Appendix A Oxymax Calculations
|
|
|
- Loraine Richard
- 9 years ago
- Views:
Transcription
1 Appendix A Oxymax Calculations A.1 Metabolic Calculations The metabolic data reported by Oxymax is based on five empirical measurements: Gas concentrations measured by sensors: Reference Oxygen Concentration (O2 i) Reference Carbon Dioxide Concentration (CO2 i) Sample Oxygen Concentration (O2 o) Sample Carbon Dioxide Concentration (CO2 o) Fresh Air Flow The fresh air flow measured by Oxymax for Windows depends on the ventilation system used. Positive ventilation systems throttle and measure the fresh air before delivering it to the chambers (V i). Negative ventilation systems draw fresh air into the chamber from the atmosphere around it. The measured flow in this case is not the rate of air entering the cage, but exiting it (V o). The calculation of Oxygen consumption (VO 2) and Carbon Dioxide production (VCO 2) values requires the use of both the input (V i) and output (V o) flows to the chamber. Despite the fact that the chamber is not pressurized and does not allow gas to build up as an experiment progresses, the chamber cannot be modeled as a perfect steady state system because of the subject s unequal effect on the respiratory gases: the subject does not exhale the same volume of gas as it inhales. Gases in an Oxymax system are broken into three categories: Consumed Oxygen Produced Carbon Dioxide, Methane Inert All other gases not involved in respiration (Nitrogen, Argon, and other noble gases) Since inert gases are not used during respiration, their rates of flow at the output (VN o) and input (VN i) are the same (Equation 1). Equation 1 The flows of inert gases are products of the flows to and from the chamber and the concentration of inert gases (N i and N o) in each flow (Equation 2). The concentrations can be calculated and one of the flows is measured so the other (V o for positive ventilation, V i for negative ventilation) can be calculated. Equation 2 84
2 The concentration of inert gases in a sample is assumed to be all gases that are not involved in respiration (Equation 3). Equation 3 Assuming a positive flow system, combining the previous equations yields the V o for the system (Equation 4). Equation 4 The volumetric flow rates for consumption and production can then both be calculated. The equations are arranged such that both consumption and production are presented as positive values (Equation 5, Equation 6, Equation 7). Equation 5 Equation 6 Equation 7 Oxymax for Windows always presents consumption and production rates normalized to the subject s body mass in kilograms. To convert the whole-body rates into mass-normalized rates just divide the whole-body rate by the mass (m) of the subject in kilograms (Equation 8). Equation 8 The accumulated respiration figures (A) are calculated using the whole-body rate and the amount of time that has elapsed since the last measurement (t). The amount of gas consumed or produced in an interval is added to a running total of all sample volumes. Units are adjusted to match the ones specified in the experiment settings (Equation 9). [ ] [ ] Equation 9 85
3 The respiratory exchange ratio can be calculated from either set of consumption and production rates (Equation 10). Equation 10 Oxymax for Windows uses one of two possible methods for calculating energy expenditure (Heat). The first uses a calorific value (CV) that shows the relationship between heat and the volume of consumed Oxygen. This value is derived from empirical data from Graham Lusk s The Elements of the Science of Nutrition (Equation 11). RER Kilocalories per liter of O Equation 11 The rate of energy expenditure can then be calculated using the subject s rate of Oxygen consumption (Equation 12). This equation is standard for small-to-medium, non-ruminant mammals. Equation 12 Oxymax for Windows also allows for the definition of a custom heat calculation equation. Coefficients for Oxygen, Carbon Dioxide and Methane rates can be specified and used to calculate heat (Equation 13). ( ) ( ) Equation 13 86
4 A.2 Analysis of the Oxidation of Mixtures of Carbohydrate and Fat The following is an excerpt from a correction issued by Graham Lusk in 1923 that was published in the journal, Animal Calorimetry. It contains the table of oxidation figures for carbohydrates and fats and the equation used by Oxymax for calculation of Heat. Equation 14 shows the original form of the equation shown as (5) in Figure 60 which simplifies to the previously mentioned Equation 11. In 1901 Zuntz and Schumburgl (Zuntz, N., and Schumburg, Studien zu einer Physiologie des Marsches, Berlin, 1901, 361.) published a standard table showing the caloric value of a liter of oxygen when used to oxidize mixtures of carbohydrate and fat. Figures were given for respiratory quotients varying from 1.00, for pure carbohydrate, to 0.707, for pure fat. The writer elaborated this table (Williams, H. B., Riche, J. A., and Lusk, G., J. Biol. Chem., 1912, xii, 357. Lusk, G., The elements of the science of nutrition, Philadelphia, 3rd edition, 1917, 61.) and introduced columns showing the relative quantity in calories of carbohydrate and fat consumed. That these figures were in error was pointed out to me by Dr. H. H. Mitchell in a letter dated June 26, 1917, and the error has since been called to my attention by my students. To one of them, Mr. A. M. Michaelis, I am indebted for the following corrected table. Although the error is not great, yet it is worthy of note and of record. The table serves to illuminate the charts recently prepared by Dr. E. F. Du Bois, which he presents in the article immediately following this. Equation 14 87
5 88 Figure 60 - Oxidation Table
Small Animal Respiratory Exchange Ratio (RER)
iworx Physiology Lab Experiment Experiment AMe-1 Small Animal Respiratory Exchange Ratio (RER) Note: The lab presented here is intended for evaluation purposes only. iworx users should refer to the User
NAME: The measurement of BMR must be performed under very stringent laboratory conditions. For example:
NAME: HPER 3970 BODY COMPOSITION / WEIGHT MANAGEMENT / SPORT NUTRITION LABORATORY #1: ASSESSMENT OF RESTING METABOLIC RATE AND SUBSTRATE UTILIZATION DURING EXERCISE Introduction Basal Metabolic Rate /
Experiment HE-6: Breath by Breath Measurement of Respiratory Exchange Ratio (RER)
Experiment HE-6: Breath by Breath Measurement of Respiratory Exchange Ratio (RER) Background The two sources of energy available for human metabolism are carbohydrates (CHO) and fats. These molecules are
Experiment HE-8: Regulation of Body Temperature and the Respiratory Exchange Ratio (RER)
Experiment HE-8: Regulation of Body and the Respiratory Exchange Ratio (RER) Note: Read the procedures for each exercise completely before beginning the experiment. Have a good understanding of how to
Chapter 4. Chemical Energy
hapter 4 hemical Energy Perhaps the most convenient form in which to store energy is chemical energy. The foods we eat, combined with the oxygen we breathe, store energy that our bodies extract and convert
Name Date Class STOICHIOMETRY. SECTION 12.1 THE ARITHMETIC OF EQUATIONS (pages 353 358)
Name Date Class 1 STOICHIOMETRY SECTION 1.1 THE ARITHMETIC OF EQUATIONS (pages 353 358) This section explains how to calculate the amount of reactants required or product formed in a nonchemical process.
EXPERIMENT 4 THE DETERMINATION OF THE CALORIC CONTENT OF A CASHEW NUT
EXPERIMENT 4 THE DETERMINATION OF THE CALORIC CONTENT OF A CASHEW NUT Textbook reference: pp103-105 Purpose: In this Activity, students determine how many calories are released per gram when cashews burn
7-5.5. Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including:
7-5.5 Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including: NaCl [salt], H 2 O [water], C 6 H 12 O 6 [simple sugar], O 2 [oxygen
Lecture 35: Atmosphere in Furnaces
Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors
Stoichiometry. 1. The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 0.1; (4) 0.2.
Stoichiometry 1 The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 01; (4) 02 2 A 44 gram sample of a hydrate was heated until the water of hydration was driven
Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels
1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation
Gas Exchange. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com)
Gas Exchange Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction Oxygen and carbon dioxide diffuse between the alveoli
Unit 5 Photosynthesis and Cellular Respiration
Unit 5 Photosynthesis and Cellular Respiration Advanced Concepts What is the abbreviated name of this molecule? What is its purpose? What are the three parts of this molecule? Label each part with the
Balancing chemical reaction equations (stoichiometry)
Balancing chemical reaction equations (stoichiometry) This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit
Module 5: Combustion Technology. Lecture 33: Combustion air calculation
1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The
THE HUMIDITY/MOISTURE HANDBOOK
THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M
PHOTOSYNTHESIS AND RESPIRATION
PHOTOSYNTHESIS AND RESPIRATION STANDARDS: 3.2.10.B.3, 3.2.10.C.4 3.3.10.B.4 Westminster College INTRODUCTION Plants make sugar, storing the energy of the sun as chemical energy, by the process of photosynthesis.
CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)
CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26
Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework
Molecules of the Atmosphere The present atmosphere consists mainly of molecular nitrogen (N2) and molecular oxygen (O2) but it has dramatically changed in composition from the beginning of the solar system.
STOICHIOMETRY OF COMBUSTION
STOICHIOMETRY OF COMBUSTION FUNDAMENTALS: moles and kilomoles Atomic unit mass: 1/12 126 C ~ 1.66 10-27 kg Atoms and molecules mass is defined in atomic unit mass: which is defined in relation to the 1/12
1. Standard conditions are 29.92 in. Hg (760 mm Hg, 14.696 psia) and 68 F (20 C).
INTRODUCTION Emission Monitoring Inc. DETERMINING F-FACTORS FROM GAS CHROMATOGRAPHIC ANALYSES Roger T. Shigehara Emission Monitoring Incorporated Howard F. Schiff TRC Environmental Corporation EPA Method
Gas Exchange Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.
Gas Exchange Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.com/bc) Page 1. Introduction Oxygen and carbon dioxide diffuse between
Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)
Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical
RESPIRATION and METABOLIC RATE page 43
RESPIRATION and METABOLIC RATE page 43 Objectives 1. Review the net process of respiration and the concept of energy metabolism. 2. Review factors that affect metabolic rate, including body size (Kleiber
20.2 Chemical Equations
All of the chemical changes you observed in the last Investigation were the result of chemical reactions. A chemical reaction involves a rearrangement of atoms in one or more reactants to form one or more
Stoichiometry Exploring a Student-Friendly Method of Problem Solving
Stoichiometry Exploring a Student-Friendly Method of Problem Solving Stoichiometry comes in two forms: composition and reaction. If the relationship in question is between the quantities of each element
Stoichiometry. 1. The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 0.1; (4) 0.2.
Stoichiometry 1 The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 01; (4) 02 2 A 44 gram sample of a hydrate was heated until the water of hydration was driven
COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink
COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat
Ventilation Perfusion Relationships
Ventilation Perfusion Relationships VENTILATION PERFUSION RATIO Ideally, each alveolus in the lungs would receive the same amount of ventilation and pulmonary capillary blood flow (perfusion). In reality,
Chapter 2: The Chemical Context of Life
Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you
= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C
Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.
CHEMISTRY GAS LAW S WORKSHEET
Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The volume of a fixed mass of gas is
Nutritional Support of the Burn Patient
Nutritional Support of the Burn Patient Objectives To understand the principles of normal nutrient utilization and the abnormalities caused by burn injury To be able to assess nutrient needs To be able
11-1 Stoichiometry. Represents
11-1 Stoichiometry What is stoichiometry? Calculations that relate the quantities of substances. It is the study of quantitative (measurable amounts) relationships in chemical reactions and equations.
MEASURING RESPIRATION Mikal E. Saltveit, University of California, Davis 95616
1 of 5 MEASURING RESPIRATION Mikal E. Saltveit, University of Califnia, Davis 95616 INTRODUCTION The measurement of respiration is very imptant because it provides a window through which we can determine
Problem Solving. Percentage Yield
Skills Worksheet Problem Solving Percentage Yield Although we can write perfectly balanced equations to represent perfect reactions, the reactions themselves are often not perfect. A reaction does not
SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS
SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS Rearranging atoms. In a chemical reaction, bonds between atoms in one or more molecules (reactants) break and new bonds are formed with other atoms to
Cellular Respiration: Practice Questions #1
Cellular Respiration: Practice Questions #1 1. Which statement best describes one of the events taking place in the chemical reaction? A. Energy is being stored as a result of aerobic respiration. B. Fermentation
Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1
Answers Additional Questions 12.1 1. A gas collected over water has a total pressure equal to the pressure of the dry gas plus the pressure of the water vapor. If the partial pressure of water at 25.0
Mole Notes.notebook. October 29, 2014
1 2 How do chemists count atoms/formula units/molecules? How do we go from the atomic scale to the scale of everyday measurements (macroscopic scale)? The gateway is the mole! But before we get to the
Chapter 4 Practice Quiz
Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III:
Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test
Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test NAME Section 7.1 The Mole: A Measurement of Matter A. What is a mole? 1. Chemistry is a quantitative science. What does this term mean?
Photosynthesis and Respiration
Photosynthesis and Respiration Experiment 31C Plants make sugar, storing the energy of the sun into chemical energy, by the process of photosynthesis. When they require energy, they can tap the stored
Exercise Metabolism II
Exercise Metabolism II Oxygen debt & deficit Lactate threshold --------------------------------------------------------------- VO2max, VO2max and Lactate threshold CHO and fat metabolism during exercise
Breathing and Holding Your Breath copyright, 2005, Dr. Ingrid Waldron and Jennifer Doherty, Department of Biology, University of Pennsylvania 1
Breathing and Holding Your Breath copyright, 2005, Dr. Ingrid Waldron and Jennifer Doherty, Department of Biology, University of Pennsylvania 1 Introduction Everybody breathes all day, every day. Why?
The Empirical Formula of a Compound
The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,
Cellular Energy. 1. Photosynthesis is carried out by which of the following?
Cellular Energy 1. Photosynthesis is carried out by which of the following? A. plants, but not animals B. animals, but not plants C. bacteria, but neither animals nor plants D. all living organisms 2.
Photosynthesis and Respiration
Photosynthesis and Respiration Experiment 31C Plants make sugar, storing the energy of the sun into chemical energy, by the process of photosynthesis. When they require energy, they can tap the stored
Continuous flow direct water heating for potable hot water
Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial
The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10
Our Atmosphere The Gas Laws 99% N 2 and O 2 78% N 2 80 70 Nitrogen Chapter 10 21% O 2 1% CO 2 and the Noble Gases 60 50 40 Oxygen 30 20 10 0 Gas Carbon dioxide and Noble Gases Pressure Pressure = Force
Formulae, stoichiometry and the mole concept
3 Formulae, stoichiometry and the mole concept Content 3.1 Symbols, Formulae and Chemical equations 3.2 Concept of Relative Mass 3.3 Mole Concept and Stoichiometry Learning Outcomes Candidates should be
AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1
Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example
Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service
BP Lower 48 Onshore Operations Safety Manual Page 4.19 1 Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service I. General Requirements A. After motor vehicle accidents and underground excavation
Unit 9 Stoichiometry Notes (The Mole Continues)
Unit 9 Stoichiometry Notes (The Mole Continues) is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations
Kinetic Theory of Gases. 6.1 Properties of Gases 6.2 Gas Pressure. Properties That Describe a Gas. Gas Pressure. Learning Check.
Chapter 6 Gases Kinetic Theory of Gases 6.1 Properties of Gases 6.2 Gas Pressure A gas consists of small particles that move rapidly in straight lines. have essentially no attractive (or repulsive) forces.
Chapter Three: STOICHIOMETRY
p70 Chapter Three: STOICHIOMETRY Contents p76 Stoichiometry - The study of quantities of materials consumed and produced in chemical reactions. p70 3-1 Counting by Weighing 3-2 Atomic Masses p78 Mass Mass
pathway that involves taking in heat from the environment at each step. C.
Study Island Cell Energy Keystone Review 1. Cells obtain energy by either capturing light energy through photosynthesis or by breaking down carbohydrates through cellular respiration. In both photosynthesis
Other Stoich Calculations A. mole mass (mass mole) calculations. GIVEN mol A x CE mol B. PT g A CE mol A MOLE MASS :
Chem. I Notes Ch. 12, part 2 Using Moles NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 1 MOLE = 6.02 x 10 23 representative particles (representative particles
Certain specific properties of compressed gases make them highly useful in various research activities.
GAS CYLINDER SAFETY Introduction Certain specific properties of compressed gases make them highly useful in various research activities. These gases, however, can be dangerous if not handled in an appropriate
The burning candle. Overview. Aims. Teaching sequence. Experiments about plant growth MODULE 1
Experiments about plant growth MODULE 1 The burning candle Timing 1-2 hours Materials per group 1 Tea candle 1 Jar 1 Stop-watch 1 Straw Matches Photocopies of sheets E1, E2, E3 Skills Observation Measurement
F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.
Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.
CHEM 101/105 Numbers and mass / Counting and weighing Lect-03
CHEM 101/105 Numbers and mass / Counting and weighing Lect-03 Interpretation of Elemental Chemical Symbols, Chemical Formulas, and Chemical Equations Interpretation of an element's chemical symbol depends
Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K
1 Thermodynamics There always seems to be at least one free response question that involves thermodynamics. These types of question also show up in the multiple choice questions. G, S, and H. Know what
Biology for Science Majors
Biology for Science Majors Lab 10 AP BIOLOGY Concepts covered Respirometers Metabolism Glycolysis Respiration Anaerobic vs. aerobic respiration Fermentation Lab 5: Cellular Respiration ATP is the energy
Limiting Reagent Worksheet #1
Limiting Reagent Worksheet #1 1. Given the following reaction: (Balance the equation first!) C 3 H 8 + O 2 -------> CO 2 + H 2 O a) If you start with 14.8 g of C 3 H 8 and 3.44 g of O 2, determine the
Dissolved Gas Analysis Guide for Transformers Filled with Beta Fluid
DSI Ventures, Inc. PHONE: (903) 526-7577 FAX: (903) 526-0021 www.dsiventures.com Dissolved Gas Analysis Guide for Transformers Filled with Beta Fluid Introduction Analysis of dissolved gases in transformer
2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?
Energy Transport Study Island 1. During the process of photosynthesis, plants use energy from the Sun to convert carbon dioxide and water into glucose and oxygen. These products are, in turn, used by the
E - THEORY/OPERATION
E - THEORY/OPERATION 1995 Volvo 850 1995 ENGINE PERFORMANCE Volvo - Theory & Operation 850 INTRODUCTION This article covers basic description and operation of engine performance-related systems and components.
Specimen Paper. Chemistry 1F. Time allowed! 60 minutes
Centre Number Surname Candidate Number Specimen Paper For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Foundation Tier Question 1 Mark Science
CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64
CHAPTER 3: MATTER Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 3.1 MATTER Matter: Anything that has mass and occupies volume We study
Evaluation of portable flue gas analysers for monitoring carbon dioxide in ambient workplace air HSL/2006/42. Project Leader: Peter Walsh.
Harpur Hill, Buxton Derbyshire, SK17 9JN T: +44 (0)1298 218000 F: +44 (0)1298 218590 W: www.hsl.gov.uk Evaluation of portable flue gas analysers for monitoring carbon dioxide in ambient workplace air HSL/2006/42
DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3
DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 Standard Enthalpy Change Standard Enthalpy Change for a reaction, symbolized as H 0 298, is defined as The enthalpy change when the molar quantities of reactants
Coal-To-Gas & Coal-To-Liquids
Located in the Energy Center at Discovery Park, Purdue University Coal-To-Gas & Coal-To-Liquids CCTR Basic Facts File #3 Brian H. Bowen, Marty W. Irwin The Energy Center at Discovery Park Purdue University
How To Calculate Mass In Chemical Reactions
We have used the mole concept to calculate mass relationships in chemical formulas Molar mass of ethanol (C 2 H 5 OH)? Molar mass = 2 x 12.011 + 6 x 1.008 + 1 x15.999 = 46.069 g/mol Mass percentage of
Chapter 1 The Atomic Nature of Matter
Chapter 1 The Atomic Nature of Matter 6. Substances that cannot be decomposed into two or more simpler substances by chemical means are called a. pure substances. b. compounds. c. molecules. d. elements.
Chapter 10 Temperature and Heat
Chapter 10 Temperature and Heat GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use it an
Chapter 3: Stoichiometry
Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and
Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses
Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses B. Calculations of moles C. Calculations of number of atoms from moles/molar masses 1. Avagadro
Ecology Pre-Test (High School)
Ecology Pre-Test (High School) Science is easier to understand if you can make connections between what you know now and the new ideas that you are studying. This is a test that will help us to understand
Fitness Training Program
Sample Endurance Factor Introduction Fitness Training Congratulations on completing your Metabolic Profile! Until recently, this type of assessment was available only to human performance labs and training
Unit 2: Quantities in Chemistry
Mass, Moles, & Molar Mass Relative quantities of isotopes in a natural occurring element (%) E.g. Carbon has 2 isotopes C-12 and C-13. Of Carbon s two isotopes, there is 98.9% C-12 and 11.1% C-13. Find
Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems
Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct
MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It?
NAME PARTNERS SECTION DATE_ MOLES, MOLECULES, FORMULAS This activity is designed to introduce a convenient unit used by chemists and to illustrate uses of the unit. Part I: What Is a Mole And Why Are Chemists
Chemistry B11 Chapter 4 Chemical reactions
Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl
Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008
Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid
Avoiding the Wall : Why women do not need to carbohydrate load. Jamie Justice. Audience: Women s marathon running groups and charity marathon coaches
1 Avoiding the Wall : Why women do not need to carbohydrate load Jamie Justice Audience: Women s marathon running groups and charity marathon coaches The marathon s dreaded mile 18 wall is enough to give
AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE. Wrocław, POLAND, 02-2015.
AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE Wrocław, POLAND, 02-2015. 002664 AN OFFER The ATON-HT SA co has developed technology to neutralize, and utilize hazardous wastes. This also includes
1. The diagram below represents a biological process
1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set
Introductory Chemistry, 3 rd Edition Nivaldo Tro. Roy Kennedy Massachusetts Bay Community College Wellesley Hills, Maqqwertd ygoijpk[l
Introductory Chemistry, 3 rd Edition Nivaldo Tro Quantities in Car an octane and oxygen molecules and carbon dioxide and water Chemical Reactions Roy Kennedy Massachusetts Bay Community College Wellesley
Name: Teacher: Pd. Date:
Name: Teacher: Pd. Date: STAAR Tutorial : Energy and Matter: Elements, Compounds, and Chemical Equations: 6.5C Differentiate between elements and compounds on the most basic level. 8.5F Recognize whether
CHEMICAL EQUILIBRIUM (ICE METHOD)
CHEMICAL EQUILIBRIUM (ICE METHOD) Introduction Chemical equilibrium occurs when opposing reactions are proceeding at equal rates. The rate at which the products are formed from the reactants equals the
Stoichiometry. What is the atomic mass for carbon? For zinc?
Stoichiometry Atomic Mass (atomic weight) Atoms are so small, it is difficult to discuss how much they weigh in grams We use atomic mass units an atomic mass unit (AMU) is one twelfth the mass of the catbon-12
Chemical Calculations: Formula Masses, Moles, and Chemical Equations
Chemical Calculations: Formula Masses, Moles, and Chemical Equations Atomic Mass & Formula Mass Recall from Chapter Three that the average mass of an atom of a given element can be found on the periodic
SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES
SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES Filippo Turra Product Manager Cooling Technology INTRODUCTION
- 1 - BISC 367 Plant Physiology Laboratory SFU
- 1 - BISC 367 Plant Physiology Laboratory SFU CO 2 exchange in plants The effect of light intensity and quality on photosynthetic CO 2 fixation and respiration in C3 and C4 plants Using light energy and
Thermodynamics of Mixing
Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What
Chapter 16 The Citric Acid Cycle
Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Which of the following is not true of the reaction catalyzed by the pyruvate dehydrogenase complex? A) Biotin participates in the decarboxylation.
2. The percent yield is the maximum amount of product that can be produced from the given amount of limiting reactant.
UNIT 6 stoichiometry practice test True/False Indicate whether the statement is true or false. moles F 1. The mole ratio is a comparison of how many grams of one substance are required to participate in
Diabetes and Your Circulatory System: The story of the lost limbs.
Diabetes and Your Circulatory System: The story of the lost limbs. Dr. Falak Almiladi William H Brown Math and Science Academy IIT Research Mentor: Dr. Eric Brey This material is based upon work supported
Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).
CHEM110 Week 9 Notes (Gas Laws) Page 1 of 7 Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). Gases Are mostly empty space Occupy containers uniformly and completely Expand infinitely Diffuse
