Engineering Clean Air: The Continuous Improvement of Diesel Engine Emission Performance

Size: px
Start display at page:

Download "Engineering Clean Air: The Continuous Improvement of Diesel Engine Emission Performance"

Transcription

1 Engineering Clean Air: The Continuous Improvement of Diesel Engine Emission Performance The Technology of Clean Diesel Engines, Current and Future March, 2001 One Dulles Tech Center 2191 Fox Mill Road, Suite 100 Herndon, Virginia Tel: 703/ Fax: 703/

2 Executive Summary The diesel industry has made great progress on a path of continuous improvement to virtually eliminate the key pollutants associated with on-road diesel engines. This transformation is of critical importance, because diesel plays a central role in economic activity. This paper (1) explains the inherent performance advantages of diesel; (2) provides an emissions profile of diesel as the starting point for emissions reduction; (3) documents the major emissions reductions that have been made to date, and explains the technologies that have made them possible; and (4) describes the technologies that will be employed over the next decade to achieve the virtual elimination of key pollutants. Performance advantages of diesel. The transformation of diesel emissions performance is of critical importance to the economy. Diesel is the world's most efficient internal combustion engine. It provides both more power and more fuel efficiency than alternatives such as gasoline, compressed natural gas or liquefied natural gas. Diesel accordingly plays a central role in a wide range of economic activities. In the United States, 94% of all freight is moved by diesel power, and diesel is a critical part of a wide range of activities in transportation, agriculture, construction, mining, electric power generation, and fire and rescue services. Diesel's inherent performance advantages include: More power at lower engine speeds; Better fuel efficiency; Greater safety; More durability; and More power from a given engine size. Diesel emissions profile. It is not widely recognized that diesel has some environmental advantages over other types of engines. Of the five major emissions from internal combustion engines carbon monoxide, hydrocarbons, carbon dioxide, particulate matter and nitrogen oxides diesel emits only small amounts of the first three. The challenge for diesel is reducing particulate matter (PM) and nitrogen oxides (NOx), and it is in those two emissions that vast improvements have been made. Technologies found in today's clean diesel engines. Particulate matter emissions of new on-highway diesel engines have been reduced 83% since Emissions of nitrogen oxides have been reduced by 63% during the same time period. This has been accomplished largely through improvements in fuel delivery, the design of combustion chambers, and turbocharging. Electronic fuel injection has permitted engine manufacturers to control fuel injection independently of engine speed, permitting injection to be optimized for emissions performance. Fuel

3 also is injected at very high pressures to ensure a more complete burn, and the timing of fuel injection can be varied to meet emissions goals under different operating conditions. Combustion chamber design has been enhanced in a variety of ways. Turbocharging has been widely adopted, and has been refined by the development of air-to-air charge cooling to reduce combustion temperatures. Nitrogen oxides reductions for Emissions standards for 2004 will cut NOx emissions in half for on-highway diesel engines, effecting an 83% total reduction since Exhaust gas recirculation (EGR) technology and advanced fuel injection/combustion control systems will play a major role in this reduction. EGR lowers the temperature of the fuel burn by recirculating oxygen-depleted exhaust gases into the cylinders, reducing the oxygen content of the air involved in the burn. Advanced fuel injection/combustion control systems permit fuel pressure to be controlled independently from engine speed, allowing fuel injection to be shaped to meet temperature control and other emissions objectives. Technologies to virtually eliminate key pollutants. The next wave of emissions reductions will arise from recently adopted highway diesel engine standards. The new regulations calls for the reduction of both PM and NOx by 98% from 1988 levels virtual elimination of these emissions from onhighway engines. These emissions improvements will be achieved through both continued refinement of engine technologies, like advanced turbocharging, as well as new exhaust aftertreatment technologies. The new aftertreatment technologies will be based on use of low-sulfur diesel fuel, which will enable catalytic converters, particulate filters and other exhaust treatment technologies to work. Catalytic converters are the technology that has been used with great success to reduce gasoline engine emissions. Oxidation catalysts have been used successfully to reduce PM in diesel applications, and selective catalytic reduction devices have successfully reduced both NOx and PM. Particulate filters are in development, the key challenge being the automatic disposal of trapped particulate as the filter approaches its capacity. Catalysts to convert NOx into harmless nitrogen also are in development. March 2001 Page 2

4 PERFORMANCE ADVANTAGES OF DIESEL The diesel's status as the world's most efficient internal combustion engine producing more power and utilizing less fuel than other comparatively sized engines has been recognized by widespread application throughout the world. In the United States, 94% of all freight is transported by diesel power. In Europe, where fuel prices put energy conservation at a premium, diesel powers nearly 25% of all new passenger vehicles. In France, Belgium, Austria, and Spain, over 40% of new passenger vehicles are diesel. Diesel power has also been selected for use in prototype vehicles by the U.S. Department of Energy's Partnership For a New Generation of Vehicles - a public/private partnership charged with developing radically more fuel efficient and environmentally friendly passenger vehicles. Diesel's nearly universal use in a wide range of heavy-duty industrial applications reflects the combination of all its advantages: power, fuel efficiency, safety, durability, and suitability for very large applications. When these factors are taken into account, there is no practical substitute for diesel power in a wide range of activities, including: trucking, rail transport, public transit, inter-city bus service, marine shipping, construction, mining, agriculture, standby electric power generation, and fire and rescue vehicles. More Power. Diesels produce more drive force at lower engine speeds. This superior drive force is the result of the diesel engine combustion process, known as "compression ignition". Compression ignition produces superior combustion force in the cylinder, which in turn provides more power or "torque." The compression ignition process works as follows: a diesel engine subjects air in the combustion chamber to very high compression. This compression heats the air to over 600 degrees Celsius, which is well over the ignition point of diesel fuel. Diesel fuel is then sprayed into the superheated combustion chamber where it spontaneously ignites (without the aid of a sparkplug), generating the power to move the piston. The force achieved in this process is considerably greater than that achieved in lower compression spark ignition engines (like natural gas or gasoline). Diesels thus produce more horsepower at lower engine speeds. Better Fuel Efficiency. Light-duty diesels, such as automobiles, use 30-60% less fuel than similarly sized gasoline engines, depending on the type of vehicle and driving conditions. Comparative studies have found on-road heavy-duty diesels to be more than 60% more fuel efficient than similarly sized spark-ignited natural gas engines (both compressed natural gas "CNG" and liquefied natural gas "LNG"). These advantages come from both the greater efficiency of compression ignition and the higher energy content of diesel fuel. March 2001 Page 3

5 Diesel's compression ignition process results in greater thermal efficiency more of the fuel's energy is harnessed. This improves fuel economy. Diesel holds this advantage over any spark-ignited engine, including not only gasoline, but also CNG, LNG, and propane ("LPG"). Like gasoline engines, these other spark ignition engines are less fuel efficient because they burn fuel at lower temperatures under lower compression. Diesel's superior fuel efficiency is not only a result of compression ignition, but also a result of diesel fuel's higher energy content. A gallon of diesel fuel contains roughly 11% more energy than a gallon of gasoline, 67% more than a gallon of LNG and 250% more than a gallon of CNG (at 3600 psi). The relatively low energy density of natural gas can be addressed in part by using larger fuel tanks, but the added weight of the tanks imposes an additional fuel economy penalty, and the tanks may also reduce the amount of useable space in the vehicle. As a result, LNG and especially CNG engines have a shorter cruising range than diesels. Safer. Diesel is less volatile than gasoline or natural gas that is, the fuel does not as readily vaporize in the air. In addition, diesel fuel ignites only at a much higher temperature. For these reasons, diesel fuel is far less likely to ignite if spilled or released as a result of an accident. Diesel also is safer because it need not be handled in pressurized vessels. This is a sharp contrast to CNG, which is stored in pressurized cylinders (up to 3600 psi). High pressure greatly increases the risk of leaks during loading, unloading, and storage. More durable. Diesel engines are more durable than spark ignition engines. Diesels both run more miles before needing rebuilding, and also are more easily rebuilt to original specifications. Light-duty diesel engines generally last between 200,000 and 600,000 miles, compared to 70,000 to 200,000 miles for comparable gasoline engines. It is not uncommon for heavy-duty diesel truck engines to enjoy a life of 1,000,000 miles or more before rebuilding, nor is it uncommon for heavy-duty engines to power city buses for 15 to 20 years. Very large applications. The fact that diesels produce less wasted heat makes them ideally suited for very large applications: ocean-going ships, railroad locomotives and earth movers. One of the biggest issues in designing large engines is the need to provide cooling systems to prevent overheating. This is a major challenge when dealing with the heat produced in very large combustion chambers. Because diesels waste less energy as heat, they place lesser demands on cooling systems than spark ignition engines. This permits diesels to be scaled up to very large sizes diesel engines in some applications have cylinders as large as three feet across. March 2001 Page 4

6 EMISSIONS PROFILE OF DIESEL POWER SYSTEMS While the performance advantages of diesel are widely known, diesels have environmental advantages that are less well understood: diesel power systems emit very little carbon monoxide, hydrocarbons, and carbon dioxide. Internal combustion engines all emit the same basic types of emissions regardless of the type of fuel or combustion cycle used. Only the relative quantities of each emission type vary with the type of engine. The five major mobile source emissions are carbon monoxide, hydrocarbon, carbon dioxide, nitrogen oxides, and particulate matter. Diesels produce only small proportions of the first three. Lower Carbon Monoxide Emissions. Diesels produce very little carbon monoxide (CO). Among all on-road mobile sources, heavy-duty diesel vehicles account for only 3% of total CO emissions. Industries whose personnel operate engines in confined spaces have traditionally used diesels because they produce so little carbon monoxide. Lower Hydrocarbon Emissions. Hydrocarbons (HC), a key precursor for ground level ozone (smog), are a major air pollutant from mobile sources. Diesels, however, yield only small amounts of hydrocarbons. This results both from diesel's high combustion efficiency and from the lower evaporation rate of diesel fuel. Among on-road mobile sources, heavy-duty diesel vehicles account for only 6% of total HC emissions. Lower Greenhouse Gas Emissions. Today's diesel engines are low in emissions of carbon dioxide (CO2). (CO2 is not a pollutant regulated by the EPA, but is considered a greenhouse gas.) Diesel's performance on this emission stems in part from its fuel efficiency CO2 emissions are closely related to overall fuel consumption. Today's on-road diesels are 30-60% more fuel efficient than their light- and heavy-duty counterparts. While diesel performs well with respect to the emissions just described, diesel combustion inherently tends to produce significant amounts of particulate matter (PM) and nitrogen oxides (NOx). The extreme heat associated with diesel's compression combustion process tends to generate more NOx than less efficient, cooler burning engine types. The low level of oxygen in the combustion zone around individual fuel droplets prevents complete combustion of the diesel fuel which contributes to the emission of soot (unburned carbon from the fuel) also known as particulate matter (PM). The reduction of both PM and NOx simultaneously presents a unique emissions control challenge: some techniques used to control one of these pollutants increase the production of the other. For example, a major technique to reduce PM is to cause more complete combustion of the fuel. This reduces PM but also produces more heat, conflicting with the goal of lowering combustion temperatures March 2001 Page 5

7 to reduce NOx. The technical challenge of emissions reduction is to reduce both PM and NOx at the same time, without degrading the overall performance of the system. EMISSIONS REDUCTION THROUGH CONTINUOUS IMPROVEMENT Diesel power systems are enjoying a revolution in technology that already has achieved dramatic reductions in emissions. Technology incorporated in new on-highway engines has reduced particulate matter ("PM") emissions by 83%, and nitrogen oxides ("NOx") emissions by 63%, compared with engines produced before Technology now in development will, when it is implemented, enable further improvements so that the reductions from 1988 levels will be 98% for both PM and NOx. Diesel emissions reductions are being achieved in stages, and reductions have focused principally on highway engines and urban buses. Charts 1 and 2, set forth on the following page, detail current and future reductions in emissions, and list some of the technologies that have enabled the reductions. Chart 1 Diesel PM Emission Reductions and Enabling Technologies (Heavy-duty Highway Diesel Engines) g/bhp/hr Computer-controlled high pressure fuel injection Improved combustion chamber configuration Turbo charging 2007 Low sulfur fuel Oxidation catalysts Selective Catalytic Reduction Particulate filters March 2001 Page 6

8 Chart 2 Diesel NOx Emission Reductions and Enabling Technologies (Heavy-duty Highway Diesel Engines) g/bhp/hr Computer-controlled high pressure fuel injection Improved combustion chamber configuration Injection timing retard Air-to-air charge cooling Exhaust gas recirculation Low sulfur fuel Oxidation catalysts Selective Catalytic Reduction While this review is focused on heavy-duty on-highway engine emissions, these technologies also are being used in other applications. Light duty diesel engines for use in passenger vehicles, for example, will be required to meet the same emissions standards as gasoline powered vehicles under EPA standards that will be phased in from 2004 to Many of these same technologies will be employed in those engines. This section describes the emissions reductions and enabling technologies in three parts: (1) the technologies found in current engines, which reflect the first wave of PM and NOx reductions in the years ; (2) the further reduction in NOx emissions for the 2004 model year; and (3) the latest reductions in PM and NOx set for implementation in / Standards for NOx emissions from heavy-duty diesel engines were first established in 1974, but emissions control in the 1970s and 1980s was focused principally on automobiles and other light duty gasoline vehicles. Those vehicles account for over 93% of vehicle miles traveled in the United States. The following chart lists heavy-duty diesel engine standards from 1988 through 2007: (Footnote continued on next page) March 2001 Page 7

9 Technologies Found in Today's Clean Diesel Engines The emissions reductions achieved from 1990 through 1994 were massive: PM emissions of on-highway engines were reduced by 83% during that time. This was an extremely significant improvement as a consequence of this change, the old image of a diesel truck accelerating up a hill and projecting a cloud of dirty black soot into the air is a picture of the past. While there are still such engines on the road, no engine sold in the United States since 1994, properly maintained and burning the proper fuel, will smoke in this way. The PM reduction was accomplished by improvements designed to ensure a more complete burn of fuel within the engine. The primary enhancements include improved fuel delivery systems, improved configuration of combustion chambers, and turbocharging. The same wave of emissions reductions produced a 63% improvement in NOx emissions of on-highway engines. These reductions also were achieved primarily through modifications in the engine. The modifications helped control combustion temperature, including offsetting the temperature increases caused by systems adopted to reduce PM emissions. NOx reductions have been achieved principally through improved fuel delivery, including electronic fuel injection and variable injection timing, and though air-to-air charge cooling, which reduces the higher temperatures created by turbocharging. Electronic Fuel Injection. The development of electronic fuel injection systems for diesel engines has played a central role in reducing both PM and NOx. Electronic systems calibrate fuel injection based on information from Heavy-duty Diesel Engine Emission Standards (g/bhp-hr) NOx PM PM-Urban Bus Model Year Standard %Change a Standard % Change a Standard % Change c % % % % % % % % % % % % % % 0.05 b -92% % % % c -81% % % % % % a Compared to the base model year b Beginning in 1996, the certification level was.05 but the in-use level was.07. c The 2004 NOx plus NMHC standard of 2.4 g/bhp-hr is approximately equivalent to a NOx level 2.0. March 2001 Page 8

10 electronic sensors that monitor engine performance and vehicle activity. They are used both to ensure a more complete fuel burn to reduce PM, and to control temperature to reduce NOx. In contrast, older diesel fuel injection systems used mechanical means to control the quantity and timing of fuel injection. With those systems, rapid ramp-up of engine speed such as acceleration with a heavy load led to excess fuel being injected. Much of this fuel was not burned and was emitted as soot, which created the black exhaust that many associate with old diesel engines. High pressure fuel injection. PM emissions are reduced through more complete combustion of fuel injected into the combustion chamber. More complete combustion can be achieved by improving the mix of air and fuel in the chamber. Modern high-pressure fuel injection systems force fuel into the combustion chamber through smaller diameter holes at higher pressure in excess of 25,000 pounds per square inch. This causes the fuel to break down into tiny droplets, thereby improving the air-fuel mix to achieve a more complete burn. Variable injection timing. NOx emissions can be reduced by a delay in the start of fuel injection, which reduces the temperature at which combustion takes place. This technique, known as injection timing retard, requires precise control of the beginning of injection into a cylinder in relation to the position of the piston in that cylinder. Most electronic fuel injection systems allow independent control of the timing of injection to optimize emissions performance. Reduction in NOx through this technique is combined with other measures such as high injection pressure and improved combustion chamber design, to minimize the loss of fuel economy and potential increase in PM emissions that otherwise would result from a delay in fuel injection. Improved combustion chamber configuration. More complete fuel combustion, and reduced PM emissions occur when fuel and air are mixed more evenly in the combustion chamber. Engine manufacturers have invested great effort in optimizing the features of combustion chambers to ensure the best possible mix. Modern combustion chamber design reflects extensive modeling of several design elements, including: (1) the shape and depth of the combustion chamber and the piston bowl (the small area at the top of the piston into which fuel is injected); (2) spiral-shaped intake ports that cause air to swirl as it enters the chamber; (3) the number of cylinder valves; and (4) the placement of fuel injectors in the combustion chamber. Turbocharging. Turbocharging can both reduce PM emissions and improve fuel economy. A turbocharger compresses the air that enters the cylinder, forcing more air into the combustion chamber. The compressor is driven by a turbine, which in turn is powered by the engine's own exhaust. The increase in air in the combustion chamber offers two key advantages. First, it enables fuel March 2001 Page 9

11 to burn more completely, reducing PM. Second, it permits more fuel to be added to the chamber, generating more power than a similarly-sized engine without turbocharging. By generating more power from a smaller displacement engine, turbocharging reduces engine weight and improves fuel economy. Air-to-air charge cooling. This is a further advance in turbocharging that reduces NOx emissions. Turbochargers deliver (or "charge") air at higher pressure, and therefore also increase the temperature of the air delivered for combustion. Air-to-air charge cooling reduces the temperature of the charged air, thereby lowering NOx emissions. Ambient air, which averages about 75 F, is used to cool the air to be charged in the combustion chamber. This is an improvement on water-based cooling systems that had been used in the past. Those systems were limited in their effectiveness by their use of water at temperatures that could run as high as 210 F. Nitrogen Oxides Reductions for 2004 Emissions standards for 2004 will cut current NOx emissions in half for heavy-duty on-highway engines. This reduction will effect an 81% total reduction from 1988 levels. This next step will rely not only on the technologies already described, but also two additional technologies: exhaust gas recirculation, and advanced fuel injection control technologies. Exhaust Gas Recirculation. Exhaust gas recirculation ("EGR") will play a central role in achieving NOx reductions for 2004 generation engines. EGR reduces NOx by reducing the temperature at which fuel burns in the combustion chamber. Engines employing EGR recycle a portion of engine exhaust back to the engine air intake. The oxygen-depleted exhaust gas is mixed into the fresh air that enters the combustion chamber, which dilutes the oxygen content of the air in the combustion chamber. The reduction in oxygen produces a lower temperature burn, and hence reduces NOx emissions by as much as 50%. The recycled exhaust gas can also be cooled, which further reduces NOx emissions. Advanced Fuel Injection. Advanced fuel injection systems provide much greater control of fuel injection to improve emissions and overall engine performance. In these systems injection pressure and injection rate can be controlled independently of engine speed and load, which is a departure from traditional fuel systems. Two of the most promising advanced fuel injection technologies are Common Rail Systems and Hydraulic Electronic Unit Injection systems. In a Common Rail System (CRS) fuel is held in a reservoir, or "rail", that serves all of the engine's cylinders: a "common" rail. Fuel in the common rail is March 2001 Page 10

12 maintained under pressure, and that pressure does not vary with engine speed. Instead, pressure can be controlled independently to achieve emissions objectives. Hydraulic Electronic Unit Injection (HEUI) systems also provide for lower emissions while improving fuel economy and performance. In these systems, individual unit injectors are actuated hydraulically by a high pressure oil pump, rather than mechanically. This high pressure oil controls the rate of injection, while electronics control the amount of fuel injected. All of this is done independently of engine speed. Traditional systems triggered fuel injection by mechanical means, using camshafts and plungers that were driven by the engine. This caused injection rates to rise and fall along with engine speed, and prevented independent regulation of injection pressure. These advanced systems enable a number of emissions-reducing fuel injection techniques that previously were infeasible. For example, to reduce NOx emissions, fuel injection can be geared independently to control burn temperature. In order to reduce particulate emissions, the main fuel injection can be split into two, causing a more complete burn of fuel. Other goals that can also be achieved through this technology include the reduction of engine combustion noise by causing one or more small injections of fuel in advance of the main injection. Common rail systems already are used widely in European passenger cars. These systems are a large part of the reason that diesel vehicles enjoy wide consumer acceptance in Europe. Diesels are no longer noisier than gasoline vehicles, and show better driving characteristics, especially the delivery of superior power at low speed. HEUI systems are widely used in North America in medium duty trucks to improve emissions and performance. Technologies to virtually eliminate key pollutants In a departure from the past, EPA's standards focus on reductions that can only be achieved through refinements to diesel power system as a whole: engine, fuel, and exhaust treatment technology addressed together as a system. The new standards will reduce both PM and NOx emissions from onhighway engines to a level that is 98% below 1988 levels. The emissions reductions will result primarily from advanced exhaust treatment technology, which will be enabled by reductions in fuel sulfur content. March 2001 Page 11

13 Exhaust treatment will involve particulate traps, which capture engine emissions before they leave the tailpipe, or catalytic converters that convert emissions to harmless substances. (Catalytic converters have been used with great success to reduce emissions from automobiles.) Lower sulfur diesel fuel is required to enable use of advanced diesel aftertreatment technology. Sulfur prevents the use of the most aggressively formulated catalysts, and in some cases degrades the effectiveness of the systems. The most promising technologies under development for meeting the standards for new engines are discussed below. Many of these technologies may also be used to retrofit older engines in the existing diesel fleet to provide even more substantial fleet-wide emissions reductions. Oxidation Catalysts. Manufacturers report that flow-through oxidation catalysts can reduce total PM by 25 50%. (Reductions of carbon monoxide and hydrocarbons in the range of 60-90% can also be achieved.) Oxidation catalysts are a proven technology. Over 1.5 million units have been installed on heavyduty highway trucks built since 1994 and have operated successfully for hundreds of thousands of miles. The catalysts also have been used on off-road diesels around the world for over 20 years, with over 250,000 units installed in the mining and materials handling industries. They also have been used extensively in retrofit applications, where they have been installed on U.S. urban buses and on European highway trucks, with over 10,000 units installed over the last two years. Oxidation catalysts initiate a chemical reaction in the exhaust stream, oxidizing pollutants into water vapor and other gases, such as sulfur dioxide and carbon dioxide. A typical oxidation catalyst consists of a stainless steel canister containing a honeycomb-like structure called a substrate. The interior surfaces of the substrate are coated with catalytic precious metals, such as platinum or palladium. Oxidation catalysts are sensitive to the sulfur in diesel fuel, which tends to reduce the effectiveness of the catalyst. Lowering fuel sulfur content allows catalysts to be formulated more aggressively to achieve greater emissions reductions. Selective Catalytic Reduction Devices. Selective catalytic reduction ("SCR") is another technology being actively developed. It has been found to produce simultaneous reductions of NOx (75-90%), hydrocarbons (50-90%) and PM (30-50%). SCR has been used to control NOx emissions from stationary sources for over 15 years. More recently, the technology has been demonstrated in retrofit applications on mobile sources. SCR is similar to an oxidation catalyst in that it initiates chemical reactions to eliminate pollutants without itself being changed or consumed. SCR goes beyond catalytic activity, however. An SCR system adds a reducing agent to the exhaust stream in order to convert NOx to nitrogen and oxygen. As the exhaust gases, along with the reducing agent (usually ammonia or urea) pass over a catalyst coated substrate, NOx, HC and PM are converted to harmless emissions. March 2001 Page 12

14 Particulate Filters. Diesel particulate filter systems are currently in development to produce 80-90% PM emissions reductions. (Some versions of this new generation of filters currently are being marketed in Europe, where low sulfur fuel is readily available.) These systems consist of a filter positioned in the exhaust stream to collect particulate emissions as the exhaust gases pass through the system. The key challenge is posed by the volume of particulate trapped by the filter: over time the filter becomes clogged. Development work is currently focused on disposal of the trapped particulate, such as by burning or oxidizing the particulate in the filter. (This is known as filter regeneration.) Work is continuing to improve both filter efficiency and filter regeneration. NOx Catalysts. Two catalyst technologies are being developed specifically to reduce NOx emissions by up to 90%. The first, so-called "lean NOx catalyst" works like SCR in that it adds a reducing agent to the exhaust stream to facilitate catalytic conversion. Systems using lean NOx catalysts inject diesel fuel into the exhaust gas to add hydrocarbons. The hydrocarbons act as a reducing agent to facilitate the conversion of NOx to nitrogen and water vapor in the catalyst. The second technology, "NOx Adsorbers" operates in two stages. First, the NOx is converted and adsorbed into a chemical storage site within the system. Then when the NOx adsorber becomes saturated, it is regenerated by adding extra diesel fuel to the exhaust stream. The addition of the fuel causes the NOx adsorber to work like a lean NOx catalyst -- it converts the collected NOx into simple nitrogen and oxygen which is emitted from the system. Advanced Turbochargers. In addition to aftertreatment technologies, continued improvements in engine technologies, like advanced turbocharger systems, may be used to meet the standards. The next generation of turbocharging systems will feature increased use of variable geometry turbochargers and electrically assisted turbochargers. Variable geometry turbochargers work by adjusting the size of the air passage at the turbine wheel inlet in order to optimize turbine power. At low engine speeds, when the exhaust gas flow at the turbine wheel inlet is low, the air passage at the inlet is focused by a nozzle. This causes the turbine wheel to spin faster and increases the turbocharger's boost pressure. In contrast, at high engine speeds and loads, which create greatly increased exhaust flow, the inlet nozzle opens to moderate turbine speed and turbocharger boost pressure. Variable geometry turbochargers thus have a quicker response time during vehicle acceleration, and at the same time prevent over-boosting at high speeds. This allows the vehicle to burn fuel more efficiently over the full range of operation, producing less emissions and achieving better fuel economy. Electrically Assisted Turbochargers use a high speed electric motor to provide additional turbo boost during short periods of acceleration, such as initial March 2001 Page 13

15 acceleration, passing, and hill climbing. These systems use sophisticated electronics to monitor the demand for power and instantly supply additional boost air to the engine during these transient increases in engine load. This provides more air for combustion during these fuel-rich operating periods. The increased air permits more complete combustion, resulting in reduced emissions and better fuel economy. Diesel Fuel Sulfur Content. The primary purpose of lower sulfur fuel is to enable or improve the performance of aftertreatment technologies. However, reduced sulfur will also provide a emissions benefit by reducing sulfate PM and sulfur oxide emissions from existing engines directly. Sulfur in diesel fuel contributes to a small portion of particulate formation, so reducing the sulfur content of diesel fuel has the potential to reduce total PM emissions from the existing fleet by 3-5% without the addition of any aftertreatment device. Diesel-electric Hybrids. Moving in parallel with work on 2004 and 2007 technologies is the development of diesel-electric hybrids. Diesel-electric hybrids use electric motors to drive the vehicle wheels, while employing a diesel engine to generate electricity. This use of the diesel engine permits it to run at a relatively constant speed and temperature, a state that is favorable to both NOx and PM control. The latest hybrid designs also are capable of achieving 40% better fuel economy than conventional diesel power systems. Prototype dieselelectric hybrids currently are being operated in several urban transit bus fleets. They also are being used in the federal government's Partnership for a New Generation Vehicle ("PNGV"), in which each of the big three automakers has developed a prototype mid-sized passenger vehicle that offers performance and utility of production models while also providing fuel efficiency of up to 80 miles per gallon. March 2001 Page 14

The Use of Exhaust Gas Recirculation (EGR) Systems in Stationary Natural Gas Engines. The Engine Manufacturers Association August 2004

The Use of Exhaust Gas Recirculation (EGR) Systems in Stationary Natural Gas Engines. The Engine Manufacturers Association August 2004 www.enginemanufacturers.org Two North LaSalle Street Suite 2200 Chicago, Illinois 60602 Tel: 312/827-8700 Fax: 312/827-8737 The Use of Exhaust Gas Recirculation (EGR) Systems in Stationary Natural Gas

More information

Understanding Tier 4 Interim and Tier 4 Final EPA regulations for generator set applications

Understanding Tier 4 Interim and Tier 4 Final EPA regulations for generator set applications Understanding Tier 4 Interim and Tier 4 Final EPA regulations for generator set applications While Tier 4 standards that begin to take effect in 2011 do not apply to generator sets used strictly for emergency

More information

Meet Clean Diesel. Improving Energy Security. Fueling Environmental Progress. Powering the Economy

Meet Clean Diesel. Improving Energy Security. Fueling Environmental Progress. Powering the Economy Meet Clean Diesel Improving Energy Security Fueling Environmental Progress Powering the Economy What is Clean Diesel? Diesel power is cleaner and more vital to the U.S. economy than ever before. The diesel

More information

EPA emission regulations: What they mean for diesel powered generating systems

EPA emission regulations: What they mean for diesel powered generating systems Power topic #9001 Technical information from Cummins Power Generation EPA emission regulations: What they mean for diesel powered generating systems > White paper By Aniruddha Natekar, Sales Application

More information

Perfectly Adapted. ISL Euro 6 Gas Engine 250-320PS

Perfectly Adapted. ISL Euro 6 Gas Engine 250-320PS Perfectly Adapted ISL Euro 6 Gas Engine 250-320PS Cummins ISL-G The ISL G is the natural choice in alternative-fuel engine technology. With industry leading performance, it combines all the advantages

More information

Emission Facts. The amount of pollution that a vehicle emits and the rate at which

Emission Facts. The amount of pollution that a vehicle emits and the rate at which Average Annual Emissions and Fuel for Gasoline-Fueled Passenger Cars and Light Trucks The amount of pollution that a vehicle emits and the rate at which it consumes fuel are dependent on many factors.

More information

Pollution by 2-Stroke Engines

Pollution by 2-Stroke Engines Pollution by 2-Stroke Engines By Engr. Aminu Jalal National Automotive Council At The Nigerian Conference on Clean Air, Clean Fuels and Vehicles, Abuja, 2-3 May 2006 Introduction to the 2-Stroke Engine

More information

US Heavy Duty Fleets - Fuel Economy

US Heavy Duty Fleets - Fuel Economy US Heavy Duty Fleets - Fuel Economy Feb. 22, 2006 Anthony Greszler Vice President Advanced Engineering VOLVO POWERTRAIN CORPORATION Drivers for FE in HD Diesel Pending oil shortage Rapid oil price increases

More information

Selective Catalytic Reduction (SCR) and Diesel Exhaust Fluid (DEF) Training Module

Selective Catalytic Reduction (SCR) and Diesel Exhaust Fluid (DEF) Training Module Selective Catalytic Reduction (SCR) and Diesel Exhaust Fluid (DEF) Training Module DEF SCR Training Module Welcome to the Cummins Filtration DEF SCR training module. DEF & SCR systems are key to Cummins

More information

EPA Requirements for Diesel Standby Engines In Data Centers. Bob Stelzer / CTO / Safety Power Inc. For 7x24 Fall 2014 Conference. 1.

EPA Requirements for Diesel Standby Engines In Data Centers. Bob Stelzer / CTO / Safety Power Inc. For 7x24 Fall 2014 Conference. 1. EPA Requirements for Diesel Standby Engines In Data Centers Bob Stelzer / CTO / Safety Power Inc For 7x24 Fall 2014 Conference 1.0 Introduction In order to get the Air Emissions Permit for facilities that

More information

EFFECTS &BENEFITS LOW SULPHUR DIESEL

EFFECTS &BENEFITS LOW SULPHUR DIESEL EFFECTS &BENEFITS LOW SULPHUR DIESEL HEALTH BENEFITS Populations Some populations are more sensitive than others as follows: Children Elderly People with Heart and Lung Disease Diabetics High levels of

More information

CAT ENGINES WITH ACERT TECHNOLOGY AN INTRODUCTION THE POWER TO LEAD

CAT ENGINES WITH ACERT TECHNOLOGY AN INTRODUCTION THE POWER TO LEAD CAT ENGINES WITH ACERT TECHNOLOGY AN INTRODUCTION THE POWER TO LEAD OUR DIRECTION IS CLEAR ACERT TECHNOLOGY IS THE RIGHT SOLUTION TODAY...WITH THE POWER TO LEAD THE INDUSTRY INTO THE FUTURE. Cat engines

More information

EURO VI. Technologies & Strategies. Relatore: M.Maritati Commercial training

EURO VI. Technologies & Strategies. Relatore: M.Maritati Commercial training EURO VI Technologies & Strategies Relatore: M.Maritati Commercial training Euro VI The entering into force of the new Euro VI normative provides a stimulus for Iveco to update the engine offer pursuing

More information

REFINED ENGINE COMPONENTS

REFINED ENGINE COMPONENTS MBE 900 FIRE & EMERGENCY The Obvious Choice for commercial fire and emergency apparatus Since diesel engines were first installed in fire apparatus, Detroit Diesel has been the leader. Combining our long

More information

Perfectly Adapted. ISB Euro 6 Diesel Engines 150-310PS. Cummins Ltd. Address Line One Address Line Two Address Line Three

Perfectly Adapted. ISB Euro 6 Diesel Engines 150-310PS. Cummins Ltd. Address Line One Address Line Two Address Line Three Perfectly Adapted ISB Euro 6 Diesel Engines 150-310PS Cummins Ltd. Address Line One Address Line Two Address Line Three Tel: +00 0000 000000 Fax: +00 0000 000000 Internet: cummins.com Bulletin 0000000

More information

Marine after-treatment from STT Emtec AB

Marine after-treatment from STT Emtec AB Marine after-treatment from STT Emtec AB For Your Vessel and the Environment SCR Technology How it works The selective catalytic reduction of nitrous oxides (NOx) by nitrogen compounds such as urea solutions

More information

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1 Fault codes DM1 Industrial engines DC09, DC13, DC16 Marine engines DI09, DI13, DI16 03:10 Issue 5.0 en-gb 1 DM1...3 Abbreviations...3 Fault type identifier...3...4 03:10 Issue 5.0 en-gb 2 DM1 DM1 Fault

More information

Diesel and gas engine systems for EURO VI on-highway applications

Diesel and gas engine systems for EURO VI on-highway applications Diesel and gas engine systems for EURO VI on-highway applications Mercedes-Benz engines in the OM 93X and OM 47X model series. Outstanding design and efficiency. Specifically developed to comply with the

More information

An overview of Euro VI for trucks over 3.5t. Brought to you by Mercedes-Benz

An overview of Euro VI for trucks over 3.5t. Brought to you by Mercedes-Benz An overview of Euro VI for trucks over 3.5t Brought to you by Mercedes-Benz Contents What is Euro VI? What is Euro VI? 01 What s different about Euro VI? 02 When do you need to think about it? 03 How is

More information

Marine after-treatment from STT Emtec AB

Marine after-treatment from STT Emtec AB Marine after-treatment from STT Emtec AB For Your Vessel and the Environment 6 7 8 1 11 1 10 9 1. Pick up. Flow direction valve. Filters. Cooler. Condensate trap 6. Flow meter 7. EGR-valve 8. Secondary

More information

Fuel Changes Ultra Low Sulfur Diesel and Biodiesel

Fuel Changes Ultra Low Sulfur Diesel and Biodiesel Fuel Changes Ultra Low Sulfur Diesel and Biodiesel The U.S. Environmental Protection Agency s (EPA) emissions standards for diesel engines manufactured after January 1, 2007 require significant emissions

More information

Reducing Particle Emissions: the Growing Demand for Alternative Fuels. Dr. Nils-Olof Nylund VTT Technical Research Centre of Finland

Reducing Particle Emissions: the Growing Demand for Alternative Fuels. Dr. Nils-Olof Nylund VTT Technical Research Centre of Finland Reducing Particle Emissions: the Growing Demand for Alternative Fuels Dr. Nils-Olof Nylund VTT Technical Research Centre of Finland Outline Defining environmental performance Composition of particles Fuels

More information

HYBRID BUSES COSTS AND BENEFITS

HYBRID BUSES COSTS AND BENEFITS HYBRID BUSES COSTS AND BENEFITS Key Facts In 2005, more than 60 percent of the 9.7 billion transit passenger trips in the United States were provided by buses, approximately 84 percent of which are powered

More information

Measurement Systems for Diesel Exhaust Gas and Future Trends. Oxidation catalyst DPF Flow mete. Soft ionization mass spectrometer

Measurement Systems for Diesel Exhaust Gas and Future Trends. Oxidation catalyst DPF Flow mete. Soft ionization mass spectrometer FEATURE ARTICLE Measurement Systems for Diesel Exhaust Gas and Future Trends Ichiro Asano Direct-insertion NOx analyzer Micro-tunnel De-NOx catalyst Oxidation catalyst DPF Flow mete Engine exhaust gas

More information

Emission Control Technology for Stationary Internal Combustion Engines

Emission Control Technology for Stationary Internal Combustion Engines Emission Control Technology for Stationary Internal Combustion Engines Revised: May 2015 Manufacturers of Emission Controls Association 2200 Wilson Boulevard * Suite 310 * Arlington, VA 22201 (202) 296-4797

More information

Air Quality in San Diego 2013 Annual Report

Air Quality in San Diego 2013 Annual Report Air Pollution Control Board Greg Cox District 1 Dianne Jacob District 2 Dave Roberts District 3 Ron Roberts District 4 Bill Horn District 5 Air Quality in San Diego 2013 Annual Report Protecting and improving

More information

The Next Generation Near-Zero Emission Natural Gas Vehicles

The Next Generation Near-Zero Emission Natural Gas Vehicles The Next Generation Near-Zero Emission Natural Gas Vehicles Jeff Reed Director of Emerging Technologies Southern California Gas Company November 29, 2011 1 2006 The Gas Company. All copyright and trademark

More information

ISX15 and ISX Well Servicing Applications. ISX15 (EPA 2010) 2-3 400-600 hp (298-447 kw) ISX (EPA 2007) 4-5 400-600 hp (298-447 kw)

ISX15 and ISX Well Servicing Applications. ISX15 (EPA 2010) 2-3 400-600 hp (298-447 kw) ISX (EPA 2007) 4-5 400-600 hp (298-447 kw) ISX15 and ISX Well Servicing Applications Model Pages ISX15 (EPA 2010) 2-3 400-600 hp (298-447 kw) ISX (EPA 2007) 4-5 400-600 hp (298-447 kw) Better Every Mile. ISX15 For EPA 2010. n Cooled Exhaust Gas

More information

Reducing Emissions from Diesel Vehicles An essential guide on how to switch to a clean and efficient diesel fleet

Reducing Emissions from Diesel Vehicles An essential guide on how to switch to a clean and efficient diesel fleet The Fleet Operator s Guide to call 0845 602 1425 or visit www.transportenergy.org.uk Reducing Emissions from Diesel Vehicles An essential guide on how to switch to a clean and efficient diesel fleet For

More information

considering natural gas vehicles for your fleet? get the facts

considering natural gas vehicles for your fleet? get the facts considering natural gas vehicles for your fleet? get the facts taking responsibility At your business, the efficient use of energy brings benefits such as lower bills, improved comfort levels for your

More information

HEAVY-DUTY, REDEFINED. REDEFINED.

HEAVY-DUTY, REDEFINED. REDEFINED. HEAVY-DUTY, REDEFINED. TO GET YOUR TOUGHEST JOBS DONE, you need an engine that works even harder than you do. That s why Caterpillar offers the CT13 engine for our vocational trucks. It delivers every

More information

CAT POWER for On-Highway Performance and Fuel Economy

CAT POWER for On-Highway Performance and Fuel Economy CAT POWER for On-Highway Performance and Fuel Economy ACERT Technology for 2007 The Fuel Economy You Want. The C9 now sports expanded horsepower ratings, increased torque rating options and a Cat Compression

More information

Diesel-to-Natural Gas Engine Conversions. A cost-effective alternative to new natural gas vehicles

Diesel-to-Natural Gas Engine Conversions. A cost-effective alternative to new natural gas vehicles Diesel-to-Natural Gas Engine Conversions A cost-effective alternative to new natural gas vehicles The Omnitek Solution Engine Conversions A feasible and affordable option! Omnitek Solution Omnitek has

More information

Principles of Engine Operation

Principles of Engine Operation Internal Combustion Engines ME 422 Yeditepe Üniversitesi Principles of Engine Operation Prof.Dr. Cem Soruşbay Information Prof.Dr. Cem Soruşbay İstanbul Teknik Üniversitesi Makina Fakültesi Otomotiv Laboratuvarı

More information

Chapter 19 - Common Rail High Pressure Fuel Injection Systems

Chapter 19 - Common Rail High Pressure Fuel Injection Systems Chapter 19 - Common Rail High Pressure Fuel Injection Systems Diesel Engine Technology For Automotive Technicians Understanding & Servicing Contemporary Clean Diesel Technology What is Common Rail? Common

More information

Northeast Gas Association (NGA) 2012 Sales and Marketing Conference. Mike Manning Director of Marketing and Business Development AVSG LP Boston, MA

Northeast Gas Association (NGA) 2012 Sales and Marketing Conference. Mike Manning Director of Marketing and Business Development AVSG LP Boston, MA Northeast Gas Association (NGA) 2012 Sales and Marketing Conference Mike Manning Director of Marketing and Business Development AVSG LP Boston, MA March 14th, 2012 1 What is natural gas? Natural gas is

More information

Diesel: Troubleshooting

Diesel: Troubleshooting Diesel: Troubleshooting Probable Cause Engine not starting Hard to start engine Runs rough at lower RPM Lack of power Diesel knock / pinking Black White Blue Low compression X X X Low fuel pressure X X

More information

Toyota commercialises its first diesel hybrid

Toyota commercialises its first diesel hybrid Toyota commercialises its first diesel hybrid Toyota Dyna is now the cleanest diesel commercial vehicle of its type In September 2003, Toyota introduced the Toyota Dyna Hybrid in Japan. This makes Dyna

More information

Emission standards for light and heavy road vehicles

Emission standards for light and heavy road vehicles Emission standards for light and heavy road vehicles Introduction Between 1990 and 2009, greenhouse gas emissions from road traffic within the EU increased by 27 per cent, rising from 12 to 17 per cent

More information

Vogt Power Emission Control Solutions

Vogt Power Emission Control Solutions ONE SOURCE ONE PURPOSE MANY SOLUTIONS Vogt Power Emission Control Solutions Kelly Flannery Kristen Cooper Andrew Heid Chief Thermal Engineer Simple Cycle Design Lead Emission Catalyst Design Lead Presented

More information

Cleaner vehicle fleets in. Central and Eastern Europe

Cleaner vehicle fleets in. Central and Eastern Europe Cleaner vehicle fleets in Central and Eastern Europe Training for REC Country Offices Friday 19 September 2008 Regional Environmental Center for Central and Eastern Europe Szentendre, Hungary Agenda 19

More information

Kalmar & LNG Power for Terminal Equipment. December 2004 Don Lawrence

Kalmar & LNG Power for Terminal Equipment. December 2004 Don Lawrence Kalmar & LNG Power for Terminal Equipment December 2004 Don Lawrence Kalmar s mission statement Kalmar s overriding mission is to provide solutions to make container and materials handling faster and more

More information

Tips for a Successful Diesel Retrofit Project

Tips for a Successful Diesel Retrofit Project Tips for a Successful Diesel Retrofit Project Tips for a Successful Diesel Retrofit Project Transportation and Climate Division Office of Transportation and Air Quality U.S. Environmental Protection Agency

More information

Policy Measures for Improving Air Quality in the U.S.

Policy Measures for Improving Air Quality in the U.S. Policy Measures for Improving Air Quality in the U.S. The 4 th SINO-US Workshop on Motor Vehicle Pollution Prevention and Control Office of Transportation and Air Quality Mission and Focus EPA The mission

More information

Environmentally Friendly Drilling Systems

Environmentally Friendly Drilling Systems Natural Gas Fuel for Drilling and Hydraulic Fracturing The Basics of Natural Gas Power & Fuel First in a series of white papers concerning the use of natural gas to power drilling and hydraulic fracturing

More information

Alternative to Fossil Fuel

Alternative to Fossil Fuel Alternative to Fossil Fuel Biodiesel Emissions Biodiesel Biodiesel is made from any vegetable oil such as Soya, Rice bran, Canola, Palm, Coconut, Jatropha or peanut,from any animal fat and recycled cooking

More information

FAC 7.1: Generators. EPA Impacts on Emergency Gensets for 2015 Installations

FAC 7.1: Generators. EPA Impacts on Emergency Gensets for 2015 Installations FAC 7.1: Generators EPA Impacts on Emergency Gensets for 2015 Installations Speaker: Bob Stelzer, CTO Safety Power Inc bob.stelzer@safetypower.ca Speaker: Randy Sadler, SME, Safety Power Inc. randy.sadler@safetypower.ca

More information

This article provides a basic primer on an

This article provides a basic primer on an Everything You Need to Know About NOx Controlling and minimizing pollutant emissions is critical for meeting air quality regulations. By Charles Baukal, Director of R&D, John Zinc Co. LLC, Tulsa, Okla.

More information

Balancing chemical reaction equations (stoichiometry)

Balancing chemical reaction equations (stoichiometry) Balancing chemical reaction equations (stoichiometry) This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

Green Fleet Policy PURPOSE

Green Fleet Policy PURPOSE PURPOSE The purpose of this policy is to document the process for purchasing and managing the City s diverse vehicle fleet, which include both vehicles and heavy equipment, in a manner that minimizes greenhouse

More information

E - THEORY/OPERATION

E - THEORY/OPERATION E - THEORY/OPERATION 1995 Volvo 850 1995 ENGINE PERFORMANCE Volvo - Theory & Operation 850 INTRODUCTION This article covers basic description and operation of engine performance-related systems and components.

More information

WHY WOULD A NATURAL GAS ENGINE NEED A PARTICLE FILTER? Gordon McTaggart-Cowan 09-02-2016

WHY WOULD A NATURAL GAS ENGINE NEED A PARTICLE FILTER? Gordon McTaggart-Cowan 09-02-2016 WHY WOULD A NATURAL GAS ENGINE NEED A PARTICLE FILTER? Gordon McTaggart-Cowan 09-02-2016 Outline» NG vehicles context (3 min)» Why NG? (5 min)» NG engine technologies (7 min)» Particulate matter emissions

More information

Electronic Diesel Control EDC 16

Electronic Diesel Control EDC 16 Service. Self-Study Programme 304 Electronic Diesel Control EDC 16 Design and Function The new EDC 16 engine management system from Bosch has its debut in the V10-TDI- and R5-TDI-engines. Increasing demands

More information

Natural Gas and Transportation

Natural Gas and Transportation 1 M.J. Bradley & Associates Potential for NG as a Vehicle Fuel Natural Gas and Transportation Options for Effective Resource Management Dana Lowell Senior Consultant Roundtable on Low Sulfur and Alternative

More information

ENVIRONMENT: WE LOOK AHEAD. PRESS INFO

ENVIRONMENT: WE LOOK AHEAD. PRESS INFO ENVIRONMENT: WE LOOK AHEAD. UK ENVIRONMENT: WE LOOK AHEAD. CONTENTS 1. IVECO AND THE ENVIRONMENT 2 1.1 - IVECO STRATEGY: 3 I.1.1 - LIGHT COMMERCIAL VEHICLE RANGE: THE DAILY 3 1.1.2 - MEDIUM COMMERCIAL

More information

OPTIMISATION OF THE 2.2 LITER HIGH SPEED DIESEL ENGINE FOR PROPOSED BHARAT STAGE 5 EMISSION NORMS IN INDIA

OPTIMISATION OF THE 2.2 LITER HIGH SPEED DIESEL ENGINE FOR PROPOSED BHARAT STAGE 5 EMISSION NORMS IN INDIA Ghodke, P. R., Suryawanshi, J. G.: Optimisation of the 2.2 Liter High Speed Diesel... THERMAL SCIENCE: Year 2014, Vol. 18, No. 1, pp. 169-178 169 OPTIMISATION OF THE 2.2 LITER HIGH SPEED DIESEL ENGINE

More information

Diesel Exhaust Fluid (DEF) Q & A

Diesel Exhaust Fluid (DEF) Q & A Diesel Exhaust Fluid (DEF) Q & A BULLETIN SCR: The Leading Technology to Meet 2010 Emission Regulations Q. What is Selective Catalytic Reduction (SCR)? A. SCR is a technology that uses a urea based diesel

More information

Daimler s Super Truck Program; 50% Brake Thermal Efficiency

Daimler s Super Truck Program; 50% Brake Thermal Efficiency Daimler s Super Truck Program; 50% Brake Thermal Efficiency 2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Marc Allain, David Atherton, Igor Gruden, Sandeep Singh, Kevin

More information

Cummins Westport, Inc. Engine Overview. March 2015

Cummins Westport, Inc. Engine Overview. March 2015 Cummins Westport, Inc. Engine Overview March 2015 Cummins Westport Inc. (CWI) A Cummins JV Company CWI was established in 2001 as a 50/50 joint venture company between Cummins Inc and Westport Innovations.

More information

Mercedes-Benz Biodiesel Brochure

Mercedes-Benz Biodiesel Brochure Mercedes-Benz Biodiesel Brochure Contents Definitions of Bio-Based Diesel Fuel Main Quality Characteristics of Straight Biodiesel Risks from the use of Diesel Fuel Containing Biodiesel Impacts of Biodiesel

More information

Why Some Fuel-Efficient Vehicles Are Not Sold Domestically

Why Some Fuel-Efficient Vehicles Are Not Sold Domestically Why Some Fuel-Efficient Vehicles Are Not Sold Domestically Bill Canis Specialist in Industrial Organization and Business August 17, 2012 CRS Report for Congress Prepared for Members and Committees of Congress

More information

EVERY ROUTE. ISB FOR SCHOOL BUS APPLICATIONS

EVERY ROUTE. ISB FOR SCHOOL BUS APPLICATIONS EVERY ROUTE. TM ISB FOR SCHOOL BUS APPLICATIONS SCHOOL BUS APPLICATIONS. The Cummins ISB is the perfect engine to power your school bus. Reliable, efficient and quiet, the ISB delivers the power you need

More information

AUTOMOTIVE GAS OIL. Robert Shisoka Hydrocarbon Management Consultancy

AUTOMOTIVE GAS OIL. Robert Shisoka Hydrocarbon Management Consultancy AUTOMOTIVE GAS OIL Robert Shisoka Hydrocarbon Management Consultancy AUTOMOTIVE GAS OIL AUTOMOTIVE GAS OIL COMMON TERMS Fossil Fuels From Organic Matter Over Millions of Years (Natural Gas, Crude Oil,

More information

Table of Contents. Introduction... 3. Benefits of Autogas... 4. Fuel Safety... 9. U.S. vs. Worldwide Autogas Vehicles... 10

Table of Contents. Introduction... 3. Benefits of Autogas... 4. Fuel Safety... 9. U.S. vs. Worldwide Autogas Vehicles... 10 OVERVIEW Table of Contents Introduction... 3 Benefits of Autogas... 4 Fuel Safety... 9 U.S. vs. Worldwide Autogas Vehicles... 10 About Autogas for America... 11 AUTOGASFORAMERICA.ORG 1 Introduction STUART

More information

Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines

Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines 36 Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines KEIICHI SHIRAISHI *1 YOSHIHISA ONO *2 YUKIO YAMASHITA *3 MUSASHI SAKAMOTO *3 The extremely slow steaming of ships has become

More information

Clean Abundant and Economical Natural Gas

Clean Abundant and Economical Natural Gas Clean Abundant and Economical Natural Gas 1 Fast fill/public Access CNG Station Typical costs are $1.5 million per station as shown 2 Time Fill Private CNG Station Time Fill Post Dispensers K rail Compressors

More information

DNO x Taking the Diesel Engine into the Future

DNO x Taking the Diesel Engine into the Future DNO x Taking the Diesel Engine into the Future DNO x Introduction 2 Background 4 Health effects 5 Environmental effects 6 Emission regulations 6 Heavy-Duty diesel vehicles Industrial equipment Environmental

More information

Commitment. Green Diesel Technology vehicles meet customers performance needs and society s demand for clean air.

Commitment. Green Diesel Technology vehicles meet customers performance needs and society s demand for clean air. Commitment Green Diesel Technology vehicles meet customers performance needs and society s demand for clean air. Leadership International leads the field in high performance diesel technology at near-zero

More information

Development of Current and Future Diesel After Treatment Systems

Development of Current and Future Diesel After Treatment Systems Development of Current and Future Diesel After Treatment Systems Pakorn Bovonsombat, Byung-Sun Kang, Paul Spurk, Harald Klein, Klaus Ostgathe Degussa Metals Catalysts Cerdec AG Rodenbacher Chaussee 4,

More information

Dr. István ZÁDOR PhD: Rita MARKOVITS-SOMOGYI: Dr. Ádám TÖRÖK PhD: PhD, MSc in Transportation Engineering, KOGÁT Ltd. istvan.zador@kogat.

Dr. István ZÁDOR PhD: Rita MARKOVITS-SOMOGYI: Dr. Ádám TÖRÖK PhD: PhD, MSc in Transportation Engineering, KOGÁT Ltd. istvan.zador@kogat. Dr. István ZÁDOR PhD: PhD, MSc in Transportation Engineering, KOGÁT Ltd. istvan.zador@kogat.hu Rita MARKOVITS-SOMOGYI: MSc in Transport Engineering, Budapest University of Technology and Economics Department

More information

Better. Where It Counts. Cummins 2013 ISB6.7 For Truck Applications.

Better. Where It Counts. Cummins 2013 ISB6.7 For Truck Applications. Better. Where It Counts. Cummins 2013 ISB6.7 For Truck Applications. Better. Where It Counts. Every Job. Every aspect of the ISB6.7 has been improved, from fuel efficiency to reliability and durability.

More information

Turbo Tech 101 ( Basic )

Turbo Tech 101 ( Basic ) Turbo Tech 101 ( Basic ) How a Turbo System Works Engine power is proportional to the amount of air and fuel that can get into the cylinders. All things being equal, larger engines flow more air and as

More information

FPT FIAT POWERTRAIN TECHNOLOGIES PRESENTS ITS ENGINE RANGE FOR CONSTRUCTION APPLICATIONS AT INTERMAT 2009

FPT FIAT POWERTRAIN TECHNOLOGIES PRESENTS ITS ENGINE RANGE FOR CONSTRUCTION APPLICATIONS AT INTERMAT 2009 FPT FIAT POWERTRAIN TECHNOLOGIES PRESENTS ITS ENGINE RANGE FOR CONSTRUCTION APPLICATIONS AT INTERMAT 2009 FPT Fiat Powertrain Technologies, is the Fiat Group Company dedicated to the research, development,

More information

Ingenieurskunst kontra Gesetzgebung: Sind die Emissionsvorgaben Innovationstreiber oder lähmendes Korsett?

Ingenieurskunst kontra Gesetzgebung: Sind die Emissionsvorgaben Innovationstreiber oder lähmendes Korsett? Ingenieurskunst kontra Gesetzgebung: Sind die Emissionsvorgaben Innovationstreiber oder lähmendes Korsett? Dr. Dirk Bergmann, Geschäftsführer FPT Motorenforschung Arbon Switzerland Overview Technological

More information

Summary of the Future Policy for Motor Vehicle Emission Reduction (The 11th Report)

Summary of the Future Policy for Motor Vehicle Emission Reduction (The 11th Report) Transmitted by the expert from Japan Informal document No. GRPE-65-14 (65 th GRPE, 15-18 January 2012, agenda item 16) Summary of the Future Policy for Motor Vehicle Emission Reduction (The 11th Report)

More information

Propane as the Alternate Fuel for Fleets

Propane as the Alternate Fuel for Fleets Propane as the Alternate Fuel for Fleets Company Profile Located in Quincy, Illinois since 1848 Fifth Generation, Family Company Nation s largest manufacturer of service, platform and utility van bodies

More information

Clean Power for Today

Clean Power for Today Clean Power for Today How Emissions Standards Affect Our Products and Customers Table of Contents Section Page Regulations for Diesel Engines...1 Technologies...2 Kubota Solutions by Horsepower Class...3

More information

HEAVY-DUTY ON-ROAD VEHICLE INSPECTION AND MAINTENANCE PROGRAM

HEAVY-DUTY ON-ROAD VEHICLE INSPECTION AND MAINTENANCE PROGRAM HEAVY-DUTY ON-ROAD VEHICLE INSPECTION AND MAINTENANCE PROGRAM I. OBJECTIVE The objective of this study is to develop, evaluate, and assess the cost-effectiveness and economic impacts of alternatives for

More information

DEF Q&A. A. SCR is a technology that uses a urea based diesel exhaust fluid (DEF) and a

DEF Q&A. A. SCR is a technology that uses a urea based diesel exhaust fluid (DEF) and a Selective Catalytic Reduction (SCR) Q. What is Selective Catalytic Reduction (SCR)? A. SCR is a technology that uses a urea based diesel exhaust fluid (DEF) and a catalytic converter to significantly reduce

More information

Frequently Asked Questions

Frequently Asked Questions United States Air and Radiation EPA420-F-03-045 Environmental Protection December 2003 Agency (Rev 9/2012) Office of Transportation and Air Quality Frequently Asked Questions In-Depth Information for Motorcycle

More information

ClimatE leaders GrEENHOUsE Gas inventory PrOtOCOl COrE module GUidaNCE

ClimatE leaders GrEENHOUsE Gas inventory PrOtOCOl COrE module GUidaNCE United States Environmental Protection Agency may 2008 EPa430-r-08-006 www.epa.gov/climateleaders Office of air and radiation ClimatE leaders GrEENHOUsE Gas inventory PrOtOCOl COrE module GUidaNCE Optional

More information

Spark Ignited Natural Gas Engine Technology

Spark Ignited Natural Gas Engine Technology Spark Ignited Natural Gas Engine Technology Clean Fleets Technology Conference Sugar Land, TX, June 2014 Jorge Gonzalez Regional Manager Agenda Corporate Overview Natural Gas Technology Evolution Products

More information

STATE OF THE ART AND FUTURE DEVELOPMENTS IN NATURAL GAS ENGINE TECHNOLOGIES

STATE OF THE ART AND FUTURE DEVELOPMENTS IN NATURAL GAS ENGINE TECHNOLOGIES Proceedings of DEER 2003: Diesel Engine Emissions Reduction Newport, Rhode Island, August 2003 STATE OF THE ART AND FUTURE DEVELOPMENTS IN NATURAL GAS ENGINE TECHNOLOGIES Mark Dunn, Cummins Westport Inc.

More information

Exhaust emissions of a single cylinder diesel. engine with addition of ethanol

Exhaust emissions of a single cylinder diesel. engine with addition of ethanol www.ijaser.com 2014 by the authors Licensee IJASER- Under Creative Commons License 3.0 editorial@ijaser.com Research article ISSN 2277 9442 Exhaust emissions of a single cylinder diesel engine with addition

More information

Overview. Technical Training

Overview. Technical Training Overview Diesel particulate are typically soot particles with adherent hydrocarbons, sulphate and other condensed compounds. Legally a particulate is anything in the exhaust stream that can be captured

More information

Automotive Air Quality Sensors: industrial innovations to protect people s health

Automotive Air Quality Sensors: industrial innovations to protect people s health Pioneering sensor and detector technology Automotive Air Quality Sensors: industrial innovations to protect people s health COST Action TD1105 3 rd Management Committee Meeting Barcelona, Spain, 21st June

More information

Clean Up Your Fleet. Introducing a practical approach to cleaner, more efficient fleet operation

Clean Up Your Fleet. Introducing a practical approach to cleaner, more efficient fleet operation Clean Up Your Fleet Introducing a practical approach to cleaner, more efficient fleet operation The value of clean fleet management Reduce air pollution from your fleet Reduce greenhouse gas emissions

More information

Monitoring Air Emissions on Ships. Restricted Siemens AG 2014 All rights reserved.

Monitoring Air Emissions on Ships. Restricted Siemens AG 2014 All rights reserved. Monitoring Air Emissions on Ships siemens.com/answers Why emission monitoring in the marine industry? Main drivers: Meeting regulations: NOx and SOx reduction Energy optimization; CO 2 reduction Resolution

More information

Emissions pollutant from diesel, biodiesel and natural gas refuse collection vehicles in urban areas

Emissions pollutant from diesel, biodiesel and natural gas refuse collection vehicles in urban areas Emissions pollutant from diesel, biodiesel and natural gas refuse collection vehicles in urban areas José Mª López, Nuria Flores, Felipe Jiménez, Francisco Aparicio Polytechnic University of Madrid (UPM),

More information

Description of Thermal Oxidizers

Description of Thermal Oxidizers Description of Thermal Oxidizers NESTEC, Inc. is a full service equipment supplier specializing in solutions for plant emission problems. The benefit in working with NESTEC, Inc. is we bring 25+ years

More information

Scania s Euro 6 range: Proven technology and a solution for every need

Scania s Euro 6 range: Proven technology and a solution for every need PRESS info P13X02EN / Örjan Åslund 24 October 2013 Scania s Euro 6 range: Proven technology and a solution for every need Scania now offers no fewer than eleven Euro 6 diesel engines, ranging from 250

More information

Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA

Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA Automotive Powertrain Controls: Fundamentals and Frontiers Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA Julie Buckland Research & Advanced Engineering

More information

The Growing Importance of Natural Gas

The Growing Importance of Natural Gas May 2014 Natural Gas White Paper The Growing Importance of Natural Gas The natural gas industry is experiencing a revolution. Fueled by advances in drilling technology, natural gas has become an abundant

More information

Signature and ISX CM870 Fuel System

Signature and ISX CM870 Fuel System Signature and ISX CM870 Fuel System Cummins Ontario Training Center HPI-TP Fuel System Heavy Duty High Pressure Injection - Time Pressure Fuel System The fuel system developed for the Signature and ISX

More information

Best Choice For Medium-Duty Applications

Best Choice For Medium-Duty Applications Best Choice For Medium-Duty Applications Over 350,000 MBE 900 Engines Are In Use Worldwide The MBE 900 Increases Productivity And Reduces Operating Costs Manufactured specifically for the demanding North

More information

PERFORMANCE & EMISSION OPTIMIZATION OF SINGLE CYLINDER DIESEL ENGINE TO MEET BS-IV NORMS

PERFORMANCE & EMISSION OPTIMIZATION OF SINGLE CYLINDER DIESEL ENGINE TO MEET BS-IV NORMS PERFORMANCE & EMISSION OPTIMIZATION OF SINGLE CYLINDER DIESEL ENGINE TO MEET BS-IV NORMS Mayur S. Sawade 1, Sandeep S. Kore 2 1 Student, Mechanical Engineering, Sinhgad Academy of Engineering, Maharashtra,

More information

The Road Map For Achieving Euro Standards in New Vehicles and Fuels To Improve Air Quality in Vietnam

The Road Map For Achieving Euro Standards in New Vehicles and Fuels To Improve Air Quality in Vietnam The Road Map For Achieving Euro Standards in New Vehicles and Fuels To Improve Air Quality in Vietnam 1. Introduction... 2 A. Great Progress Has Occurred Around The World... 2 B. More is Required... 2

More information

Clean Diesel versus CNG Buses: Cost, Air Quality, & Climate Impacts

Clean Diesel versus CNG Buses: Cost, Air Quality, & Climate Impacts CONCORD, MA - MANCHESTER, NH - WASHINGTON, DC 1000 ELM STREET, 2 ND FLOOR MANCHESTER, NH 03101 603-647-5746 www.mjbradley.com DATE February 22, 2012 TO FROM RE: Conrad Schneider, Clean Air Task Force Dana

More information

Environmental Defense Fund NAFA Fleet Management Association

Environmental Defense Fund NAFA Fleet Management Association August 2009 Introduction About Our Organizations Highway Emissions Carbon Dioxide Methane and Nitrous Oxide Refrigerants (HFCs) Non-highway Emissions Sample Calculations Private light-duty fleet Private

More information

Overview of the Heavy-Duty National Program. Need to Reduce Fuel Consumption and Greenhouse Gases from Vehicles

Overview of the Heavy-Duty National Program. Need to Reduce Fuel Consumption and Greenhouse Gases from Vehicles Submitted by United States of America Informal document WP.29-155-11 (155 th WP.29, 15-18 November 2011, agenda item 14) United States of America Environmental Protection Agency and National Highway Traffic

More information