4.8. Solar cells The solar spectrum
|
|
|
- Johnathan Benson
- 9 years ago
- Views:
Transcription
1 4.8. Solr cell Solr cell re p-i-n oodiode, which re opered under forwrd bi. The inenion i o conver he incoing opicl power ino elecricl power wih xiu efficiency The olr pecru The olr pecru i hown in Figure The pecru een fro ellie i referred o he AM0 pecru (where AM nd for ir nd cloely fi he pecru of blck body 5800 K. The ol power deniy i 1353 W/ ower Deniy [W/u] hoon Energy [e] Figure The olr pecru under of AM1 condiion The olr pecru oberved on erh i odified due o borpion in he oere. For AM1 (norl incidence he power deniy i reduced o 95 W/c where for AM1.5 (45 bove he horizon he power deniy i 844 W/. The irregulriie in he pecru re due o borpion pecific oon energie. The correponding cuulive ourren i preened in Figure 4.8. funcion of he oon energy.
2 Cuulive hourren [A/c] hoon Energy [e] Figure 4.8. Cuulive hourren veru hoon Energy under AM1 condiion Clculion of xiu power The curren hrough he olr cell cn be obined fro: / = (e 1 (4.8.1 where i he urion curren of he diode nd i he oo curren (which i ued o be independen of he pplied volge. Thi expreion only include he idel diode curren of he diode, hereby ignoring recobinion in he depleion region. The hor circui curren, c, i he curren zero volge which eul c = -. The open circui volge eul: = ( = 0 = ln( + 1 ln (4.8. The ol power diipion i hen: / = = (e 1 (4.8.3 d The xiu power cur = 0. The volge nd curren correponding o he xil d power poin re nd.
3 d / = 0 = (e 1 + e / d (4.8.4 Thi euion cn be rewrien : + 1 = ln[ ] [ ln( ] (4.8.5 by uing euion (4.8. for he open circui volge. A ore ccure oluion i obined by olving hi rncendenl euion nd ubiuing ino euion (4.8.1 nd ( The xiu power cn be pproxied by: = (1 ( ln( 1+ (4.8.6 ( (4.8.7 or = E (4.8.8 where E = ( (4.8.9 The energy E i he energy of one oon, which i convered o elecricl energy he xiu power poin. The ol oo curren i clculed (for given bndgp E g nd he efficiency eul: J ( E ( g = E ( η = = in in
4 Converion efficiency for onhroic illuinion Thi fir order odel provide n nlyic pproxiion for he efficiency of olr cell under onhroic illuinion. We r wih he reul of ecion 4.8.: η = in = in ( (4.8.1 nd replce by he lrge poible open circui volge, E g, yielding: = ln(1 + kt ( nd η = in kt = [1 ln(1 + ] kt ( for GA olr cell 300K, E g = 55 o h he efficiency eul η = 85% Effec of diffuion nd recobinion in olr cell hoo curren veru volge The oo curren i obined by fir olving he coninuiy euion for elecron d n dn n 0 = D n + µ ne + g dx dx τ op ( well iilr euion for hole. The oo curren i obined fro A ( = ( φ i ( µ nn + µ d d 0 p p dx ( Once hi ourren i obined he ol curren i obined fro: / = (e 1 ( ( To obin he correponding xiu power one h o repe he derivion of ecion 5.3..
5 Specrl repone Becue of he wvelengh dependence of he borpion coefficien one expec he horer wvelengh o be borbed cloer o he urfce while he longer wvelengh re borbed deep in he bulk. Surfce recobinion will herefore be ore iporn for hor wvelengh while recobinion in he ui-neurl region i ore iporn for long wvelengh nfluence of he erie reince ex = + R ( / = (e 1 ( = ex (4.8.0 Repeing he derivion of ecion 4.8. one cn how h he xiu power condiion i given by he following e of rncendenl euion: = ln[ R + ] (4.8.1 / = (e 1 (4.8. while he xiu exernl power eul:,ex = ( + R
Chapter 7. Response of First-Order RL and RC Circuits
Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
Solution ----------------------------------------------------------------------------------------- y y = 0 = 0.0204 = 0.250
Chper 5 Exmple 5.2-2. 6 ---------------------------------------------------------------------------------- r ower i o e deigned o or SO 2 from n ir rem uing pure wer 20 o C. The enering g conin 20 mol
RC (Resistor-Capacitor) Circuits. AP Physics C
(Resisor-Capacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED
3.1. Overview Serial Devices to Ethernet Gateway
Overview Progrmmble Server (Seril-o-) Overview Overview.. Overview Seril o Gewy he CP DAS Progrmmble Server i deigned o bring nework conneciviy o your eril device. he progrmmble feure llow developer o
Signal Rectification
9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, half-wae and fullwae. Le s firs consider he ideal
Capacitors and inductors
Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear
Phys222 W12 Quiz 2: Chapters 23, 24. Name: = 80 nc, and q = 30 nc in the figure, what is the magnitude of the total electric force on q?
Nme: 1. A pricle (m = 5 g, = 5. µc) is relesed from res when i is 5 cm from second pricle (Q = µc). Deermine he mgniude of he iniil ccelerion of he 5-g pricle.. 54 m/s b. 9 m/s c. 7 m/s d. 65 m/s e. 36
Fortified financial forecasting models: non-linear searching approaches
0 Inernaional Conference on Economic and inance Reearch IPEDR vol.4 (0 (0 IACSIT Pre, Singapore orified financial forecaing model: non-linear earching approache Mohammad R. Hamidizadeh, Ph.D. Profeor,
Lecture 15 Isolated DC-DC converters
ELEC440/940 Lecure 15 olae C-C converer Ofen, he oupu C volage fro a C-C converer u be iolae fro he inpu AC upply. C power upplie for appliance an equipen are goo exaple. i avanageou o have he iolaion
Example What is the minimum bandwidth for transmitting data at a rate of 33.6 kbps without ISI?
Emple Wh is he minimum ndwidh for rnsmiing d re of 33.6 kps wihou ISI? Answer: he minimum ndwidh is equl o he yquis ndwidh. herefore, BW min W R / 33.6/ 6.8 khz oe: If % roll-off chrcerisic is used, ndwidh
MECH 2110 - Statics & Dynamics
Chapter D Problem 3 Solution 1/7/8 1:8 PM MECH 11 - Static & Dynamic Chapter D Problem 3 Solution Page 7, Engineering Mechanic - Dynamic, 4th Edition, Meriam and Kraige Given: Particle moving along a traight
Economics Honors Exam 2008 Solutions Question 5
Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I
Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
9. Capacitor and Resistor Circuits
ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren
σ m using Equation 8.1 given that σ
8. Etimate the theoretical fracture trength of a brittle material if it i known that fracture occur by the propagation of an elliptically haped urface crack of length 0.8 mm and having a tip radiu of curvature
1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,
Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..
11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements
Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge
Steps for D.C Analysis of MOSFET Circuits
10/22/2004 Seps for DC Analysis of MOSFET Circuis.doc 1/7 Seps for D.C Analysis of MOSFET Circuis To analyze MOSFET circui wih D.C. sources, we mus follow hese five seps: 1. ASSUME an operaing mode 2.
Stochastic Optimal Control Problem for Life Insurance
Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian
Full-wave rectification, bulk capacitor calculations Chris Basso January 2009
ull-wave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal
Improper Integrals. Dr. Philippe B. laval Kennesaw State University. September 19, 2005. f (x) dx over a finite interval [a, b].
Improper Inegrls Dr. Philippe B. lvl Kennesw Se Universiy Sepember 9, 25 Absrc Noes on improper inegrls. Improper Inegrls. Inroducion In Clculus II, sudens defined he inegrl f (x) over finie inervl [,
VOLATILITY DYNAMICS OF NYMEX NATURAL GAS FUTURES PRICES
VOLATILITY DYNAMICS OF NYMEX NATURAL GAS FUTURES PRICES Hiroaki Suenaga Reearch Fellow School of Economic and Finance Curin Buine School Curin Univeriy of Technology Aaron Smih Aian Profeor Deparmen of
Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur
Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,
4. International Parity Conditions
4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency
Formulating Cyber-Security as Convex Optimization Problems Æ
Formulaing Cyber-Securiy a Convex Opimizaion Problem Æ Kyriako G. Vamvoudaki,João P. Hepanha, Richard A. Kemmerer 2, and Giovanni Vigna 2 Cener for Conrol, Dynamical-yem and Compuaion (CCDC), Univeriy
Inductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
Formulating Cyber-Security as Convex Optimization Problems
Formulaing Cyber-Securiy a Convex Opimizaion Problem Kyriako G. Vamvoudaki, João P. Hepanha, Richard A. Kemmerer, and Giovanni Vigna Univeriy of California, Sana Barbara Abrac. Miion-cenric cyber-ecuriy
CHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
Mixed Method of Model Reduction for Uncertain Systems
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol 4 No June Mixed Method of Model Reduction for Uncertain Sytem N Selvaganean Abtract: A mixed method for reducing a higher order uncertain ytem to a table reduced
Technical Appendix to Risk, Return, and Dividends
Technical Appendix o Risk, Reurn, and Dividends Andrew Ang Columbia Universiy and NBER Jun Liu UC San Diego This Version: 28 Augus, 2006 Columbia Business School, 3022 Broadway 805 Uris, New York NY 10027,
Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.
Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa
Optimal Path Routing in Single and Multiple Clock Domain Systems
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, TO APPEAR. 1 Opimal Pah Rouing in Single and Muliple Clock Domain Syem Soha Haoun, Senior Member, IEEE, Charle J. Alper, Senior Member, IEEE ) Abrac Shrinking
A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation
A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion
µ r of the ferrite amounts to 1000...4000. It should be noted that the magnetic length of the + δ
Page 9 Design of Inducors and High Frequency Transformers Inducors sore energy, ransformers ransfer energy. This is he prime difference. The magneic cores are significanly differen for inducors and high
The Time Value of Money
THE TIME VALUE OF MONEY CALCULATING PRESENT AND FUTURE VALUES Fuure Value: FV = PV 0 ( + r) Presen Value: PV 0 = FV ------------------------------- ( + r) THE EFFECTS OF COMPOUNDING The effecs/benefis
v T R x m Version PREVIEW Practice 7 carroll (11108) 1
Version PEVIEW Prctice 7 crroll (08) his print-out should he 5 questions. Multiple-choice questions y continue on the next colun or pge find ll choices before nswering. Atwood Mchine 05 00 0.0 points A
The Torsion of Thin, Open Sections
EM 424: Torsion of hin secions 26 The Torsion of Thin, Open Secions The resuls we obained for he orsion of a hin recangle can also be used be used, wih some qualificaions, for oher hin open secions such
Second Order Linear Differential Equations
Second Order Linear Differenial Equaions Second order linear equaions wih consan coefficiens; Fundamenal soluions; Wronskian; Exisence and Uniqueness of soluions; he characerisic equaion; soluions of homogeneous
Heat demand forecasting for concrete district heating system
Hea demand forecaing for concree diric heaing yem Bronilav Chramcov Abrac Thi paper preen he reul of an inveigaion of a model for hor-erm hea demand forecaing. Foreca of hi hea demand coure i ignifican
Basically, logarithmic transformations ask, a number, to what power equals another number?
Wht i logrithm? To nwer thi, firt try to nwer the following: wht i x in thi eqution? 9 = 3 x wht i x in thi eqution? 8 = 2 x Biclly, logrithmic trnformtion k, number, to wht power equl nother number? In
Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The
cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
Stability. Coefficients may change over time. Evolution of the economy Policy changes
Sabiliy Coefficiens may change over ime Evoluion of he economy Policy changes Time Varying Parameers y = α + x β + Coefficiens depend on he ime period If he coefficiens vary randomly and are unpredicable,
How Much Can Taxes Help Selfish Routing?
How Much Can Taxe Help Selfih Rouing? Tim Roughgarden (Cornell) Join wih Richard Cole (NYU) and Yevgeniy Dodi (NYU) Selfih Rouing a direced graph G = (V,E) a ource and a deinaion one uni of raffic from
B A S I C S C I E N C E S
B A S I C S C I E N C E S 10 B A S I C S C I E N C E S F I R S T S E M E S T E R C O U R S E S : H U M A N S T R U C T U R E A N D F U N C T I O N [ H S F I ] M O L E C U L A R B A S I S O F M E D I C
Analysis of tax effects on consolidated household/government debts of a nation in a monetary union under classical dichotomy
MPRA Munich Personal RePEc Archive Analysis of ax effecs on consolidaed household/governmen debs of a naion in a moneary union under classical dichoomy Minseong Kim 8 April 016 Online a hps://mpra.ub.uni-muenchen.de/71016/
Part II Converter Dynamics and Control
Par II onverer Dynamics and onrol 7. A equivalen circui modeling 8. onverer ransfer funcions 9. onroller design 1. Inpu filer design 11. A and D equivalen circui modeling of he disconinuous conducion mode
SOLUTIONS TO CONCEPTS CHAPTER 16
. air = 30 m/. = 500 m/. Here S = 7 m So, t = t t = 330 500 SOLUIONS O CONCEPS CHPER 6 =.75 0 3 ec =.75 m.. Here gien S = 80 m = 60 m. = 30 m/ So the maximum time interal will be t = 5/ = 60/30 = 0.5 econd.
South East of Process Main Building / 1F. North East of Process Main Building / 1F. At 14:05 April 16, 2011. Sample not collected
At 14:05 April 16, 2011 At 13:55 April 16, 2011 At 14:20 April 16, 2011 ND ND 3.6E-01 ND ND 3.6E-01 1.3E-01 9.1E-02 5.0E-01 ND 3.7E-02 4.5E-01 ND ND 2.2E-02 ND 3.3E-02 4.5E-01 At 11:37 April 17, 2011 At
Imagine a Source (S) of sound waves that emits waves having frequency f and therefore
heoreical Noes: he oppler Eec wih ound Imagine a ource () o sound waes ha emis waes haing requency and hereore period as measured in he res rame o he ource (). his means ha any eecor () ha is no moing
Diagnostic Examination
Diagnosic Examinaion TOPIC XV: ENGINEERING ECONOMICS TIME LIMIT: 45 MINUTES 1. Approximaely how many years will i ake o double an invesmen a a 6% effecive annual rae? (A) 10 yr (B) 12 yr (C) 15 yr (D)
PROGRAMMABLE VELOCITY PROFILE FOR WHEELED MOBILE ROBOT SHERINATASHA BINTI JEONMANI
PROGRAMMABLE VELOCITY PROFILE FOR WHEELED MOBILE ROBOT SHERINATASHA BINTI JEONMANI Thi hei i preened in parial fulfillen for he award of he Maer Degree in Elecrical Engineering (Mecharonic and Rooic) Faculy
DC-DC Boost Converter with Constant Output Voltage for Grid Connected Photovoltaic Application System
DC-DC Boos Converer wih Consan Oupu Volage for Grid Conneced Phoovolaic Applicaion Sysem Pui-Weng Chan, Syafrudin Masri Universii Sains Malaysia E-mail: [email protected], [email protected] Absrac
Analogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar
Analogue and Digial Signal Processing Firs Term Third Year CS Engineering By Dr Mukhiar Ali Unar Recommended Books Haykin S. and Van Veen B.; Signals and Sysems, John Wiley& Sons Inc. ISBN: 0-7-380-7 Ifeachor
Mr. Kepple. Motion at Constant Acceleration 1D Kinematics HW#5. Name: Date: Period: (b) Distance traveled. (a) Acceleration.
Moion Consn Accelerion 1D Kinemics HW#5 Mr. Kepple Nme: De: Period: 1. A cr cceleres from 1 m/s o 1 m/s in 6.0 s. () Wh ws is ccelerion? (b) How fr did i rel in his ime? Assume consn ccelerion. () Accelerion
Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary
Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes
Design, Modeling and Motion Control of Mechatronics Robot Arm
I.J. Inelligen Sye nd Applicion, 13, 5, 39-57 Publihed Onle April 13 MECS (hp://www.ec-pre.org/) DOI: 1.5815/iji.13.5.6 Deign, Modelg nd Moion Conrol o Mechronic Robo Ar Modelg, Siulion nd Dynic Anlyi
Pulse-Width Modulation Inverters
SECTION 3.6 INVERTERS 189 Pulse-Widh Modulaion Inverers Pulse-widh modulaion is he process of modifying he widh of he pulses in a pulse rain in direc proporion o a small conrol signal; he greaer he conrol
Full-wave Bridge Rectifier Analysis
Full-wave Brige Recifier Analysis Jahan A. Feuch, Ocober, 00 his aer evelos aroximae equais for esigning or analyzing a full-wave brige recifier eak-eecor circui. his circui is commly use in A o D cverers,
Gate protection. Current limit. Overvoltage protection. Limit for unclamped ind. loads. Charge pump Level shifter. Rectifier. Open load detection
Smar ighside Power Swich for ndusrial Applicaions Feaures Overload proecion Curren limiaion Shor circui proecion Thermal shudown Overvolage proecion (including load dump) Fas demagneizaion of inducive
Optimal Investment and Consumption Decision of Family with Life Insurance
Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker
The Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
Smart Highside Power Switch
Smar ighside Power Swich Feaures Overload proecion Curren limiaion Shor circui proecion Thermal shudown Overvolage proecion (including load dump) Reverse baery proecion ) Undervolage and overvolage shudown
Lecture 2: Telegrapher Equations For Transmission Lines. Power Flow.
Whies, EE 481 Lecure 2 Page 1 of 13 Lecure 2: Telegraher Equaions For Transmission Lines. Power Flow. Microsri is one mehod for making elecrical connecions in a microwae circui. I is consruced wih a ground
OPTIMIZING PRODUCTION POLICIES FOR FLEXIBLE MANUFACTURING SYSTEM WITH NON-LINEAR HOLDING COST
OPIMIZING PRODUCION POLICIE FOR FLEXIBLE MANUFACURING YEM WIH NON-LINEAR HOLDING CO ABRAC Leena Praher, Reearch cholar, Banahali Vidayaeeh (Raj.) Dr. hivraj Pundir, Reader, D. N. College, Meeru (UP) hi
Vector Autoregressions (VARs): Operational Perspectives
Vecor Auoregressions (VARs): Operaional Perspecives Primary Source: Sock, James H., and Mark W. Wason, Vecor Auoregressions, Journal of Economic Perspecives, Vol. 15 No. 4 (Fall 2001), 101-115. Macroeconomericians
Photo Modules for PCM Remote Control Systems
Phoo Modules for PCM Remoe Conrol Sysems Available ypes for differen carrier frequencies Type fo Type fo TSOP173 3 khz TSOP1733 33 khz TSOP1736 36 khz TSOP1737 36.7 khz TSOP1738 38 khz TSOP174 4 khz TSOP1756
Chapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
Hedging with Forwards and Futures
Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buy-side of a forward/fuures
Optical Illusion. Sara Bolouki, Roger Grosse, Honglak Lee, Andrew Ng
Optical Illuion Sara Bolouki, Roger Groe, Honglak Lee, Andrew Ng. Introduction The goal of thi proect i to explain ome of the illuory phenomena uing pare coding and whitening model. Intead of the pare
LLC Resonant Converter Reference Design using the dspic DSC
LLC Resonan Converer Reference Design using he dspic DSC 2010 Microchip Technology Incorporaed. All Righs Reserved. LLC Resonan Converer Webinar Slide 1 Hello, and welcome o his web seminar on Microchip
Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL
Excerpt from the Proceeding of the COMSO Conference 0 India Two Dimenional FEM Simulation of Ultraonic Wave Propagation in Iotropic Solid Media uing COMSO Bikah Ghoe *, Krihnan Balaubramaniam *, C V Krihnamurthy
Forecasting Sales: A Model and Some Evidence from the Retail Industry. Russell Lundholm Sarah McVay Taylor Randall
Forecasing Sales: A odel and Some Evidence from he eail Indusry ussell Lundholm Sarah cvay aylor andall Why forecas financial saemens? Seems obvious, bu wo common criicisms: Who cares, can we can look
Signal Processing and Linear Systems I
Sanford Universiy Summer 214-215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 14-15, Gibbons
Astable multivibrator using the 555 IC.(10)
Visi hp://elecronicsclub.cjb.ne for more resources THE 555 IC TIMER The 555 IC TIMER.(2) Monosable mulivibraor using he 555 IC imer...() Design Example 1 wih Mulisim 2001 ools and graphs..(8) Lile descripion
Switching Regulator IC series Capacitor Calculation for Buck converter IC
Swiching Regulaor IC series Capacior Calculaion for Buck converer IC No.14027ECY02 This applicaion noe explains he calculaion of exernal capacior value for buck converer IC circui. Buck converer IIN IDD
Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur
Module 3 - & -C Transiens esson 0 Sudy of DC ransiens in - and -C circuis Objecives Definiion of inducance and coninuiy condiion for inducors. To undersand he rise or fall of curren in a simple series
Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
Longevity 11 Lyon 7-9 September 2015
Longeviy 11 Lyon 7-9 Sepember 2015 RISK SHARING IN LIFE INSURANCE AND PENSIONS wihin and across generaions Ragnar Norberg ISFA Universié Lyon 1/London School of Economics Email: [email protected]
Individual Health Insurance April 30, 2008 Pages 167-170
Individual Healh Insurance April 30, 2008 Pages 167-170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve
Trading Strategies for Sliding, Rolling-horizon, and Consol Bonds
Trading Sraegie for Sliding, Rolling-horizon, and Conol Bond MAREK RUTKOWSKI Iniue of Mahemaic, Poliechnika Warzawka, -661 Warzawa, Poland Abrac The ime evoluion of a liding bond i udied in dicree- and
Differential Equations and Linear Superposition
Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y
A Probability Density Function for Google s stocks
A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural
Voltage level shifting
rek Applicaion Noe Number 1 r. Maciej A. Noras Absrac A brief descripion of volage shifing circuis. 1 Inroducion In applicaions requiring a unipolar A volage signal, he signal may be delivered from a bi-polar
