Fundamentals of Curing Elastomers with Peroxides and Coagents II: Understanding the Relationship Between Coagent and Elastomer
|
|
|
- Loraine Garrett
- 9 years ago
- Views:
Transcription
1 Fundamentals of Curing Elastomers with Peroxides and Coagents II: Understanding the Relationship Between Coagent and Elastomer Steven K. Henning and William M. Boye Cray Valley USA, LLC Exton, Pennsylvania USA /11 Cray Valley USA, LLC aklands Corporate Center 468 Thomas Jones Way, Suite 100 Exton, PA US1-CRAY ( ) Web:
2 ABSTRACT Previously, the structure-property relationships of multifunctional monomeric and polymeric coagents were explored using a compound based on a standard peroxide-curable elastomer, EPDM. While the system represented a good model to compare the relative activity of coagent structures, it did not address the more complex relationships between coagent and elastomer. A larger study has been recently completed in which a select group of representative coagents were evaluated in a series of model formulations based on commercially significant elastomers that can be cured with organic peroxides (NR, NBR, HNBR, EPDM, EVA, CM, CSM, FEPM, FKM). Cure kinetics and cured physical property data are summarized. The results are interpreted by considering the relative reactivity of different polymers towards hydrogen abstraction and other radical reactions, and the proposed chemistry of coagent vulcanization. The results provide a better understanding of coagent selection based not only on coagent structure but also on the composition and microstructure of the elastomer being cured. The investigation furthers the understanding of coagent activity by exploring coagent and elastomer structure-property co-relationships. INTRDUCTIN By crosslinking elastomeric polymers, useful compositions can be formed that exhibit physical properties such as high tensile strengths, low compression set, recoverable elongations, high tear energies, and improved dynamic performance. The quantity and quality of the linkages formed by the crosslinking reactions determine the properties of the resulting network. Networks formed from radical-based vulcanization typically possess good heat-ageing stability and low compression set. These qualities are a direct manifestation of the chemical composition of the crosslinks that are formed. Synergistic use of multifunctional coagents can improve upon these properties by increasing the crosslink density of the network and by altering the crosslink composition. The use of organic peroxides in the radical vulcanization of elastomers is well established. Through model reactions and analysis of in-situ derived networks, previous work has established the fundamental chemistry and mechanism of radical cure for the basic allyl ester, allylic, and (meth)acrylate ester functional coagents monomers. 1 ther work has further determined the structure-property relationships of a wide group of coagents through empirical studies. 2,3 Most studies made available in the literature which highlight coagents utilize ethylene-propylene or ethylenepropylene-diene rubber as the model elastomer vulcanized by peroxide-coagent systems. 4,5,6 Where the use of coagents has been expanded into other elastomer grades, the focus is primarily on the elastomer and a small selection of coagents are utilized to enhance specific physical properties. 7,8,9 An expanded survey of several coagent types across a wide variety of commercially significant elastomers has not been available. A design study evaluating a select group of coagents of very different structure and activity in a series of model formulations based on the most commercially significant elastomers cured with organic peroxides was recently completed. Comparisons between coagents in a given elastomer and the relative activity of specific coagents across a spectrum of elastomers are presented. The relative activity of coagents was found to be highly dependent on the elastomer in which it is being reacted, as cure kinetics and cured physical property data demonstrate. The results provide a better understanding of coagent selection based not only on coagent structure but also the context of the elastomeric matrix being cured. 2
3 EXPERIMENTAL Materials Table I outlines the commercially available coagent grades used in the study. They are available from Cray Valley Company, Inc. Table II provides a summary of the elastomer grades and manufacturers used in the model compound formulations evaluated. Both dicumyl peroxide (Di-Cup 40KE, Geo Specialty Chemicals) and 2,5-dimethyl-2,5- di-t-butylperoxyhexane (Varox DBPH 50, R.T. Vanderbilt Company, Inc.) were used as curing agents at 3 phr active peroxide. A listing of model formulations is provided in the Appendix. Table I. Coagent identification and commercial products. CAGENT DESCRIPTIN CDE TYPE CMMERCIAL PRDUCT trifunctional (meth)acrylate ester TMA I N,N -m-phenylene dimaleimide PDM I poly(butadiene) diacrylate PBDDA hybrid triallyl cyanurate TAC II triallyl isocyanurate TAIC II high vinyl poly(butadiene) HVPBD II Ricon 154 Table II. ASTM designations for common elastomer grades. ELASTMER ASTM CMMERCIAL TYPE DESIGNATIN GRADE natural rubber NR SMR CV-60 nitrile rubber NBR Nipol DN 3335, Zeon Chemicals hydrogenated nitrile rubber HNBR Zetpol 2010L, Zeon Chemicals ethylene propylene diene rubber EPDM Nordel IP4640, Dow Chemical ethylene-vinyl acetate copolymer EVM Levapren 600HV, Lanxess chlorosulfonated poly(ethylene) CSM Hypalon 40, DuPont Elastomers chlorinated poly(ethylene) CM Tyrin 0136, Dow Chemical fluorocarbon rubber FKM Viton GF-S, DuPont Elastomers fluorocarbon rubber FEPM Aflas 150P, AGC Americas Rubber Compounding A set of compound evaluations was conducted using six different coagents in model formulations based on nine different elastomers. To limit systematic error derived from the mixing step, masterbatches containing all ingredients except the coagent and peroxide were prepared in an internal mixer to which the curatives were later added on a two-roll mill. Curative incorporation time was approximately 7 minutes at an average mixing temperature of 85ºC. In each formulation, the selected coagents were evaluated at loading levels of 1, 5, and 10 phr; 7.5 phr peroxide (3.0 phr actives) was also added to the compound. A control compound for each formulation using no coagent (peroxide only) was included for comparison. 3
4 Physical Testing Cure kinetics. A moving die rheometer (MDR, TechPro MDPT) was used to determine the extent of cure and cure kinetics according to ASTM D The cure temperature used was dependent upon the peroxide (160ºC for dicumyl peroxide, 180ºC for 2,5-dimethyl-2,5-di-t-butylperoxyhexane). Cure rheometry was conducted using an arc deflection of 3º. Cure times were sufficiently long to ensure near complete decomposition of the peroxide (35 minutes for dicumyl peroxide, 15 minutes for 2,5-dimethyl-2,5-di-t-butylperoxyhexane). Tensile and compression properties. Physical testing was performed on samples cured in a press under the same temperature and time conditions outlined above. Tensile, elongation and tear data was acquired on a tensile machine (Thwing-Albert Materials Tester) following ASTM D 412 and D 624. Compression set was evaluated after heating at 100ºC (200ºC for FKM, FEPM model formulations) for 22 hours following ASTM D 395. RESULTS AND DISCUSSIN An important factor that determines the final architecture of the vulcanized network is the relative reactivity between coagent and the polymer chain towards radicals. Polymer radicals can be formed when a radical species abstracts hydrogen from the polymer chain. The ease of abstraction is dependent on the structure of the polymer. A list quantifying the relative difficulty of hydrogen abstraction from various chemical groups is available. 5 For most commercially relevant polymers cured by peroxides, the following list is sufficient to describe the ease that polymer radicals can form through hydrogen abstraction based on the microstructural elements of the polymer: benzylic = allylic > tertiary carbon > secondary carbon > primary carbon > vinyl >> phenyl By default, the above list can also be used to determine the relative reactivity of polymers to peroxide cure assuming attack by an alkoxy radical. For poly(dienes), other factors are also of importance in comparing the relative reactivity to hydrogen abstraction, including steric hindrance and the effects of microstructure. Radical addition across C=C unsaturation is the other mechanism by which polymer radicals can form. Terminal, or pendant double bonds (vinyl) have low steric hindrance and are more likely to participate in addition reaction than internal double bonds (cis/trans). Radical addition reactions compete with allylic abstraction to form polymer radical species. Crosslinks can be subsequently formed through polymer radical coupling reactions. Peroxide Cure of Elastomers In order to provide a baseline of polymer reactivity, an equivalent amount of peroxide was added to the elastomers in our evaluation group, and the delta torque (M H -M L ) was determined by rheometry. The results are provided in Figure 1. Delta torque has been shown to correlate to crosslink density in peroxide cured systems, and in the present example serves to measure only the increase in torque due to vulcanization which provides normalized data enabling meaningful comparisons across the disparate model formulations used in the study. 4
5 Delta Torque (dnm) NBR NR HNBR EPDM EVM CM CSM FEPM Figure 1. Delta torque values as a function of elastomer for model formulations cured with 3 phr peroxide. The polymer order in Figure 1 follows the percent unsaturation in the diene-based elastomer materials (NR, NBR > HNBR» EPDM). The fully saturated materials (EVM, CM, CSM, FEPM) are listed last. The unsaturated materials as a group generated the highest delta torque with the actual value roughly correlating to percent unsaturation. However, details regarding the actual polymer structure can better explain the trends observed in the data. NR contains more unsaturation than the NBR copolymer, but NBR typically builds higher crosslink density than NR in radical systems. Both are diene-based polymers, but an addition reaction would be favored at the less sterically hindered butadiene (vs. isoprene) monomer cure site. 10 Also, in poly(isoprene) the result of addition would be a tertiary radical, which is subsequently less reactive to coupling reactions. As abstraction may be the dominant mechanism, there is a higher allylic hydrogen concentration in isoprene (7 vs. 4 for butadiene). Again, steric hindrance may limit the accessibility of the allylic sites on poly(isoprene) to other macroradicals. HNBR and EPDM contain low amounts of unsaturation (4-5%) resulting from partial hydrogenation and the incorporation of cure site monomer, respectively. Residual butadiene will be more reactive to radical attack than the ethylidene norbornene monomer, with reasoning parallel to the butadiene/isoprene comparison. The fully saturated elastomers are also peroxide-curable, relying exclusively on hydrogen abstraction as the mechanism for polymer radical formation. For EVM, the methyl hydrogen is the most likely site for abstraction. 11 Abstraction on CM and CSM polymers occurs at the carbon adjacent to the halogenated site. Crosslinking efficiency of polymer radicals in halogenated elastomers is typically reduced through dehydrohalogenation reactions. Fluorocarbon rubbers can be peroxide cured, but fluorine is much more difficult to abstract than hydrogen, resulting in reduced crosslinking efficiency. Certain grades of fluoroelastomers may utilize cure site monomers or have reactive groups added to the polymer structure to promote crosslinking with peroxides (FEPM). 12,13 The FKM grade produced negligible delta torque when peroxide was used without co-curatives. Crosslink formation is the desired reaction pathway for a radical species, but competitive reactions can limit the efficiency of radical cure. 5 Unfortunately, many of the destructive reactions are kinetically and thermodynamically favored, and typically only a very high concentration of reactive sites on the polymer backbone allows for effective crosslink formation to occur at all. However, productive crosslink formation can be favored through the use of very reactive, multifunctional coagent products. Coagents favor network formation by increasing the local concentration of highly reactive groups. The incorporation of coagents into the network can also favorably impact the physical properties of the vulcanizate. 5
6 Comparing Coagent Activity as a Function of Elastomer Coagent classification. Coagents are classified based on their contributions to cure and divided into two basic classes (Type I and Type II). Type I coagents increase both the rate and state of cure. Type I coagents are typically polar, low molecular weight multifunctional compounds which propagate very reactive radicals primarily through addition reactions. These monomers can be homopolymerized or grafted to polymer chains. Type II coagents form less reactive radicals and contribute only to the state of cure. Type II coagents can include allyl-containing cyanurates, isocyanurates and phthalates, and high vinyl poly(butadiene) resins. Those Type II coagents that contain extractable allylic hydrogen have been shown to participate in intramolecular cyclization reactions as well as intermolecular propagation reactions. 1 High vinyl poly(butadienes) simply increase the concentration of reactive pendant unsaturation, further promoting crosslinking predominantly via addition reactions through the pendant vinyl group. Examples representing the structural diversity of coagents are provided in Figure 2. Type I R N N a. b. Hybrid c. x y N Type II d. N N e. x y Figure 2. Examples demonstrate the structural diversity of Type I and Type II coagents. Type I (a. tri(meth)acrylate ester, b. N, N -m-phenylene dimaleimide), hybrid (c. poly(butadiene) diacrylate resin), and Type II (d. triallyl cyanurate, e. high vinyl poly(butadiene) resin) coagents are represented. Coagent reactivity. Because of their reactivity, coagents generally make more efficient use of the radicals derived from peroxides, whether acting to suppress non-network forming side reactions during cure 14,15 or to generate additional crosslinks. 16 The mechanism of crosslink formation using coagents appears to be at least partially dependent on their class. Figure 3 demonstrates the change in crosslink density (as measured by MDR delta torque) when either a Type I coagent (tri(meth)acrylate, TMA) or Type II coagent (high vinyl poly(butadiene) resin, HVPBD) was added to the peroxide cure system at 5 phr. Addition of Type I coagent increased the delta torque for each compound. The Type I coagent is a very reactive monomer, favoring addition reactions leading to homopolymerization and subsequent grafting to polymer chains, through either direct addition reactions (unsaturated polymers) or through abstraction/coupling reactions with saturated or unsaturated polymer chains. Regardless of mechanism, the Type I coagent increased crosslink density in each compound. 6
7 Delta Torque (dnm) peroxide TMA HVPBD NBR NR HNBR EPDM EVM CM CSM FEPM Figure 3. Delta torque values as a function of elastomer for model formulations cured with 3 phr peroxide and 5 phr coagent. In general, the addition of a Type II coagent had less of an impact on crosslink density. Vinyl (1,2) microstructure dominates the poly(butadiene) resin (90% of monomer units), and addition reactions may dominate the cure mechanism. Homopolymerization may proceed, but at a slower rate than monomeric coagents due to group reactivity and steric hindrance associated with the polymeric form. These factors may lead to a decrease in the overall state of cure when the poly(butadiene) resin is used. The Type II coagent provided no increase in delta torque for highly unsaturated polymers, perhaps due to the relative ease of allylic hydrogen abstraction from the polymer backbone compared to the vinylic group of the coagent. The relative concentration of vinylic groups on the coagent compared to unsaturation on the polymer may also contribute to the negligible impact on crosslink density by the coagent in the NR and NBR compounds. However, the Type II coagent appeared to become more effective as unsaturation decreased. In EVM and FEPM the Type II coagent produced higher delta torque than the Type I coagents. Figure 4 summarizes the percent increase in delta torque data (over peroxide alone) as a function of elastomer when applying the Type I and Type II coagents. The Type I coagent increased delta torque for every formulation, with the greatest improvements seen in saturated EVA, CM and CSM systems. The more reactive coagents may limit the amount of dehydrohalogenation occurring in these compounds, providing the most positive effect in cure state. Type II coagents, most notably allylic-containing monomers, increase the cured physical properties of fluorocarbon rubber. 8 (Meth)acrylate esters have not been shown to be as effective in FEPM grades. 7
8 % Increase TMA HVPBD NBR NR HNBR EPDM EVM CM CSM FEPM Figure 4. Percent increase in delta torque over that for peroxide alone due to the addition of 5 phr coagent as a function of elastomer. What is clear is that many kinetic and mechanistic factors must be considered when explaining the complex behavior observed. A direct manifestation of the competition for peroxy radicals and other macroradicals by coagent and elastomer is seen in the final cured physical properties of the compounds. However, the competition must be considered within the context of all the possible competitive reactions. The fact that many elastomers are cured to form useful commercial products attests to the domination of crosslink-forming reaction in these systems. Cure kinetics. The reactivity of coagents can have negative effects on process safety, typically manifested by a decrease in scorch time. The addition of highly reactive monomers and resins to compounds can result in a fast onset of cure once the peroxide begins to decompose. The few initial peroxy radicals react with coagents and will propagate quickly. The relative decrease in process safety is typically measured by the time to a two-point increase in rheometer torque (t s2 ). Figure 5 compares scorch times for model NBR, EPDM, and CM compounds as a function of coagent (TAC, HVPBD, PBDDA, PDM, TMA). Again the control (peroxide only) provides a baseline reference for the inherent reactivity of the elastomer itself to peroxide cure. Scorch time increases as unsaturation decreases (NBR < EPDM < CM), perhaps due to the relative efficiency of addition reactions generating crosslink density compared to abstraction, as the polymer plays less of a role in the cure mechanism with increased saturation. 2.5 NBR EPDM CM Scorch Safety (ts2, min) peroxide TAC HVPBD PBDDA PDM TMA 5. Scorch safety as measured by t s2 times for NBR, EPDM, and CM model formulations as a function of coagent (5 phr loading). 8
9 Adding coagent (5 phr) negatively affected scorch safety. Structure-property relationships can predict the direction and degree of the change. In general, the Type II coagents (TAC, HVPBD) provided the most scorch safety. In the NBR compound, the addition of these coagents maintained scorch times; in EPDM, the scorch times were increased. In each formulation, the Type I monomers (PDM, TMA) provided the least scorch safety. The hybrid coagent PBDDA contains structural elements of both Type I and Type II coagents; the scorch safety provided was also characteristically intermediate of the two classes. As CM contains no unsaturation, the addition of any reactive component to the formulation decreased scorch time. Reviewing the scorch times for the CM compound provides a good illustration of the gradual increase in reactivity of the selected coagents. Figures 6, 7 and 8 provide more insight as to the effect of coagent addition on the cure kinetics and state of cure for the same three compounds (NBR, EPDM, CM, respectively). A coagent loading ladder (1, 5, and 10 phr each coagent) was used to generate the data. Looking at the change in scorch time as a function of delta torque provides a relative comparison of the crosslink density/scorch safety trade-off often associated with each coagent. The data indicate that for most coagent-elastomer systems a negative slope was obtained; scorch safety decreases with an increase in delta torque. The few exceptions typically involve a Type II coagent and a saturated elastomer (HVPBD, NBR). In general, the Type I monomers possess a much more negative slope than Type II coagents. It is also instructive to consider the y axis range of each figure: the relative magnitude of scorch safety again aligns with elastomer reactivity towards radical species (NBR < EPDM < CM). Scorch Safety (ts2, min) NBR TAC 0.60 HVPBD PBDDA TMA PDM Delta Torque (dnm) Figure 6. Scorch safety as a function of delta torque for selected coagents in the NBR model formulation. 9
10 Scorch Safety (ts2, min) EPDM 1.6 TAC 1.4 HVPBD PBDDA 0.8 PDM 0.6 TMA Delta Torque (dnm) Figure 7. Scorch safety as a function of delta torque for selected coagents in the EPDM model formulation. Scorch Safety (ts2, min) CM 2.0 TAC HVPBD PBDDA 1.0 PDM TMA Delta Torque (dnm) Figure 8. Scorch safety as a function of delta torque for selected coagents in the CM model formulation. Physical Properties. The cured physical properties exhibited by the model compounds are determined by the crosslinked network and the composition of the formulation. To normalize the effect of the formulation composition, the relative improvement in tensile and compression properties as a function of coagent in the NBR, EPDM, and CM model formulations is compared. In Figure 9 the increase in 50% modulus is compared in these compounds with the addition of 5 phr coagent (based on the peroxide-only control). The Type I coagent monomers (TMA, PDM) provided the greatest increases in modulus. As seen earlier, the coagent effect on cure typically increases as polymer unsaturation decreases. The trend was evident for the TAC, HVBPD, and PBDDA coagents. However, for the compounds formulated with PDM the modulus-building effect followed the opposite trend, with the relative increase in modulus becoming larger with higher levels of polymer unsaturation. 10
11 300 NBR EPDM CM 50% Modulus (% increase) TAC HVPBD PBDDA TMA PDM Figure 9. Percent increase in tensile modulus value by the addition of 5 phr coagent to the BNR, EPDM, and CM model formulations (based on peroxide-only cure). Figure 10 compares compression set data of the same compounds. Again, the effects of coagent addition generally increased as a function of polymer saturation. However, no clear trends can be seen as a function of coagent type. The results suggest that in compression testing the effect of the coagent is highly dependent on the elastomer being crosslinked and the property more sensitive to other factors. Compression Set (% decrease) NBR EPDM CM TAC HVPBD PBDDA TMA PDM Figure 10. Percent decrease in compression set value by the addition of 5 phr coagent to the NBR, EPDM, and CM model formulations (based on peroxide-only cure). Compression set is particularly sensitive to the homogeneity of crosslink density. The relative amount of permanent set can therefore be a diagnostic tool for the final structure of the network based on the relative solubility of the coagent in the elastomer matrix and the mechanism for which crosslinks are formed. Several models have been put forth to describe the architecture of the network formed when coagents are employed in the radical cure of elastomers. Network enhancement through the grafting of coagents between polymer chains, 16,17 the formation of an interpenetrating network of homopolymerized coagents, 18 and the formation of higher modulus filler-like domains of thermoset coagent 19 has been suggested. Rather than the above cases being distinct or mutually exclusive outcomes of vulcanization, the resulting network is likely defined by a distribution of the above crosslink structures. The actual population of the distribution is determined by a host a factors including coagent loading, solubility of the 11
12 coagent in the elastomer, and the relative reactivity of the coagent compared to the elastomer. In most cases where monomeric Type I and Type II coagents are employed, a limited solubility in the elastomer phase and the ability to homopolymerize leads to the formation of domains of thermoset coagent. This has been demonstrated for allylic 20 and (meth)acrylate-based monomeric coagents. 21 However, high vinyl poly(butadiene) resins possess solubility parameters much closer to common elastomers, and have been shown to greatly improve physical properties at coagent loadings above the solubility limit of monomeric forms. 22 By measuring compression set as a function of modulus for select coagents, a more informative comparison can be made across elastomer model formulations. Figures 11 through 13 provide the compression set / modulus analysis for the NBR, EPDM, and CM model formulations, respectively. The results were again generated through a coagent loading ladder (1, 5, and 10 phr) in each formulation. In Figure 11 (NBR) increased loading of the Type II coagents (TAC, HVPBD) resulted in compression set improvement over a relatively narrow modulus range. PBDDA, the hybrid diene-acrylate resin, provided an incremental improvement in compression at equal modulus versus the HVPBD resin. The Type I monomers PDM and TMA produced consistently low compression set values over a much higher modulus range. It is possible that the reactivity of the highly unsaturated NBR polymer chain may compete favorably with radical addition reactions of these monomers, the effect being a higher percentage of well distributed crosslinks. 14 NBR Compression Set (%) TAC HVPBD PBDDA TMA PDM % Modulus (MPa) Figure 11. Compression set as a function of modulus for selected coagents in the NBR model formulation. 12
13 12 EPDM Compression Set (%) TAC PBDDA TMA HVPBD PDM % Modulus (MPa) Figure 12. Compression set as a function of modulus for selected coagents in the EPDM model formulation. 50 CM Compression Set (%) PBDDA TAC HVPBD TMA PDM % Modulus (MPa) Figure 13. Compression set as a function of modulus for selected coagents in the CM model formulation. Figure 12 provides the data for the EPDM formulation. Trends are similar to the NBR data set, with the exception of the TMA monomer which groups with the Type II coagents in this formulation. The PDM monomer again provides a very low compression set across an extended modulus range. It is possible that addition reactions between PDM monomers are not favored, limiting the monomers ability to homopolymerize. Alternatively, the PDM coagent can also react with in-chain unsaturation through ionic mechanisms in the absence of radicals. 23 The efficiency that the addition of PDM increases crosslink density and minimizes compression set suggests that a majority of the crosslinks formed consist of well distributed linkages grafted between polymer chains. Figure 13 summarizes the experiment utilizing the CM model formulation. Coagent loading produced a more uniform range of moduli, and more equally distributed differentiation by coagent structure. With the exception of TAC, the coagent efficacy follows a trend based on reactive structures and Type (HVPBD < PBDDA < TMA < PDM). For CM elastomers, TAC provided optimal tensile-compression properties. 13
14 Additional Comparisons of Elastomers The results summarized above offer some insight as to mechanism of peroxide/coagent cure within the context of the relative degree of diene unsaturation of the host elastomer. However, many polymers utilize cure site monomers to either increase the inherent cure reactivity or enable alternative cure chemistries. The most notable commercial examples include EPDM (diene monomer) and butyl rubber (isoprene monomer). Many other elastomer grades utilize different comonomers to increase the reactivity to peroxide cure, or in other cases utilize post-polymerization derivatization to add reactive groups. The presence of these reactive groups can alter the activity of peroxide/ coagent cure systems. In many cases the reactive group can be more selective to specific coagents, or as outlined earlier may increase the participation of the polymer chain in curing reactions and favorably alter the cure mechanism. 350 CM CSM 50% Modulus (% increase) HVPBD PBDDA TAC TMA PDM Figure 14. Percent increase in tensile modulus value by the addition of 5 phr coagent to the CM and CSM model formulations. CM / CSM elastomers. CM and CSM elastomer grades contain cure sites that increase the reactivity of the polymer to standard cure systems. The chlorination process decreases crystallinity and also adds a reactive site. Coagents are often used in the peroxide cure of these grades as they can promote crosslinking reactions and limit dehydrohalogenation reactions. The CM and CSM grades evaluated in the present study have the same chlorine content (~35%), with the CSM grade also having 1% chlorosulfonyl groups added. Model formulations containing these grades were cured using 5 phr of various coagents. The relative increase in 50% modulus (calculated as a percent increase over the modulus value for the addition of peroxide without a coagent) for the two compounds are provided in Figure 14. In general, the addition of coagent increases the modulus value by at least 100%. For the CM masterbatch, the increase in modulus is fairly constant, regardless of coagent Type or chemistry. The Type I monomers TMA and PDM do provide a marginal increase in physical properties when compared directly to the Type II grades. In contrast to the CM case, the Type I coagents increased the modulus values more significantly than the Type II coagents when applied to the CSM formulation. While there are minor formulation differences between the model compounds, the manner with which the Type I monomers improved the crosslink density and cured physical properties in the CSM compounds relative to the CM grade suggests that the chlorosulphonyl groups may contribute preferentially in the radical cure when Type I monomers are added. HNBR / NBR elastomers. The residual diene monomer in HNBR can be considered a cure site monomer, the result of removing unsaturation through hydrogenation. The HNBR grade used contains 4% residual unsaturation, compared to the 67% butadiene content NBR. Figure 15 summarizes the increase in modulus provided by 5 phr coagent as a function of elastomer. Similar to the CM/CSM comparison, the relative effect of coagent addition is 14
15 greater for the Type I monomers in both base elastomers. For each coagent surveyed, the impact on physical properties, including modulus, was greatest in the highly unsaturated elastomer. 300 HNBR NBR 50% Modulus (% increase) TAC HVPBD PBDDA TMA PDM Figure 15. Percent increase in tensile modulus value by the addition of 5 phr coagent to the HNBR and NBR model formulation. FKM / FEPM elastomers. A final comparison of commercial polymer grades focuses on fluoroelastomers. The FKM grade is a copolymer of hexafluoropropylene, vinylidene fluoride, and tetrafluoroethylene with a cure site monomer. In many cases, the cure site is a bromine-substituted fluorinated monomer. 8 In contrast, the FEPM grade is an alternating copolymer of tetrafluoroethylene and propylene with a cure site added to the polymer. Figures 16 and 17 summarize the relative effect of coagent on the two fluoroelastomer model formulations for the FKM and FEPM compounds, respectively. The coagents were added at 2 phr; a post cure step (200ºC, 4 hrs) was included prior to physical testing. In both systems, the allylic monomers produced a significantly higher relative increases in modulus compared to other Type II coagents. The Type I coagent was least effective. It must be noted that the relative increase in modulus is an order of magnitude greater for FKM than FEPM. Again, the results are shown as a percent increase in property based on the peroxide-only compound, a useful way to remove formulation differences and focus on coagent-elastomer structure effects. In the FKM compound, straight peroxide cure produced a very low state of cure. In contrast, the FEPM compound was adequately cured by peroxide alone. The cure site incorporated into the FEPM grade appears to be more effective at participating in the cure mechanism, with all Type II coagents providing measurable increases in cured modulus. 15
16 2500 FKM 50% Modulus (% increase) HVPBD PBDDA TMA TAC TAIC Figure 16. Percent increase in tensile modulus value by the addition of 5 phr coagent to the FKM model formulation. 250 FEPM 50% Modulus (% increase) HVPBD PBDDA TMA TAC TAIC Figure 17. Percent increase in tensile modulus value by the addition of 5 phr coagent to the FEPM model formulation. SUMMARY AND CNCLUSINS Generalizations regarding the absolute ranking of coagent performance must be reconsidered to take into account the context of the elastomer being cured. As previous work has concentrated on particular aspects regarding the mechanism of peroxide vulcanization, coagent chemistry, or specific improvements imparted to an elastomer grade through coagent selection, little focus was given to understanding coagent/elastomer structure-property corelationships. By considering the favored reactions of a particular coagent within the context of a selected elastomer, it is more likely to be able to understand and predict the cure kinetics and physical properties of the one chosen system relative to another. The tendency towards addition reactions of monomeric Type I coagents can, in general, result in compounds with very good tensile and compression properties, albeit at the expense of process safety. While the difference between solubility parameters of monomeric coagents and elastomers results in the likely formation of highly crosslinked domains and a heterogeneous crosslink density, more reactive host polymers may help balance the tendency 16
17 towards coagent homopolymerization by actively participating in cure reactions through easily abstractable hydrogen or even addition reactions. Type II coagents react more slowly, either due to the tendency towards intramolecular cyclization reactions (monomeric forms) or steric/structural effects (polymeric resins) and thus may exhibit a more balanced reactivity when used in the radical cure of saturated elastomers. The results of the current study were culled from a database of information documenting the relative activity of a wide spectrum of coagents in an equally broad selection of elastomers grades. Careful analysis of the data has provided a better understanding of coagent selection based not only on coagent structure but also on the composition and microstructure of the elastomer being cured. 17
18 Appendix. Model formulations. NR Masterbatch CM Masterbatch Ingredient phr Ingredient phr NR CV Tyrin N330 Carbon Black 50 N550 Carbon Black 60 CaC 3 40 total 150 DIDP 30 Maglite D 5 NBR Masterbatch Agerite Resin D 1 Ingredient phr total 236 Nipol DN N550 Carbon Black 50 CSM Masterbatch PlastHall Ingredient phr Stearic Acid 1 Agerite Resin D 1 Hypalon N330 Carbon Black 60 total 157 Sunpar PE Wax 2 HNBR Masterbatch Agerite Resin D 1 Ingredient phr total 173 Zetpol 2010L 100 N550 Carbon Black 50 FKM Masterbatch TTM 5 Ingredient phr total 155 Viton GF-600S 100 MT 990 Carbon Black 30 EPDM Masterbatch VPA #2 1 Ingredient phr total 131 Nordel IP4640 EPDM 100 N660 Carbon Black 100 FEPM Masterbatch Sunpar Ingredient phr Stearic Acid 1 Aflas 150P 100 total 251 MT 990 Carbon black 25 Sodium Stearate 1 EVM Masterbatch Ingredient phr total 126 Levaprene 600HV 100 MT 990 Carbon Black 50 Rhenogran PCD 50 3 Naugard Q 2 Maglite D 2 Stearic Acid 1.5 total
19 REFERENCES 1 H. G. Dikland, Coagents in Peroxide Vulcanizations of EP(D)M Rubber, Gegevens Koninklije Bibliotheek, Netherlands, S. K. Henning and R. Costin, Rubber World 233 (5), 28 (2006). 3 S. K. Henning, Wire and Cable International XXXVI (3), 52 (2008). 4 L. P. Lenas, Rubber Chem. Technol. 37, 229 (1964). 5 P. R. Dluzneski, Rubber Chem. Technol. 74, 451 (2001). 6 L. H. Palys and P. A. Callais, Rubber World 229 (3), 35 (2003). 7 R. J. Pazur, L. P. Ferrari, and E. C. Campomizzi, Rubber World 233 (3), 23 (2005). 8 D. Apotheker, J. B. Finlay, P. J. Krusic, and A. L. Logethetis, Rubber Chem. Technol. 55, 1004 (1982). 9 T. Jablonowski, and C. Reichel, Rubber World 233 (5), 36 (2006). 10 P.R. Dluzneski and C.B. Helms, Paper # 13, Fall Technical Meeting, Rubber Division, ACS, Cleveland, H, ct 14-17, M. Huskic and A Sebenik, Polym. Intl. 31, 41 (1993). 12 Z. Tao, N. Viriyabanthorn, B. Ghumman, C. Barry, and J. Mead, Rubber Chem. Technol. 78, 489 (2005). 13 G. Kojima and H. Wachi, Rubber Chem. Technol. 51, 940 (1978). 14 J. C. Garcia-Quesada and M. Gilbert, J. Appl. Polym. Sci. 77, 2657 (2000). 15 A. Busci and F. Szocs, Macromol. Chem. Phys. 201, 435 (2000). 16 R. C. Keller, Rubber Chem. Technol. 61, 238 (1988). 17 Z. H. Murgic, J. Jelencic and L. Murgic, Polym. Eng. Sci. 38, 689 (1998). 18 J. Class, Rubber World 220 (11), 35 (1999). 19 L. Liu, Y. Luo, D. Jia and B. Guo, Intern. Polymer Processing XIX(4), 374 (2004). 20 H. G. Dikland, L. van der Does, and A. Bantjes, Rubber Chem. Technol. 66, 196 (1993). 21 H. G. Dikland, T. Ruardy, L. van der Does, and A. Bantjes, Rubber Chem. Technol. 66, 693 (1993). 22 S. K. Henning and J. Klang, Rubber World 235 (6), 30 (2007). 23 R. K. Hill and M. Rabinovitz, J. Am. Chem. Soc. 86, 965 (1964). The information in this bulletin is believed to be accurate, but all recommendations are made without warranty since the conditions of use are beyond Cray Valley Company's control. The listed properties are illustrative only, and not product specifications. Cray Valley Company disclaims any liability in connection with the use of the information, and does not warrant against infringement by reason of the use of its products in combination with other material or in any process. 19
20
Fundamentals of Curing Elastomers with Peroxides and Coagents I: Coagent Structure - Property Relationships
Fundamentals of Curing Elastomers with Peroxides and Coagents I: Coagent Structure - Property Relationships Steven K. Henning and Richard Costin Cray Valley USA, LLC Exton, Pennsylvania USA Edited Version
VULCOFAC TAIC-70 O N O . N CAS : 1025 15 6. N EINECS : 213 834 7. . Main function :. Crosslinking agent for peroxide cure elastomers
- Composition :. Active ingredient :. Triallyl isocyanurate. Formula : ( C12 H15 N3 O3 ) O N O N N O. N CAS : 1025 15 6. N EINECS : 213 834 7 - Supplier :. Origin : Safic-Alcan UK. Availability : regularly
Benefits of Thermax N990 in EPDM Compounds
TECHNICAL BULLETIN EPDM Compounds Thermax medium thermal carbon black N990 is manufactured by the thermal decomposition of natural gas. The thermal process provides a unique carbon black characterized
Effect of Sterilization Techniques on Polymers
Effect of Sterilization Techniques on Polymers Contents of Presentation Introduction to Polymers Properties and Stability of Polymers Affect of Ionising Radiation and Ethylene Oxide on Polymers The need
PEROXIDE CROSSLINKING REACTIONS OF
PEROXIDE CROSSLINKING REACTIONS OF POLYMERS L. D. LOAN Bell Laboratories, Murray Hill, New Jersey 07974, USA ABSTRACT The current status of our understanding of the chemical mechanism of peroxide vulcanization
Chlorinated polyethylene ELASLEN TM. Application for Wire and Cable
Chlorinated polyethylene ELASLEN TM Application for Wire and Cable 1 About the company Company Name : SHOWA DENKO K.K. Type of Industry : Diversified Chemical Company Formed : June 1, 1939 Employee : 10,577
DuPont Vamac Compounding Processing Guide Vamac Dipolymers
DuPont Vamac Compounding Processing Guide Vamac Dipolymers Technical Information Rev. 3, July 2010 DuPont Vamac ethylene acrylic elastomers are used as the base polymer for a thermoset elastomer compound.
EVA Modification, Wire Coating
TAFMER TM DF & M Ethylene based α-olefin copolymers TAFMER DF & M is used as a modifier of Ethylene Vinyl Acetate (EVA), Polyethylene (PE) and other thermoplastics to improve its properties. It is suitable
Session Five: Modern XLPE Materials for Extruded Energy Cable Systems
Session Five: Modern XLPE Materials for Extruded Energy Cable Systems Abstract Hakan Lennartsson Senior Technical Service Manager, Borouge Hong Kong Pte. Ltd. The first medium voltage cables using extruded
Peroxide or Platinum? Cure System Considerations for Silicone Tubing Applications
Peroxide or Platinum? Cure System Considerations for Silicone Tubing Applications Regina M. Malczewski, Ph. D., Donald A. Jahn, and William J. Schoenherr Dow Corning Healthcare Introduction Silicone tubing
Keltan 6251A A Versatile Sponge Grade
Keltan 6251A A Versatile Sponge Grade Graham Choonoo, Michiel Dees and Philip Hough Lanxess Elastomers Presented at the RubberCon 2012 Meeting of the Norwegian Institute of Rubber Technology Oslo, Norway
Studying an Organic Reaction. How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction?
Studying an Organic Reaction How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction? Information we want to know: How much heat is generated? How fast is
Polymers: Introduction
Chapter Outline: Polymer Structures Hydrocarbon and Polymer Molecules Chemistry of Polymer Molecules Molecular Weight and Shape Molecular Structure and Configurations Copolymers Polymer Crystals Optional
Elastomer Library. Material Name Durometer Notes Food Contact Momentive SE-6035 - Base 35 Used in blend of 6035 & 6075 to provide custom
Elastomer Library C&M Rubber Co. has a longstanding business relationship with many polymer suppliers, including Momentive (Formerly GE Silicone), Wacker Silicone, US Silicones, LLC, Valley Rubber Co.
ORGANIC PEROXIDES / Polymer crosslinking
ORGANIC PEROXIDES / Polymer crosslinking Organic peroxides product range for crosslinking ARKEMA, Innovative Chemistry The Arkema group is one of the main global producers of organic peroxides. Its expertise
Resistance of Plastics to Gamma Irradiation
Elastomers 1 MATERIAL TOLERANCE LEVEL (kgy) COMMENTS Butyl 50 Sheds particulate after irradiation. Ethylene Propylene 100 200 Crosslinks, yellows slightly. Diene Monomer (EPDM) Fluoro Elastomer 50 Avoid
Chapter 6 An Overview of Organic Reactions
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 6 An Overview of Organic Reactions Why this chapter? To understand organic and/or biochemistry, it is necessary to know: -What occurs -Why and
O-RING SEALING ELASTOMERS
SECTION FOUR Elastomer Basics Elastomer Types Dichtomatik Standard Elastomers Details, Data and Properties O-Ring Lubrication Options Elastomer Testing and Approvals ASTM D2000 4 Since o-rings are homogeneous
Corrosion of Copper in Water
Corrosion of Copper in Water Digby D. Macdonald Center for Electrochemical Science and Technology Department of Materials Science and Engineering Pennsylvania State University 209 Steidle Bldg University
Adhesive Bonding of Natural Stone
Adhesive Bonding of Natural Stone Section I: Basics of Stone Adhesion Adhesive Theory There are many theories concerning the forces that are at work in forming an adhesive bond between two (2) different
Product Bulletin. Prepolymers
Product Bulletin Prepolymers Krasol Prepolymers Polyurethanes based on hydroxyl terminated polybutadiene resins are known for outstanding hydrolytic stability, very low moisture vapor transmission rates,
Chapter 11. Free Radical Reactions
hapter 11 Free Radical Reactions A free radical is a species containing one or more unpaired electrons Free radicals are electron-deficient species, but they are usually uncharged, so their chemistry is
Derakane epoxy vinyl ester resins: The Evolution of Corrosion Resistant FRP
A Brief History on Corrosion Derakane epoxy vinyl ester resins: The Evolution of Corrosion Resistant FRP Corrosion in industrial processes has always threatened pipes, ducting, process equipment, scrubbers
APPLICATION BULLETIN
APPLICATION BULLETIN Compatibility Between Poly bd R45HTLO and Polyether or Polyester Polyols Introduction Poly bd resin polyols are liquid, hydroxyterminated homopolymers of butadiene. Through the use
M n = (DP)m = (25,000)(104.14 g/mol) = 2.60! 10 6 g/mol
14.4 (a) Compute the repeat unit molecular weight of polystyrene. (b) Compute the number-average molecular weight for a polystyrene for which the degree of polymerization is 25,000. (a) The repeat unit
Environmental Stress Crack Resistance Of Polyethylene
Introduction to Environmental Stress Cracking and ESCR Over the past decade, high-density polyethylene (HDPE) materials have improved significantly and now meet more stringent performance standards; some
Polyurethane Elastomers Derived from Krasols and Hydrogenated Krasols and Their Weathering and Thermal Aging Properties
Polyurethane Elastomers Derived from Krasols and Hydrogenated Krasols and Their Weathering and Thermal Aging Properties By H. Chao*, J. Pytela, and N. Tian* Cray Valley USA, LLC Exton, Pennsylvania USA
Chapter 15 Radical Reactions. Radicals are reactive species with a single unpaired electron, formed by
Chapter 15 Radical Reactions Radicals are reactive species with a single unpaired electron, formed by homolysis of a covalent bond; a radical contains an atom that does not have an octet of electrons,
Wire Drawing Soap Lubrication: Principles And Factors Affecting Selection
Wire Drawing Soap Lubrication: Principles And Factors Affecting Selection 1 Wire Products 2 Rod: The Starting Material 3 The tool: Wire Drawing machines Dry Draw Bench Courtesy of Lamnea Bruk, Ljusfallshammar,
Cautionary Information
Safety / Hazard Information Refer to the Material Safety Data Sheet (MSDS). Phone number to call in case of emergency: National Poisons Information Service ANKARA: Emergency Phone: +90 312 114 (http://uzem.rshm.gov.tr/)
Evaluation of HFO-1234yf as a Potential Replacement for R-134a in Refrigeration Applications
Evaluation of HFO-1234yf as a Potential Replacement for R-134a in Refrigeration Applications Thomas J. Leck DuPont Fluorochemicals Wilmington, Delaware 3rd IIR Conference on Thermophysical Properties and
Shelf Life Prediction Of Medical Gloves
Shelf Life Prediction Of Medical Gloves Presented for the ASTM WG Committee for Medical Glove Expiration Dating Guidance By Uday Karmarkar Akron Rubber Development Laboratory, Inc. [email protected]
BULKSTREAM A160HW Series Multipurpose Suction & Delivery Hose
Dixon BULKSTREAM Custom built, specially made to order rubber hose and assemblies. This special range of what are often referred to as hand-built hoses generally facilitates features or specifications
Elements of Addition Polymerization. Branching and Tacticity. The Effect of Crystallinity on Properties
Topics to be Covered Elements of Addition Polymerization Branching and Tacticity The Effect of Crystallinity on Properties Chapters 1 & 2 in CD (Polymer Science and Engineering) What Are Polyolefins? The
Mass Spec - Fragmentation
Mass Spec - Fragmentation An extremely useful result of EI ionization in particular is a phenomenon known as fragmentation. The radical cation that is produced when an electron is knocked out of a neutral
Conjugation is broken completely by the introduction of saturated (sp3) carbon:
Chapter 16 Conjugation, resonance, and dienes Conjugation relies on the partial overlap of p-orbitals on adjacent double or triple bonds. A common conjugated system involves 1,3-dienes, such as 1,3-butadiene.
Two separate and different methods are used to manufacture the above items:
RUBBER-METAL BONDING AGENTS Introduction Rubber-Metal Bonding Agents are used to connect dissimilar elastomer (such as natural rubber, styrene butadiene, chloroprene, acrylonitrile butadiene, butyl, ethylene
Electron Beam Technology for Pressure Sensitive Adhesive Applications
Electron Beam Technology for Pressure Sensitive Adhesive Applications Introduction Stephen C. Lapin, Ph.D. PCT Engineered Systems LLC Davenport, IA, USA Initial reports on the use of ultraviolet (UV) and
polymer additive General Overview
DuPont Fluoroguard polymer additive General Overview DuPont Fluoroguard is a range of colorless, odorless, and chemically inert polymer additives based on fluorinated synthetic oil. Fluoroguard is designed
ASTM Volume 09.01, July 2015 Rubber, Natural and Synthetic -- General Test Methods; Carbon Black
1 D297-13 Standard Test Methods for Rubber Products Chemical Analysis 2 D395-14 Standard Test Methods for Rubber Property Compression Set 3 D412-06a(2013) Standard Test Methods for Vulcanized Rubber and
Wire and Cable Product Guide
Wire and Cable Product Guide Applications Elvax resins with low vinyl acetate content, typically 9 to 15%, are well suited for compounding into primary insulation of UL listed, type XHHW building wire,
Improved Performance In High Natural Rubber Silica Compounds
Improved Performance In High Natural Rubber Silica s Paul A. Danilowicz and Bernard M. Bezilla Jr.* Struktol Company of America Stow, OH 44224 Presented at ITEC Cleveland, OH September 18-20, 2012 * Presenter
Unit X: Polymers Test 1.1
ame: Unit X: Polymers Test 1.1 Multiple hoice Questions 1 through 9 pertain to the reactions on the last two pages of this test. Where multiple answers exist only one need be reported. 1. Which process
APPLICATION BULLETIN
APPLICATION BULLETIN Poly bd Resins Hydroxyl Terminated Polybutadiene Resins Starting formulations Poly bd R-45HTLO Resin s 1. Poly bd R-45HTLO Control Isonate 143L 2. Poly bd R-45HTLO/Voranol 220-530
Radiation Curable Components and Their use in Hard, Scratch Resistant Coating Applications
Radiation Curable Components and Their use in Hard, Scratch Resistant Coating Applications William Schaeffer Steven Tyson Indu Vappala Robert Kensicki Sartomer USA, LLC 502 Thomas Jones Way Exton, PA 19343
Introduction to Lubricants and Additives for Polymer Compounds
Introduction to Lubricants and Additives for Polymer Compounds Presented by Michael S. Fulmer ctober 24, 2000 Discussion of additives that act as: Lubricants Adhesives Surfactants Which function to: Improve
Characterization of Polymers Using TGA
application note Characterization of Polymers Using TGA W.J. Sichina, Marketing Manager Introduction Thermogravimetric analysis (TGA) is one of the members of the family of thermal analysis techniques
Closing the loop: Rubber Recycling. Joint seminar Kumi-instituutti instituutti & MOL
Closing the loop: 1 Rubber Recycling Joint seminar Kumi-instituutti instituutti & MOL Contents 2 - Introduction - Present: Rubber crumb Surface activated rubber crumb Reclaim / devulcanizate - Future Introduction
Plastics and Polymer Business. Properties enhancement for Plastics
News Letter Vol. 18, issue October-December, 2012 Hyperdispersants and Coupling Agents for Thermoplastics and Thermosets Solplus, Ircolplus and Solsperse hyperdispersants and coupling agents have been
Lecture 11. Etching Techniques Reading: Chapter 11. ECE 6450 - Dr. Alan Doolittle
Lecture 11 Etching Techniques Reading: Chapter 11 Etching Techniques Characterized by: 1.) Etch rate (A/minute) 2.) Selectivity: S=etch rate material 1 / etch rate material 2 is said to have a selectivity
BLENDING PROCESS OF RECYCLED EPDM AND EVA AT VARIOUS RATIO
30 BLENDING PROCESS OF RECYCLED EPDM AND EVA AT VARIOUS RATIO A. Salmiaton, Y.J. Hao, L.M. Zhu Dept. of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400
Hydroxyl-Terminated Poly bd Resins In Electric Applications
Hydroxyl-Terminated Poly bd Resins In Electric Applications Cray Valley USA, LLC Oaklands Corporate Center 468 Thomas Jones Way, Suite 100 Exton, PA 19341 877-US1-CRAY (877-871-2729) Web: www.crayvalley.com
Use the Force! Noncovalent Molecular Forces
Use the Force! Noncovalent Molecular Forces Not quite the type of Force we re talking about Before we talk about noncovalent molecular forces, let s talk very briefly about covalent bonds. The Illustrated
Effects of Tg and CTE on Semiconductor Encapsulants
Effects of Tg and CTE on Semiconductor Encapsulants Dr. Mark M. Konarski Loctite Corporation www.loctite.com Abstract As the role of direct-chip-attachment increases in the electronics industry, the reliability
3M Ionic Liquid Antistat FC-4400
Technical Data September 14 3M Ionic Liquid Antistat FC-40 Introduction 3M Ionic Liquid Antistat FC-40 is a high purity antistatic additive compatible with a variety of high performance polymer systems,
STYRENIC BLOCK COPOLYMERS IN ADHESIVES FOR CO-EXTRUDED FILMS
STYRENIC BLOCK COPOLYMERS IN ADHESIVES FOR CO-EXTRUDED FILMS M. Dupont, Research Chemist, Kraton Polymers Belgium, Mont St Guibert, Belgium D. St. Clair, Research Chemist, Kraton Polymers U.S. LLC, Houston,
Product Information. Thermal Properties of Elvax Measured by Differential Scanning Calorimeter (DSC) Summary
Product Information Thermal Properties of Elvax Measured by Differential Scanning Calorimeter (DSC) Summary The melting and freezing points of various Elvax ethylene vinyl acetate (EVA) polymers were measured
Physical & Chemical Properties. Properties
Physical & Chemical Properties Properties Carbon black can be broadly defined as very fine particulate aggregates of carbon possessing an amorphous quasi-graphitic molecular structure. The most significant
Effect of blend ratio on aging, oil and ozone resistance of silica-filled chloroprene rubber/natural rubber (CR/NR) blends
express Polymer Letters Vol.1, No.1 (2007) 8 14 Available online at www.expresspolymlett.com DOI: 10.3144/expresspolymlett.2007.3 Effect of blend ratio on aging, oil and ozone resistance of silica-filled
Keystone Exams: Chemistry Assessment Anchors and Eligible Content. Pennsylvania Department of Education www.education.state.pa.
Assessment Anchors and Pennsylvania Department of Education www.education.state.pa.us 2010 PENNSYLVANIA DEPARTMENT OF EDUCATION General Introduction to the Keystone Exam Assessment Anchors Introduction
TAN Triaminononane H 2 N NH 2. (4 aminomethyl 1,8 octanediamine) Trifunctional amine with low molecular weight CAS NO. 1572-55-0
TA Triaminononane (4 aminomethyl 1,8 octanediamine) Trifunctional amine with low molecular weight AS. 1572-55-0 Triaminononane (TA) is a low molecular weight specialty performance material with three amine
By Thomas K. Wray. They divide peroxidizable organic compounds into eight classes: Aldehydes. Ethers and acetals Dienes and vinyl acetylenes
DANGER: PEROXIDIZABLE CHEMICALS By Thomas K. Wray Many organic chemicals used in laboratory solutions and reagents can form potentially deadly peroxides - powerful oxidizing agents containing active oxygen
Chapter 5 Classification of Organic Compounds by Solubility
Chapter 5 Classification of Organic Compounds by Solubility Deductions based upon interpretation of simple solubility tests can be extremely useful in organic structure determination. Both solubility and
Chapter 10. Conjugation in Alkadienes and Allylic Systems. Class Notes. B. The allyl group is both a common name and an accepted IUPAC name
Chapter 10 Conjugation in Alkadienes and Allylic Systems Chapter 10 suggested problems: I. The allyl group Class Notes A. B. The allyl group is both a common name and an accepted IUPAC name 1. Allyl alcohol
Page 1. 6. Which hydrocarbon is a member of the alkane series? (1) 1. Which is the structural formula of methane? (1) (2) (2) (3) (3) (4) (4)
1. Which is the structural formula of methane? 6. Which hydrocarbon is a member of the alkane series? 7. How many carbon atoms are contained in an ethyl group? 1 3 2 4 2. In the alkane series, each molecule
OxyChem. Dechlorane Plus. Manual
OxyChem Dechlorane Plus Manual TABLE OF CONTENTS 1 Introduction 2 Nylon 3 PBT 4 PP 5 ABS 6 Epoxy 7 Wire & Cable 8 Elastomers i Dechlorane Plus (C 18 H 12 Cl 12 ) CAS Registry Number 13560-89-9 Dechlorane
CHARACTERIZATION OF POLYMERS BY TMA. W.J. Sichina, National Marketing Manager
PERKIN ELMER Polymers technical note CHARACTERIZATION OF POLYMERS BY W.J. Sichina, National Marketing Manager Thermomechanical analysis () is one of the important characterization techniques in the field
Environmental Stress Crack Resistance of Polyethylene Pipe Materials
Environmental Stress Crack Resistance of Polyethylene Pipe Materials ROBERT B. TAMPA, Product Development and Service Engineer* Abstract Slow crack growth is a phenomenon that can occur in most plastics.
Acids and Bases: Molecular Structure and Acidity
Acids and Bases: Molecular Structure and Acidity Review the Acids and Bases Vocabulary List as needed. Tutorial Contents A. Introduction B. Resonance C. Atomic Radius D. Electronegativity E. Inductive
15. Silicones in the Plastics Industry G. Shearer, Multibase, a Dow Corning Company, Copley OH (USA)
15. Silicones in the Plastics Industry G. Shearer, Multibase, a Dow Corning Company, Copley OH (USA) Silicones are used in the plastics industry as additives for improving the processing and surface properties
Epoxy Curing Agents and Modifiers
Epoxy Curing Agents and Modifiers Ancamine 2432 Curing Agent Technical Datasheet DESCRIPTION is a modified aliphatic amine intended for use with liquid epoxy resins. imparts very rapid development of physical
ASTM D 2000 - M 5BG 407 A14 B14 E014 E034 F17
Understanding an ASTM D 2000 Call Out The ASTM D 2000 classification provides a system to standardize the properties of rubber materials. This classification was originally developed for use in the automotive
DESCRIPTION ASTM 1418 ISO/DIN 1629 Page. SBR Styrene Butadiene Rubber SBR SBR 6. NR Natural Rubber NR NR 6
CALVOSEALING Plancha Rubber Sheet de caucho Elastomer: CALVOSEALING offers a wide range of rubbers for use in general industry. Our company is able to offer 10 types of elastomers where each offers its
Dissolved Gas Analysis Guide for Transformers Filled with Beta Fluid
DSI Ventures, Inc. PHONE: (903) 526-7577 FAX: (903) 526-0021 www.dsiventures.com Dissolved Gas Analysis Guide for Transformers Filled with Beta Fluid Introduction Analysis of dissolved gases in transformer
Epoxy Curing Agents and Modifiers
Epoxy Curing Agents and Modifiers 2489 Curing Agent DESCRIPTION 2489 curing agent is a low-color cycloaliphatic amine adduct intended for use with liquid epoxy resins. It has a very low viscosity which
17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS
17. REACTINS INVLVING ALLYLIC AND BENZYLIC RADICALS 793 As Eq. 17. shows, the products derived from the reaction of water at the ring carbons are not formed. The reason is that these products are not aromatic
EXPERIMENT 5: DIPEPTIDE RESEARCH PROJECT
EXPERIMENT 5: DIPEPTIDE RESEARCH PROJECT Pre-Lab Questions: None. 64 I. Background Information DIPEPTIDE RESEARCH PROJECT Methods developed by organic chemists for the synthesis of biopolymers have had
A comparative study of gamma irradiation of poly(ethylene-co-vinyl acetate) and poly(ethylene-co-vinyl acetate)/carbon black mixture
Materials Chemistry and Physics 93 (2005) 154 158 A comparative study of gamma irradiation of poly(ethylene-co-vinyl acetate) and poly(ethylene-co-vinyl acetate)/carbon black mixture Murat Şen, Mehmet
Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.
Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite
Name Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible
Lab #3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon
Chapter 2. Atomic Structure and Interatomic Bonding
Chapter 2. Atomic Structure and Interatomic Bonding Interatomic Bonding Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules Bonding Forces and Energies Considering the interaction
EXPERIMENT 1: Survival Organic Chemistry: Molecular Models
EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed
Chapter 2 Polar Covalent Bonds; Acids and Bases
John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity
Read the sections on Allotropy and Allotropes in your text (pages 464, 475, 871-2, 882-3) and answer the following:
Descriptive Chemistry Assignment 5 Thermodynamics and Allotropes Read the sections on Allotropy and Allotropes in your text (pages 464, 475, 871-2, 882-3) and answer the following: 1. Define the word allotrope
Types of Polymerization
Types of Polymerization There are four types of polymerisation reactions; (a) Addition or chain growth polymerisation (b) Coordination polymerisation (c) Condensation or step growth polymerisation (d)
Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent
Polymer Testing 21 (2002) 139 144 www.elsevier.com/locate/polytest Material Properties Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent Hanafi Ismail a,*,
Solving Spectroscopy Problems
Solving Spectroscopy Problems The following is a detailed summary on how to solve spectroscopy problems, key terms are highlighted in bold and the definitions are from the illustrated glossary on Dr. Hardinger
EXTERIOR LONG GLASS FIBER POLYPROPYLENE SYSTEM FOR AUTOMOTIVE APPLICATIONS. Abstract
EXTERIOR LONG GLASS FIBER POLYPROPYLENE SYSTEM FOR AUTOMOTIVE APPLICATIONS D. Fuller, S. Green, T. Ho, T. Kajdan, R. Lee, M. McKelvy, T. Sutton, T. Traugott The Dow Chemical Company, Dow Automotive Abstract
Introduction: Background of the OIT Test:
The Effect of Hindered Phenol Stabilizers on Oxygen Induction Time (OIT) Measurements, and The Use of OIT Measurements to Predict Long Term Thermal Stability Philip Jacoby, Vice President of Technology,
Thermoplastic composites
Thermoplastic composites Definition By definition, a thermoplastic is a material based on polymer (macromolecular compound) which can be shaped, in a liquid (viscous) state at a temperature either higher
INTERMOLECULAR FORCES
INTERMOLECULAR FORCES Intermolecular forces- forces of attraction and repulsion between molecules that hold molecules, ions, and atoms together. Intramolecular - forces of chemical bonds within a molecule
EFFECT OF CALCIUM CARBONATE, SILLITIN N85 AND CARBON BLACK FILLERS ON THE MECHANICAL AND ELECTRICAL PROPERTIES OF THE EPDM
EFFECT OF CALCIUM CARBONATE, SILLITIN N8 AND CARBON BLACK FILLERS ON THE MECHANICAL AND ELECTRICAL PROPERTIES OF THE EPDM A. A. El-Wakil and A. A. Abd El-Megeed National Institute of Standards, El-Harm,
Chemical Kinetics. 2. Using the kinetics of a given reaction a possible reaction mechanism
1. Kinetics is the study of the rates of reaction. Chemical Kinetics 2. Using the kinetics of a given reaction a possible reaction mechanism 3. What is a reaction mechanism? Why is it important? A reaction
for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration
! = 1 2"c k (m + M) m M wavenumbers! =!/c = 1/" wavelength frequency! units: cm 1 for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency
USING PRIMERS IN COMBINATION WITH ADHESIVE TIE-LAYER RESINS OR THEIR BLENDS TO MAKE STRUCTURES WITH UNIQUE PERFORMANCE.
USING PRIMERS IN COMBINATION WITH ADHESIVE TIE-LAYER RESINS OR THEIR BLENDS TO MAKE STRUCTURES WITH UNIQUE PERFORMANCE. Richard Allen, Ph.D. Mica Corporation 9 Mountain View Drive Shelton, CT 06484 USA
What does ZruElast stand for?
At the beginning of the 20th Century the only elastic material available was Natural Rubber. Today, designers can choose from more than twenty different synthetic elastomers. This great variety offers
Oxford University Chemistry Practical Course. X.3 Kinetics
xford University Chemistry Practical Course 1 st year physical chemistry X.3 Kinetics Introduction Kinetics, the study of the rates of chemical reactions, is one of the most important areas of chemistry.
Alcohols. Characterized by OH group Name: add ol. to name of hydrocarbon. Methanol. Butanol. Sterno. Alcohols burn in air. A mixture of ethanol +
1 2 3 Functional Groups Alcohols Structures of Alcohols haracterized by group Name: add ol to name of hydrocarbon 3 5 : how many structural isomers? See D-RM Screens 11.5 & 11.6 Methanol Butanol 1-propanol
HW 10. = 3.3 GPa (483,000 psi)
HW 10 Problem 15.1 Elastic modulus and tensile strength of poly(methyl methacrylate) at room temperature [20 C (68 F)]. Compare these with the corresponding values in Table 15.1. Figure 15.3 is accurate;
