tisaiyanvilai, Tirunelveli,

More information

NBF. Electrical. www.nbfelectrical.com.au WHY GO SOLAR? NBF ELECTRICAL EXPLAINS WHY

NBF. Electrical. www.nbfelectrical.com.au WHY GO SOLAR? NBF ELECTRICAL EXPLAINS WHY Electrical NBF www.nbfelectrical.com.au WHY GO SOLAR? NBF ELECTRICAL EXPLAINS WHY contact NBF Electrical Nathan Fielke Mobile: 0433 145 587 Fax: (08) 8346 4044 ABN 75 536 121 682 CEC A3966385 PGE197475

More information

Solar Matters III Teacher Page

Solar Matters III Teacher Page Solar Matters III Teacher Page Solar Powered System - 2 Student Objective Given a photovoltaic system will be able to name the component parts and describe their function in the PV system. will be able

More information

Prospects and Viability of Solar Energy in Khyber Pakhtunkhwa Pakistan

Prospects and Viability of Solar Energy in Khyber Pakhtunkhwa Pakistan Prospects and Viability of Solar Energy in Khyber Pakhtunkhwa Pakistan Muhammad Riaz 1, Amjad Ullah 2, Khadim Ullah Jan 3 1,2 Department of Electrical Engineering, University of Engineering and Technology

More information

Yield Reduction due to Shading:

Yield Reduction due to Shading: 1x4 1x16 10 x CBC Energy A/S x Danfoss Solar Inverters CBC-40W Poly 40 W TLX 1,5k 5 ; 1x11 3x4 0 1,5kW 1536 x CBC Energy A/S 1 x Power-One CBC-40W Poly 40 W TRIO-7,6-TL-OUTD 30 ; 4x14 0 7,6kW Location:

More information

Power quality control strategy for grid-connected renewable energy sources using PV array and supercapacitor

Power quality control strategy for grid-connected renewable energy sources using PV array and supercapacitor 2010 International Conference Electrical Machines and Systems, Oct. 10-13, 2010, Incheon, Korea Power quality control strategy for grid-connected renewable energy sources using PV array and supercapacitor

More information

DETERMINATION OF THE OPTIMUM RENEWABLE POWER GENERATING SYSTEMS FOR AN EDUCATIONAL CAMPUS IN KIRKLARELI UNIVERSITY

DETERMINATION OF THE OPTIMUM RENEWABLE POWER GENERATING SYSTEMS FOR AN EDUCATIONAL CAMPUS IN KIRKLARELI UNIVERSITY Electronic Journal of Vocational Colleges December/Aralık 2011 DETERMINATION OF THE OPTIMUM RENEWABLE POWER GENERATING SYSTEMS FOR AN EDUCATIONAL CAMPUS IN KIRKLARELI UNIVERSITY Cihan GOKCOL 1, Bahtiyar

More information

RENEWABLE ENERGY LABORATORY FOR LIGHTING SYSTEMS

RENEWABLE ENERGY LABORATORY FOR LIGHTING SYSTEMS RENEWABLE ENERGY LABORATORY FOR LIGHTING SYSTEMS DUMITRU Cristian, Petru Maior University of Tg.Mureş GLIGOR Adrian, Petru Maior University of Tg.Mureş ABSTRACT Nowadays, the electric lighting is an important

More information

Electricity from PV systems how does it work?

Electricity from PV systems how does it work? Electricity from photovoltaic systems Bosch Solar Energy 2 Electricity from PV systems Electricity from PV systems how does it work? Photovoltaics: This is the name given to direct conversion of radiant

More information

Auburn University s Solar Photovoltaic Array Tilt Angle and Tracking Performance Experiment

Auburn University s Solar Photovoltaic Array Tilt Angle and Tracking Performance Experiment Auburn University s Solar Photovoltaic Array Tilt Angle and Tracking Performance Experiment Julie A. Rodiek 1, Steve R. Best 2, and Casey Still 3 Space Research Institute, Auburn University, AL, 36849,

More information

CHAPTER 5 PHOTOVOLTAIC SYSTEM DESIGN

CHAPTER 5 PHOTOVOLTAIC SYSTEM DESIGN CHAPTER 5 PHOTOVOLTAIC SYSTEM DESIGN 5.1 Introduction So far in the development of this research, the focus has been to estimate the available insolation at a particular location on the earth s surface

More information

PVWATTS DERATING FACTORS FOR SOLARBRIDGE PANTHEON MICROINVERTERS AND ACPV SYSTEMS

PVWATTS DERATING FACTORS FOR SOLARBRIDGE PANTHEON MICROINVERTERS AND ACPV SYSTEMS PVWATTS DERATING FACTORS FOR SOLARBRIDGE PANTHEON MICROINVERTERS AND ACPV SYSTEMS AUTHOR Vincent Bartlett Senior Member of Technical Staff Version 1.5 March 22, 2013 SolarBridge Technologies 1 INTRODUCTION

More information

SOLAR ENERGY: SOLUTION TO FUEL DILEMMA

SOLAR ENERGY: SOLUTION TO FUEL DILEMMA IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 8, Aug 2014, 99-108 Impact Journals SOLAR ENERGY: SOLUTION TO

More information

VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001. Solar Power Photovoltaics or Solar Thermal Power Plants?

VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001. Solar Power Photovoltaics or Solar Thermal Power Plants? VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001 Solar Power Photovoltaics or Solar Thermal Power Plants? Volker Quaschning 1), Manuel Blanco Muriel 2) 1) DLR, Plataforma Solar de Almería,

More information

DC To DC Converter in Maximum Power Point Tracker

DC To DC Converter in Maximum Power Point Tracker DC To DC Converter in Maximum Power Point Tracker V.C. Kotak 1, Preti Tyagi 2 Associate Professor, Dept of Electronics Engineering, Shah &Anchor Kutchhi Engineering College, Mumbai, India 1 Research Scholar

More information

Effect of Ambient Conditions on Thermal Properties of Photovoltaic Cells: Crystalline and Amorphous Silicon

Effect of Ambient Conditions on Thermal Properties of Photovoltaic Cells: Crystalline and Amorphous Silicon Effect of Ambient Conditions on Thermal Properties of Photovoltaic Cells: Crystalline and Amorphous Silicon Latifa Sabri 1, Mohammed Benzirar 2 P.G. Student, Department of Physics, Faculty of Sciences

More information

Design & Sizing of Stand-alone Solar Power Systems A house Iraq

Design & Sizing of Stand-alone Solar Power Systems A house Iraq Design & Sizing of Stand-alone Solar Power Systems A house Iraq Ali Najah Al-Shamani 1,2, Mohd Yusof Hj Othman 1, Sohif Mat 1, M.H. Ruslan 1, Azher M. Abed 1, K. Sopian 1. 1 Solar Energy Research Institute

More information

Key words: Photovoltaic modules, insolation, charge controller, system sizing, continuous wattage, surge wattage.

Key words: Photovoltaic modules, insolation, charge controller, system sizing, continuous wattage, surge wattage. DESIGN OF PV SOLAR HOME SYSTEM FOR USE IN URBAN ZIMBABWE J Gwamuri *1, S Mhlanga 1 Applied Physics and Radiography Department, Faculty of Applied Sciences, National University of Science and Technology,

More information

Energy payback time and life-cycle conversion efficiency of solar energy park in Indian conditions

Energy payback time and life-cycle conversion efficiency of solar energy park in Indian conditions *Corresponding author: gntiwari@ces.iitd.ernet.in Energy payback time and life-cycle conversion efficiency of solar energy park in Indian conditions... Prabhakant and G.N. Tiwari * Center for Energy Studies,

More information

Solar Powered Smart Irrigation System

Solar Powered Smart Irrigation System Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 4 (2014), pp. 341-346 Research India Publications http://www.ripublication.com/aeee.htm Solar Powered Smart Irrigation System

More information

PLC Based PV Module Tracking with Microcontroller Backup

PLC Based PV Module Tracking with Microcontroller Backup PLC Based PV Module Tracking with Microcontroller Backup S. Dhivya Lakshmi 1, S. Harine 2, P.T. Subasini 3, S.T. Priyanka 4 Student, Dept. of EEE, Velammal Engineering College, Chennai, Tamilnadu, India

More information

Proposed Technique for Optimally Sizing a PV/Diesel Hybrid System

Proposed Technique for Optimally Sizing a PV/Diesel Hybrid System European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 10) Granada (Spain), 23rd

More information

Modelling and Simulation of Distributed Generation System Using HOMER Software

Modelling and Simulation of Distributed Generation System Using HOMER Software Modelling and Simulation of Distributed Generation System Using HOMER Software Bindu U Kansara Electrical Engineering Department Sardar Patel University SICART, Vidyanagar 388 1210, Gujarat, India bindu_kansara@yahoo.co.in

More information

Optimium Planning of Hybrid Renewable Energy System Using HOMER

Optimium Planning of Hybrid Renewable Energy System Using HOMER International Journal of Electrical and Computer Engineering (IJECE) Vol. 2, No. 1, February 2012, pp. 68~74 ISSN: 2088-8708 68 Optimium Planning of Hybrid Renewable Energy System Using HOMER J. B. Fulzele

More information

Irradiance. Solar Fundamentals Solar power investment decision making

Irradiance. Solar Fundamentals Solar power investment decision making Solar Fundamentals Solar power investment decision making Chilean Solar Resource Assessment Antofagasta and Santiago December 2010 Edward C. Kern, Jr., Ph.D., Inc. Global Solar Radiation Solar Power is

More information

Solar Photovoltaic (PV) Systems

Solar Photovoltaic (PV) Systems ARTICLE 690 Solar Photovoltaic (PV) Systems INTRODUCTION TO ARTICLE 690 SOLAR PHOTOVOLTAIC (PV) SYSTEMS You ve seen, or maybe own, photocell-powered devices such as night lights, car coolers, and toys.

More information

Solar Photovoltaic Frequently Asked Questions

Solar Photovoltaic Frequently Asked Questions Table of Contents 1. What is Solar Energy?... 2 2. What are the basic component of a Solar PV system?.2 3. What are the different types of PV systems ATL offers?...2 4. What is the difference between mono-crystalline

More information

Hybrid Wind-Fuel Cell Renewable Energy Utilization Scheme for Village Electricity

Hybrid Wind-Fuel Cell Renewable Energy Utilization Scheme for Village Electricity Proceedings of the 4 th International Middle East Power Systems Conference (MEPCON 0), Cairo University, Egypt, December 9-, 00, Paper ID 3. Hybrid Wind-Fuel Cell Renewable Energy Utilization Scheme for

More information

Solar Power Analysis Based On Light Intensity

Solar Power Analysis Based On Light Intensity The International Journal Of Engineering And Science (IJES) ISSN (e): 2319 1813 ISSN (p): 2319 1805 Pages 01-05 2014 Solar Power Analysis Based On Light Intensity 1 Dr. M.Narendra Kumar, 2 Dr. H.S. Saini,

More information

EFFICIENT EAST-WEST ORIENTATED PV SYSTEMS WITH ONE MPP TRACKER

EFFICIENT EAST-WEST ORIENTATED PV SYSTEMS WITH ONE MPP TRACKER EFFICIENT EAST-WEST ORIENTATED PV SYSTEMS WITH ONE MPP TRACKER A willingness to install east-west orientated photovoltaic (PV) systems has lacked in the past. Nowadays, however, interest in installing

More information

Improved incremental conductance method for maximum power point tracking using cuk converter

Improved incremental conductance method for maximum power point tracking using cuk converter Mediterranean Journal of Modeling and Simulation MJMS 01 (2014) 057 065 Improved incremental conductance method for maximum power point tracking using cuk converter M. Saad Saoud a, H. A. Abbassi a, S.

More information

Solar power Availability of solar energy

Solar power Availability of solar energy Solar Energy Solar Energy is radiant energy produced in the sun as a result of nuclear fusion reactions. It is transmitted to the earth through space by electromagnetic radiation in quanta of energy called

More information

The Planning and Design of Photovoltaic Energy Systems: Engineering and Economic Aspects. William Nichols Georgia Southern University Atlanta, GA

The Planning and Design of Photovoltaic Energy Systems: Engineering and Economic Aspects. William Nichols Georgia Southern University Atlanta, GA The Planning and Design of Photovoltaic Energy Systems: Engineering and Economic Aspects William Nichols Georgia Southern University Atlanta, GA Dr. Youakim Kalaani Georgia Southern University Statesboro,

More information

A Photovoltaic Array Simulation Model for Matlab-Simulink GUI Environment

A Photovoltaic Array Simulation Model for Matlab-Simulink GUI Environment A Photovoltaic Array Simulation Model for Matlab-Simulink GUI Environment I. H. Altas, * and A.M. Sharaf 2 : Dept. of Electrical and Electronics Engineering, Karadeniz Technical University, Trabzon, Turkey,

More information

GUIDE TO NET ENERGY METERING. www.heco.com

GUIDE TO NET ENERGY METERING. www.heco.com GUIDE TO NET ENERGY METERING www.heco.com Welcome to Net Energy Metering As a Net Energy Metering (NEM) customer, you are helping Hawaii reach its clean energy goals. Your photovoltaic (PV) system should

More information

Operational experienced of an 8.64 kwp grid-connected PV array

Operational experienced of an 8.64 kwp grid-connected PV array Hungarian Association of Agricultural Informatics European Federation for Information Technology in Agriculture, Food and the Environment Journal of Agricultural Informatics. 2013 Vol. 4, No. 2 Operational

More information

The Basics of Solar Power for Producing Electricity An excellent place to start for those just beginning. The basics of solar power: 1000 W/m²

The Basics of Solar Power for Producing Electricity An excellent place to start for those just beginning. The basics of solar power: 1000 W/m² The Basics of Solar Power for Producing Electricity Learn the essential basics of using solar power so you can understand your project. Planning your project begins with understanding the basics found

More information

FUNDAMENTAL PROPERTIES OF SOLAR CELLS

FUNDAMENTAL PROPERTIES OF SOLAR CELLS FUNDAMENTAL PROPERTIES OF SOLAR CELLS January 31, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

More information

Hybrid Power System with A Two-Input Power Converter

Hybrid Power System with A Two-Input Power Converter Hybrid Power System with A Two-Input Power Converter Y. L. Juan and H. Y. Yang Department of Electrical Engineering National Changhua University of Education Jin-De Campus, Address: No.1, Jin-De Road,

More information

What are the basic electrical safety issues and remedies in solar photovoltaic installations?

What are the basic electrical safety issues and remedies in solar photovoltaic installations? What are the basic electrical safety issues and remedies in solar photovoltaic installations? Presented by: Behzad Eghtesady City of Los Angeles Department of Building and Safety Topics Covered Photovoltaic

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

ANALYSIS 2: Photovoltaic Glass Replacement

ANALYSIS 2: Photovoltaic Glass Replacement ANALYSIS 2: Photovoltaic Glass Replacement Problem Identification Bridgeside II is designed to accommodate 80 percent lab space and 20 percent office space. Laboratory equipment can consume a considerable

More information

Application of photovoltaic s in the building and construction industry as a power generating facility

Application of photovoltaic s in the building and construction industry as a power generating facility Application of photovoltaic s in the building and construction industry as a power generating facility Matthew P. Peloso Science and Technology Business Services LLP 10 Gopeng Street, ICON #34-22 Singapore,

More information

A SOLAR GUIDE - EVERYTHING YOU NEED TO KNOW

A SOLAR GUIDE - EVERYTHING YOU NEED TO KNOW WE BRING GREEN SOLUTIONS TO YOU A SOLAR GUIDE - EVERYTHING YOU NEED TO KNOW Provided by A COOLER PLANET A Cooler Planet 1 The Complete Solar Guide WHY GO SOLAR? TOP FIVE FACTORS TO CONSIDER FOR ADDING

More information

Virtual Laboratory for Study of Renewable Solar Energy

Virtual Laboratory for Study of Renewable Solar Energy 266 Virtual Laboratory for Study of Renewable Solar Energy Cristian Dragoş DUMITRU, Adrian GLIGOR and Alexandru MORAR Abstract: The study of renewable energy sources is a new and interesting discipline

More information

Mohamed First University Faculty of Science, dépt de Physique, laboratory LETAS, Oujda, Maroc. (2)

Mohamed First University Faculty of Science, dépt de Physique, laboratory LETAS, Oujda, Maroc. (2) Amelioration the performance of photovoltaic stations for pumping and lighting installed in the Douar Zragta of the rural commune of Isly Prefecture of Oujda Angad E. Baghaz 1, R. Gaamouche 1, K. Hirech

More information

Concentrix Technology for Utility-Scale Solar Power Plants

Concentrix Technology for Utility-Scale Solar Power Plants Concentrix Technology for Utility-Scale Solar Power Plants The product Soitec is a leading manufacturer and supplier of concentrator photovoltaic (CPV) systems using highly effi cient Concentrix technology

More information

Modeling Grid Connection for Solar and Wind Energy

Modeling Grid Connection for Solar and Wind Energy 1 Modeling Grid Connection for Solar and Wind Energy P. J. van Duijsen, Simulation Research, The Netherlands Frank Chen, Pitotech, Taiwan Abstract Modeling of grid connected converters for solar and wind

More information

Control and Optimal Sizing of PV-WIND Powered Rural Zone in Egypt

Control and Optimal Sizing of PV-WIND Powered Rural Zone in Egypt Control and Optimal Sizing of PV-WIND Powered Rural Zone in Egypt Hanaa M. Farghally, Faten H. Fahmy, and Mohamed A. H.EL-Sayed Electronics Research Institute, National Research Center Building, Cairo,

More information

Simulation of Photovoltaic generator Connected To a Grid

Simulation of Photovoltaic generator Connected To a Grid Mediterranean Journal of Modeling and Simulation MJMS 1 (214) 2 33 Simulation of Photovoltaic generator Connected To a Grid F. Slama a,*, A. Chouder b, H. Radjeai a a Automatic Laboratory of Setif (LAS),

More information

Energy'Saving,'Thermal'Comfort'and'Solar'Power'Information'Sheet'

Energy'Saving,'Thermal'Comfort'and'Solar'Power'Information'Sheet' Energy'Saving,'Thermal'Comfort'and'Solar'Power'Information'Sheet' We ve prepared this information sheet to help you to minimise energy consumption and energy costs while maximising thermal comfort at home.

More information

Fuzzy Irrigation Controller Using Solar Energy

Fuzzy Irrigation Controller Using Solar Energy Fuzzy Irrigation Controller Using Solar Energy Eltahir Hussan 1, Ali Hamouda 2, HassanChaib 3 Associate Professor, Dept. of ME, Engineering College, Sudan University, Sudan 1 Instrumentation Assessor,

More information

Design of a Photovoltaic Data Monitoring System and Performance Analysis of the 56 kw the Murdoch University Library Photovoltaic System

Design of a Photovoltaic Data Monitoring System and Performance Analysis of the 56 kw the Murdoch University Library Photovoltaic System School of Engineering and Information Technology ENG460 Engineering Thesis Design of a Photovoltaic Data Monitoring System and Performance Analysis of the 56 kw the Murdoch University Library Photovoltaic

More information

Photovoltaic System Overcurrent Protection

Photovoltaic System Overcurrent Protection Photovoltaic System Overcurrent Protection Photovoltaic System Overcurrent Protection Introduction Solar Photovoltaic (PV) systems have, over the last fifty years, evolved into a mature, sustainable and

More information

Solar and Wind Energy for Greenhouses. A.J. Both 1 and Tom Manning 2

Solar and Wind Energy for Greenhouses. A.J. Both 1 and Tom Manning 2 Solar and Wind Energy for Greenhouses A.J. Both 1 and Tom Manning 2 1 Associate Extension Specialist 2 Project Engineer NJ Agricultural Experiment Station Rutgers University 20 Ag Extension Way New Brunswick,

More information

Student Pulse Academic Journal

Student Pulse Academic Journal June 11 Student Pulse Academic Journal Implementation and control of Multi Input Power Converter for Grid Connected Hybrid Renewable Energy Generation System Yuvaraj V, Roger Rozario, S.N. Deepa yuvatheking@skygroups.org;

More information

Solar Energy Conversion using MIAC. by Tharowat Mohamed Ali, May 2011

Solar Energy Conversion using MIAC. by Tharowat Mohamed Ali, May 2011 Solar Energy Conversion using MIAC by Tharowat Mohamed Ali, May 2011 Abstract This work introduces an approach to the design of a boost converter for a photovoltaic (PV) system using the MIAC. The converter

More information

Coordination Control of a Hybrid AC/DC Microgrid With Various Renewable Energy Sources

Coordination Control of a Hybrid AC/DC Microgrid With Various Renewable Energy Sources Coordination Control of a Hybrid AC/DC Microgrid With Various Renewable Energy Sources 1 Hema Surya Teja Beram, 2 Nandigam Rama Narayana 1,2 Dept. of EEE, Sir C R Reddy College of Engineering, Eluru, AP,

More information

High Intensify Interleaved Converter for Renewable Energy Resources

High Intensify Interleaved Converter for Renewable Energy Resources High Intensify Interleaved Converter for Renewable Energy Resources K. Muthiah 1, S.Manivel 2, Gowthaman.N 3 1 PG Scholar, Jay Shriram Group of Institutions,Tirupur 2 Assistant Professor, Jay Shriram Group

More information

SOLAR ChARge CONTROLLeRS

SOLAR ChARge CONTROLLeRS Steca Tarom MPPT 6000, 6000-M The Steca Tarom MPPT solar charge sets new standards in the area of Maximum Power Point trackers. Outstanding efficiency along with unique safety features make it a universal

More information

Application Note - How to Design a SolarEdge System Using PVsyst

Application Note - How to Design a SolarEdge System Using PVsyst March 2015 Application Note - How to Design a SolarEdge System Using PVsyst As of version 5.20, PVsyst - the PV system design software - supports the design of SolarEdge systems. This application note

More information

MULTI-INPUT DC-DC CONVERTER FOR RENEWABLE ENERGY SOURCES

MULTI-INPUT DC-DC CONVERTER FOR RENEWABLE ENERGY SOURCES MULTI-INPUT DC-DC CONVERTER FOR RENEWABLE ENERGY SOURCES Nithya.k 1, Ramasamy.M 2 1 PG Scholar, Department of Electrical and Electronics Engineering, K.S.R College of Engineering, Tamil Nadu, India 2 Assistant

More information

Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System

Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System Thatipamula Venkatesh M.Tech, Power System Control and Automation, Department of Electrical & Electronics Engineering,

More information

When Do Solar Electric & Utility Back-Up Systems Make Sense?

When Do Solar Electric & Utility Back-Up Systems Make Sense? When Do Solar Electric & Utility Back-Up Systems Make Sense? Oil & Gas Industry Presentation Proprietary Information 2010 SunWize Technologies When Do Solar Electric and Utility Back-Up Systems Make Sense?

More information

Development of a software solution for solar-pv power systems sizing and monitoring

Development of a software solution for solar-pv power systems sizing and monitoring Development of a software solution for solar-pv power systems sizing and monitoring I.A. Odigwe*, C.I. Nnadi*, A.F. Agbetuyi*, A.A. Awelewa*, F.E. Idachaba* *Department of Electrical and Information Engineering,

More information

Solar PV Cells Free Electricity from the Sun?

Solar PV Cells Free Electricity from the Sun? Solar PV Cells Free Electricity from the Sun? An Overview of Solar Photovoltaic Electricity Carl Almgren and George Collins( editor) Terrestrial Energy from the Sun 5 4 3 2 1 0.5 Electron-Volts per Photon

More information

Green Education through Green Power: Photovoltaics as a Conduit to Interdisciplinary Learning

Green Education through Green Power: Photovoltaics as a Conduit to Interdisciplinary Learning Green Education through Green Power: Photovoltaics as a Conduit to Interdisciplinary Learning The proposed project will enable ABC University to: 1) develop an interdisciplinary educational program to

More information

PERFORMANCE OF MPPT CHARGE CONTROLLERS A STATE OF THE ART ANALYSIS

PERFORMANCE OF MPPT CHARGE CONTROLLERS A STATE OF THE ART ANALYSIS PERFORMANCE OF MPPT CHARGE CONTROLLERS A STATE OF THE ART ANALYSIS Michael Müller 1, Roland Bründlinger 2, Ortwin Arz 1, Werner Miller 1, Joachim Schulz 2, Georg Lauss 2 1. STECA ELEKTRONIK GMBH, Mammostr.

More information

Renewable Energy. Solar Power. Courseware Sample 86352-F0

Renewable Energy. Solar Power. Courseware Sample 86352-F0 Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this

More information

Solar Power at Vernier Software & Technology

Solar Power at Vernier Software & Technology Solar Power at Vernier Software & Technology Having an eco-friendly business is important to Vernier. Towards that end, we have recently completed a two-phase project to add solar panels to our building

More information

Photovoltaic Systems II EE 446/646

Photovoltaic Systems II EE 446/646 Photovoltaic Systems II EE 446/646 Components of a grid-connected residential PV system (net meter) The inverter contains: Ground Fault Circuit Interrupter (GFCI) MPPT and Circuitry to disconnect the PV

More information

Running the Electric Meter Backwards: Real-Life Experience with a Residential Solar Power System

Running the Electric Meter Backwards: Real-Life Experience with a Residential Solar Power System Running the Electric Meter Backwards: Real-Life Experience with a Residential Solar Power System Brooks Martner Lafayette, Colorado University of Toledo Spring 2015 PHYS 4400 - Principles and Varieties

More information

Solar technology. A guide to solar power at utility scale. in Africa

Solar technology. A guide to solar power at utility scale. in Africa Solar technology A guide to solar power at utility scale in Africa About solar power Solar electricity is generated using a free and abundant energy source the sun. In a single hour, the sun transmits

More information

AN ULTRA-CHEAP GRID CONNECTED INVERTER FOR SMALL SCALE GRID CONNECTION

AN ULTRA-CHEAP GRID CONNECTED INVERTER FOR SMALL SCALE GRID CONNECTION AN ULTRA-CHEAP GRID CONNECTED INVERTER FOR SMALL SCALE GRID CONNECTION Pramod Ghimire 1, Dr. Alan R. Wood 2 1 ME Candidate Email: pgh56@student.canterbury.ac.nz 2 Senior Lecturer: Canterbury University

More information

Training Systems for Renewable Energies. Acquiring Practical Skills and Project-oriented Expertise

Training Systems for Renewable Energies. Acquiring Practical Skills and Project-oriented Expertise Training Systems for Renewable Energies Acquiring Practical Skills and Project-oriented Expertise Qualifications through Quality Inexhaustible, sustainable, real the future is green The move away from

More information

Activity 9: Solar-Electric System PUZZLE

Activity 9: Solar-Electric System PUZZLE Section 4 Activities Activity 9: Solar-Electric System Puzzle ACTIVITY TYPE: Worksheet Overview: Introduces the basic components of the Solar 4R Schools (S4RS) solar-electric system and identifies the

More information

Optimization of Renewable Energy Hybrid System by Minimizing Excess Capacity

Optimization of Renewable Energy Hybrid System by Minimizing Excess Capacity Optimization of Renewable Energy Hybrid System by Minimizing Excess Capacity Juhari Ab. Razak, Kamaruzzaman Sopian, Yusoff Ali, Abstract Optimization of renewable energy hybrid system looks into the process

More information

INTERFACES FOR RENEWABLE ENERGY SOURCES WITH ELECTRIC POWER SYSTEMS

INTERFACES FOR RENEWABLE ENERGY SOURCES WITH ELECTRIC POWER SYSTEMS INTERFACES FOR RENEWABLE ENERGY SOURCES WITH ELECTRIC POWER SYSTEMS Paulo Ferreira, Manuel Trindade, Júlio S. Martins and João L. Afonso University of Minho, Braga, Portugal paulo.alves.ferreira@sapo.pt,

More information

For millennia people have known about the sun s energy potential, using it in passive

For millennia people have known about the sun s energy potential, using it in passive Introduction For millennia people have known about the sun s energy potential, using it in passive applications like heating homes and drying laundry. In the last century and a half, however, it was discovered

More information

Power Flow Control Using Bidirectional Dc/Dc Converter for Grid Connected Photovoltaic Power System

Power Flow Control Using Bidirectional Dc/Dc Converter for Grid Connected Photovoltaic Power System International Journal of Innovative Research in Electronics and Communications (IJIREC) Volume 1, Issue 8, November 2014, PP 13-24 ISSN 2349-4042 (Print) & ISSN 2349-4050 (Online) www.arcjournals.org Power

More information

White Paper SolarEdge Three Phase Inverter System Design and the National Electrical Code. June 2015 Revision 1.5

White Paper SolarEdge Three Phase Inverter System Design and the National Electrical Code. June 2015 Revision 1.5 White Paper SolarEdge Three Phase Inverter System Design and the National Electrical Code June 2015 Revision 1.5 Shalhevet Bar-Asher; SolarEdge Technologies, Inc. Bill Brooks, PE; Brooks Engineering LLC

More information