How To Make A High Throughput Computing Data Center
|
|
|
- Lee Garrett
- 5 years ago
- Views:
Transcription
1 Technical White Paper High Throughput Computing Data Center Architecture Thinking of Data Center 3.0 Abstract In the last few decades, data center (DC) technologies have kept evolving from DC 1.0 (tightly-coupled silos) to DC 2.0 (computer virtualization) to enhance data processing capability. Emerging big data analysis based business raises highly-diversified and time-varied demand for DCs. Due to the limitations on throughput, resource utilization, manageability and energy efficiency, current DC 2.0 shows its incompetence to provide higher throughput and seamless integration of heterogeneous resources for different big data applications. By rethinking the demand for big data applications, Huawei proposes a high throughput computing data center architecture (HTC-DC). Based on resource disaggregation and interface-unified interconnects, HTC-DC is enabled with PB-level data processing capability, intelligent manageability, high scalability and high energy efficiency. With competitive features, HTC-DC can be a promising candidate for DC3.0. Contents Era of Big Data: New Data Center Architecture in Need 1 Needs on Big Data Processing 1 DC Evolution: Limitations and Strategies 1 Huawei s Vision on Future DC 2 DC3.0: Huawei HTC-DC 3 HTC-DC Overview 3 Key Features 4 Summary 6 Copyright Huawei Technologies Co., Ltd.
2 June 2014 Technical White Paper High Throughput Computing Data Center Architecture ERA OF BIG DATA: NEW DATA CENTER ARCHITECTURE IN NEED Needs on Big Data Processing During the past few years, applications which are based on big data analysis have emerged, enriching human life with more real-time and intelligent interactions. Such applications have proven themselves to become the next wave of mainstream of online services. As the era of big data approaches, higher and higher demand on data processing capability has been raised. Being the major facilities to support highly varied big data processing tasks, future data centers (DCs) are expected to meet the following big data requirements (Figure 1): Figure 1. Needs Brought by Big Data PB/s-level data processing capability ensuring aggregated high-throughput computing, storage and networking; Adaptability to highly-varied run-time resource demands; Continuous availability providing 24x7 large-scaled service coverage, and supporting high-concurrency access; Rapid deployment allowing quick deployment and resource configuration for emerging applications. DC Evolution: Limitations and Strategies DC technologies in the last decade have been evolved (Figure 2) from DC 1.0 (with tightly-coupled silos) to current DC 2.0 (with computer virtualization). Although data processing capability of DCs have been significantly enhanced, due to the limitations on throughput, resource utilization, manageability and energy efficiency, current DC 2.0 shows its incompetence to meet the demands of the future: Figure 2. DC Evolution - Throughput: Compared with technological improvement in computational capability of processors, improvement in I/O access performance has long been lagged behind. With the fact that computing within conventional DC architecture largely involves data movement between storage and CPU/memory via I/O ports, it is challenging for current DC architecture to provide PB-level high throughput for big data applications. The problem of I/O gap is resulted from low-speed characteristics of conventional transmission and storage mediums, and also from inefficient architecture design and data access mechanisms. To meet the requirement of future high throughput data processing capability, adopting new transmission technology (e.g. optical interconnects) and new storage medium can be feasible solutions. But a more fundamental approach is to re-design DC architecture as well as data access mechanisms for computing. If data access in computing process can avoid using conventional I/O mechanism, but use ultra-high-bandwidth network to serve as the new I/O functionality, DC throughput can be significantly improved. Page 1 Copyright Huawei Technologies Co., Ltd.
3 Technical White Paper High Throughput Computing Data Center Architecture June Resource Utilization: Conventional DCs typically consist of individual servers which are specifically designed for individual applications with various pre-determined combinations of processors, memories and peripherals. Such design makes DC infrastructure very hard to adapt to emergence of various new applications, so computer virtualization technologies are introduced accordingly. Although virtualization in current DCs help improve hardware utilization, it cannot make use of the over-fractionalized resource, and thus making the improvement limited and typically under 30% 1,2. As a cost, high overhead exists with hypervisor which is used as an essential element when implementing computer virtualization. In addition, in current DC architecture, logical pooling of resources is still restricted by the physical coupling of in-rack hardware devices. Thus, current DC with limited resource utilization cannot support big data applications in an effective and economical manner. One of the keystones to cope with such low utilization problem is to introduce resource disaggregation, i.e., decoupling processor, memory, and I/O from its original arrangements and organizing resources into shared pools. Based on disaggregation, on-demand resource allocation and flexible run-time application deployment can be realized with optimized resource utilization, reducing Total Cost of Operation (TCO) of infrastructure. - Manageability: Conventional DCs only provide limited dynamic management for application deployment, configuration and run-time resource allocation. When scaling is needed in large-scaled DCs, lots of complex operations still need to be completed manually. To avoid complex manual re-structuring and re-configuration, intelligent self-management with higher level of automation is needed in future DC. Furthermore, to speed up the application deployment, software defined approaches to monitor and allocate resources with higher flexibility and adaptability is needed. - Energy Efficiency: Nowadays DCs collectively consume about 1.3% of all global power supply 3. As workload of big data drastically grows, future DCs will become extremely power-hungry. Energy has become a top-line operational expense, making energy efficiency become a critical issue in green DC design. However, the current DC architecture fails to achieve high energy efficiency, with the fact that a large portion of energy is consumed for cooling other than for IT devices. With deep insight into the composition of DC power consumption (Figure 3), design of each part in a DC can be more energy-efficient. To identify and eliminate inefficiencies and then radically cut energy costs, energy-saving design of DC should be top-to-bottom, not only at the system level but also at the level of individual components, servers and applications. Figure 3. DC Power Consumption Huawei s Vision on Future DC In Huawei s vision, to support future big data applications, future DCs should be enabled with the following features: - Big-Data-Oriented: Different from conventional computing-centric DCs, data-centric should be the key design concept of DC 3.0. Big data analysis based applications have highly varied characteristics, based on which DC 3.0 should provide optimized mechanisms for rapid transmission, highly concurrent processing of massive data, and also for application-diversified acceleration. - Adaptation for Task Variation: Big data analysis brings a booming of new applications, raising different resource demands that vary with time. In addition, applications have different need for resource usage priority. To meet such demand variation with high adaptability and efficiency, disaggregation of hardware devices to eliminate the in-rack coupling can be a key stone. Such a method enables flexible run-time configuration on resource allocation, ensuring the satisfactory of varied resource demand of different applications. - Intelligent Management: DC 3.0 involves massive hardware resource and high density run-time computation, requiring higher intelligent management with less need for manual operations. Application deployment and resource partitioning/allocation, even system diagnosis need to be conducted in automated approaches based on run-time monitoring and self-learning. Further, Service Level Agreement (SLA) guaranteeing in complex DC computing also requires a low-overhead run-time self-manageable solution Copyright Huawei Technologies Co., Ltd. Page 2
4 June 2014 Technical White Paper High Throughput Computing Data Center Architecture - High Scalability: Big data applications require high throughput low-latency data access within DCs. At the same time, extremely high concentration of data will be brought into DC facilities, driving DCs to grow into super-large-scaled with sufficient processing capability. It is essential to enable DCs to maintain acceptable performance level when ultra-large-scaling is conducted. Therefore, high scalability should be a critical feature that makes a DC design competitive for the big data era. - Open, Standard based and Flexible Service Layer: With the fact that there exists no unified enterprise design for dynamical resource management at different architecture or protocol layers, from IO, storage to UI. Resources cannot be dynamically allocated based on the time and location sensitive characteristics of the application or tenant workloads. Based on the common principles of abstraction and layering, open and standard based service-oriented architecture (SOA) has been proven effective and efficient and has enabled enterprises of all sizes to design and develop enterprise applications that can be easily integrated and orchestrated to match their ever-growing business and continuous process improvement needs, while software defined networking (SDN) has also been proven in helping industry giants such as Google to improve its DC network resource utilization with decoupling of control and data forwarding, and centralized resource optimization and scheduling. To provide competitive big data related service, an open, standard based service layer should be enabled in future DC to perform application driven optimization and dynamic scheduling of the pooled resources across various platforms. - Green: For future large-scale DC application in a green and environment friendly approach, energy efficient components, architectures and intelligent power management should be included in DC 3.0. The use of new mediums for computing, memory, storage and interconnects with intelligent on-demand power supply based on resource disaggregation help achieving fine-grained energy saving. In addition, essential intelligent energy management strategies should be included: 1) Tracking the operational energy costs associated with individual application-related transactions; 2) Figuring out key factors leading to energy costs and conduct energy-saving scheduling; 3) Tuning energy allocation according to actual demands; 4) Allowing DCs to dynamically adjust the power state of servers, and etc. DC3.0: HUAWEI HTC-DC HTC-DC Overview To meet the demands of high throughput in the big data era, current DC architecture suffers from critical bottlenecks, one of which is the difficulty to bridge the I/O performance gap between processor and memory/peripherals. To overcome such problem and enable DCs with full big-data processing capability, Huawei proposes a new high throughput computing DC architecture (HTC-DC), which avoids using conventional I/O mechanism, but uses ultra-high-bandwidth network to serve as the new I/O functionality. HTC-DC integrates newly-designed infrastructures based on resource disaggregation, interface-unified interconnects and a top-to-bottom optimized software stack. Big data oriented computing is supported by series of top-to-bottom accelerated data operations, light weighted management actions and the separation of data and management. Figure 4. Huawei HTC-DC Architecture Figure 4 shows the architecture overview of HTC-DC. Hardware resources are organized into different pools, which are links up together via interconnects. Management plane provides DC-level monitoring and coordination via DC Operating System (OS), while business-related data access operations are mainly conducted in data plane. In the management plane, a centralized Resource Page 3 Copyright Huawei Technologies Co., Ltd.
5 Technical White Paper High Throughput Computing Data Center Architecture June 2014 Management Center (RMC) conducts global resource partitioning/allocation and coordination/scheduling of the related tasks, with intelligent management functionalities such as load balancing, SLA guaranteeing, etc. Light-hypervisor provides abstract of pooled resources, and performs lightweight management that focuses on execution of hardware partitioning and resource allocation but not get involved in data access. Different from conventional hypervisor which includes data access functions in virtualization, light-hypervisor focuses on resource management, reducing complexity and overhead significantly. As a systematical DC3.0 design, HTC-DC also provides a complete software stack to support various DC applications. A programming framework with abundant APIs is designed to enable intelligent run-time self-management. Key Features Resource Disaggregated Hardware System Figure 5 illustrates the hardware architecture of HTC-DC, which is based on completely-disaggregated resource pooling. The computing pool is designed with heterogeneity. Each computing node (i.e. a board) carries multiple processors (e.g., x86, Atom, Power and ARM, etc.) for applicationdiversified data processing. Nodes in memory pool adopt hybrid memory such as DRAM and non-volatile memory (NVM) for optimized highthroughput access. In I/O pool, general-purposed extension (GPU, massive storage, external networking, etc.) can be supported via different types of ports on each I/O node. Each node in the three pools is equipped with a cloud controller which can conduct diversified on-board management for different types of nodes. Figure 5. Hardware Architecture of Huawei HTC-DC Pooled Resource Access Protocol (PRAP) To form a complete DC, all nodes in the three pools are interconnected via a network based on a new designed Pooled Resource Access Protocol (PRAP). To reduce the complexity of DC computing, HTC-DC introduces PRAP which has low-overhead packet format, RDMA-enabled simplified protocol stack, unifying the different interfaces among processor, memory and I/O. PRAP is implemented in the cloud controller of each node to provide interface-unified interconnects. PRAP supports hybrid flow/packet switching for inter-pool transmission acceleration, with near-to-ns latency. QoS can be guaranteed via run-time bandwidth allocation and priority-based scheduling. With simplified sequencing and data restoring mechanisms, light-weight lossless node-to-node transmission can be achieved. With resource disaggregation and unified interconnects, on-demand resource allocation can be supported by hardware with fine-granularity, and intelligent management can be conducted to achieve high resource utilization (Figure 6). RMC in the management plane provides per-minute based monitoring, on-demand coordination and allocation over hardware resources. Required resources from the pools can be appropriately allocated according to the characteristics of applications (e.g. Hadoop). Optimized algorithm assigns and schedules tasks on specific resource partitions where customized OSs are hosted. Thus, accessibility and bandwidth of remote memory and peripherals can be ensured within the partition, and hence end-to-end SLA can be guaranteed. Enabled with self-learning mechanisms, resource allocation and management in HTC-DC requires minimal manual operation, bringing intelligence and efficiency. Copyright Huawei Technologies Co., Ltd. Page 4
6 June 2014 Technical White Paper High Throughput Computing Data Center Architecture Huawei Many-Core Data Processing Unit Figure 6. On-demand Resource Allocation Based on Disaggregation To increase computing density, uplift data throughput and reduce communication latency, Huawei initializes Data Processing Unit (DPU, Figure 7) which adopts lightweight-core based many-core architecture, heterogeneous 3D stacking and Through-Silicon Vias (TSV) technologies. In HTC-DC, DPU can be used as the main computing component. The basic element of DPU is Processor-On-Die (POD), which consists of NoC, embedded NVM, clusters with heavy/light cores, and computing accelerators. With software-defined technologies, DPU supports resource partitioning and QoS-guaranteed local/remote resource sharing that allow application to directly access resources within its assigned partition. With decoupled multi-threading support, DPU executes speculative tasks off the critical path, resulting in enhanced overall performance. Therefore static power consumptions can be significantly reduced. Especially, some of the silicon chip area can be saved by using the optimal combinations of the number of synchronization and execution pipelines, while maintaining the same performance. NVM Based Storage Figure 7. Many-Core Processor Emerging NVM (including MRAM or STT-RAM, RRAM and PCM, etc.) has been demonstrated with superior performance over flash memories. Compared to conventional storage mediums (hard-disk, SSD, etc.), NVM provides more flattened data hierarchy with simplified layers, being essential to provide sufficient I/O bandwidth. In HTC-DC, NVMs are employed both as memory and storage. NVM is a promising candidate for DRAM replacement with competitive performance but lower power consumption. When used as storage, NVM provides 10 times higher IOPS than SSD 4, bringing higher data processing capability with enhanced I/O performance. Being less hindered by leakage problems with technology scaling and meanwhile having a lower cost of area, NVM is being explored extensively to be the complementary medium for the conventional SDRAM memory, even in L1 caches. Appropriately tuning of selective architecture parameters can reduce the performance penalty introduced by the NVM to extremely tolerable levels while obtaining over 30% of energy gains M. Komalan et.al., Feasibility exploration of NVM based I-cache through MSHR enhancements, Proceeding in DATE 14 Page 5 Copyright Huawei Technologies Co., Ltd.
7 Technical White Paper High Throughput Computing Data Center Architecture June 2014 Optical Interconnects To meet the demand brought by big data applications, DCs are driven to increase the data rate on links (>10Gbps) while enlarging the scale of interconnects (>1m) to host high-density components with low latency. However due to non-linear power consumption and signal attenuation, conventional copper based DC interconnects cannot have competitive performance with optical interconnects on signal integrity, power consumption, form factor and cost 6. In particular, optical interconnect has the advantage of offering large bandwidth density with low attenuation and crosstalk. Therefore a re-design of DC architecture is needed to fully utilize advantages of optical interconnects. HTC-DC enables high-throughput low-latency transmission with the support of interface-unified optical interconnects. The interconnection network of HTC-DC employs low-cost Tb/s-level throughput optical transceiver and co-packaged ASIC module, with tens of pj/bit energy consumption and low bit error rate for hundred-meter transmission. In addition, with using intra/inter-chip optical interconnects and balanced space-time-wavelength design, physical layer scalability and the overall power consumption can be enhanced. Using optical transmission that needs no signal synchronization, PRAP-based interconnects provide higher degree of freedom on topology choosing, and is enabled to host ultra-large-scale nodes. DC-Level Efficient Programming Framework To fully exploit the architectural advantages and provide flexible interface for service layer to facilitate better utilization of underlying hardware resource, HTC-DC provides a new programming framework at DC-level. Such a framework includes abundant APIs, bringing new programming methodologies. Via these APIs, applications can issue requests for hardware resource based on their demands. Through this, optimized OS interactions and self-learning-based run-time resource allocation/scheduling are enabled. In addition, the framework supports automatically moving computing operations to near-data nodes while keeping data transmission locality. DC overhead is minimized by introducing topology-aware resource scheduler and limiting massive data movement within the memory pool. In addition, Huawei has developed the Domain Specific Language (HDSL) as part of the framework to reduce the complexity of programming in HTC-DC for parallelism. HDSL includes a set of optimized data structures with operations (such as Parray, parallel processing the data in array) and a parallel processing library. One of the typical applications of HDSL is for graph computing. HDSL can enable efficient programming with competitive performance. Automated generation of distributed codes is also supported. SUMMARY With the increasing growth of data consumption, the age of big data brings new opportunities as well as great challenges for future DCs. DC technologies have been evolved from DC 1.0 (tightly-coupled server) to DC 2.0 (software virtualization) with the data processing capability being largely enhanced. However, the limited I/O throughput, energy inefficiency, low resource utilization and limited scalability of DC 2.0 become the bottlenecks to fulfill big data application demand. Therefore, a new, green and intelligent DC 3.0 architecture fitting different resource demands of various big-data applications is in need. With the design avoiding data access via conventional I/O but using ultra-high-bandwidth network to serve as the new I/O functionality, Huawei proposes HTC-DC as a new generation of DC design for future big data applications. HTC-DC architecture enables a DC to compute as a high throughput computer. Based on the resource disaggregated architecture and interface-unified PRAP network, HTC-DC integrates many-core processor, NVM, optical interconnects and DC-level efficient programming framework. Such a DC ensures PB-level data processing capability, supporting intelligent management, being easy and efficient to scale, and significantly saves energy. HTC-DC architecture is still being developed. Using Huawei s cutting-edge technologies, HTC-DC can be a promising candidate design for the future, ensuring a firm step for DCs to head for the big data era. 6. Silicon Photonics Market & Technologies : Big Investments, Small Business, Yole Development, 2012 Copyright Huawei Technologies Co., Ltd. Page 6
8 Copyright Huawei Technologies Co., Ltd All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd. Trademarks and Permissions and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders. Notice The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice. Huawei Technologies Co., Ltd. Address: Huawei Industrial Base Bantian, Longgang Shenzhen People's Republic of China Website: Tel:
CloudEngine Series Data Center Switches. Cloud Fabric Data Center Network Solution
Cloud Fabric Data Center Network Solution Cloud Fabric Data Center Network Solution Product and Solution Overview Huawei CloudEngine (CE) series switches are high-performance cloud switches designed for
SDN, a New Definition of Next-Generation Campus Network
SDN, a New Definition of Next-Generation Campus Network Contents Campus Evolution and Development Trends... 1 Three Changes to Drive the Campus Network Development... 2 Fundamental Changes in User Behaviors...2
Solving I/O Bottlenecks to Enable Superior Cloud Efficiency
WHITE PAPER Solving I/O Bottlenecks to Enable Superior Cloud Efficiency Overview...1 Mellanox I/O Virtualization Features and Benefits...2 Summary...6 Overview We already have 8 or even 16 cores on one
Huawei Cloud Data Center Solution
Huawei Cloud Data Center Solution Copyright Huawei Technologies Co., Ltd. 2015. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior
Software-Defined Networks Powered by VellOS
WHITE PAPER Software-Defined Networks Powered by VellOS Agile, Flexible Networking for Distributed Applications Vello s SDN enables a low-latency, programmable solution resulting in a faster and more flexible
HUAWEI OceanStor 9000. Load Balancing Technical White Paper. Issue 01. Date 2014-06-20 HUAWEI TECHNOLOGIES CO., LTD.
HUAWEI OceanStor 9000 Load Balancing Technical Issue 01 Date 2014-06-20 HUAWEI TECHNOLOGIES CO., LTD. Copyright Huawei Technologies Co., Ltd. 2014. All rights reserved. No part of this document may be
Ericsson Introduces a Hyperscale Cloud Solution
Ericsson Introduces a Hyperscale Cloud Solution The Ericsson HDS 8000 delivers a complete datacenter and cloud platform based on Intel Rack Scale Architecture Solution Brief Ericsson HDS 8000, part of
HUAWEI Tecal E6000 Blade Server
HUAWEI Tecal E6000 Blade Server Professional Trusted Future-oriented HUAWEI TECHNOLOGIES CO., LTD. The HUAWEI Tecal E6000 is a new-generation server platform that guarantees comprehensive and powerful
A Coordinated. Enterprise Networks Software Defined. and Application Fluent Programmable Networks
A Coordinated Virtual Infrastructure for SDN in Enterprise Networks Software Defined Networking (SDN), OpenFlow and Application Fluent Programmable Networks Strategic White Paper Increasing agility and
CloudEngine Series Data Center Switches. Cloud Fabric Data Center Network Solution
Cloud Fabric Data Center Network Solution Product and Solution Overview Huawei CloudEngine (CE) series switches are high-performance cloud switches designed for next-generation data centers and high-end
Advanced Core Operating System (ACOS): Experience the Performance
WHITE PAPER Advanced Core Operating System (ACOS): Experience the Performance Table of Contents Trends Affecting Application Networking...3 The Era of Multicore...3 Multicore System Design Challenges...3
Solution Brief Network Design Considerations to Enable the Benefits of Flash Storage
Solution Brief Network Design Considerations to Enable the Benefits of Flash Storage Flash memory has been used to transform consumer devices such as smartphones, tablets, and ultranotebooks, and now it
White Paper. Requirements of Network Virtualization
White Paper on Requirements of Network Virtualization INDEX 1. Introduction 2. Architecture of Network Virtualization 3. Requirements for Network virtualization 3.1. Isolation 3.2. Network abstraction
CloudEngine Series Data Center Switches
CloudEngine Series Data Center Switches CloudEngine Series Data Center Switches 2 CloudEngine Series Data Center Switches Product and Solution Overview Huawei CloudEngine (CE) series switches are high-performance
Huawei Business Continuity and Disaster Recovery Solution
Huawei Business Continuity and Disaster Recovery Solution Contents 01 Great Challenges to Business Continuity and Disaster Recovery 02 Huawei Business Continuity and Disaster Recovery Solution 02 Application
Elasticsearch on Cisco Unified Computing System: Optimizing your UCS infrastructure for Elasticsearch s analytics software stack
Elasticsearch on Cisco Unified Computing System: Optimizing your UCS infrastructure for Elasticsearch s analytics software stack HIGHLIGHTS Real-Time Results Elasticsearch on Cisco UCS enables a deeper
Hyperscale cloud. ericsson White paper 284 23-3289 Uen May 2016
ericsson White paper 284 23-3289 Uen May 2016 Hyperscale cloud REIMAGINING DATA CENTERS FROM HARDWARE TO APPLICATIONS The hyperscale approach can help industries meet the IT capacity demands of the Networked
Optimizing Data Center Networks for Cloud Computing
PRAMAK 1 Optimizing Data Center Networks for Cloud Computing Data Center networks have evolved over time as the nature of computing changed. They evolved to handle the computing models based on main-frames,
Cisco Unified Data Center
Solution Overview Cisco Unified Data Center Simplified, Efficient, and Agile Infrastructure for the Data Center What You Will Learn The data center is critical to the way that IT generates and delivers
Unified Computing Systems
Unified Computing Systems Cisco Unified Computing Systems simplify your data center architecture; reduce the number of devices to purchase, deploy, and maintain; and improve speed and agility. Cisco Unified
Cloud Fabric. Huawei Cloud Fabric-Cloud Connect Data Center Solution HUAWEI TECHNOLOGIES CO.,LTD.
Cloud Fabric Huawei Cloud Fabric-Cloud Connect Data Center Solution HUAWEI TECHNOLOGIES CO.,LTD. Huawei Cloud Fabric - Cloud Connect Data Center Solution Enable Data Center Networks to Be More Agile for
Pluribus Netvisor Solution Brief
Pluribus Netvisor Solution Brief Freedom Architecture Overview The Pluribus Freedom architecture presents a unique combination of switch, compute, storage and bare- metal hypervisor OS technologies, and
OceanStor UDS Massive Storage System Technical White Paper Reliability
OceanStor UDS Massive Storage System Technical White Paper Reliability Issue 1.1 Date 2014-06 HUAWEI TECHNOLOGIES CO., LTD. 2013. All rights reserved. No part of this document may be reproduced or transmitted
Simple. Extensible. Open.
White Paper Simple. Extensible. Open. Unleash the Value of Data with EMC ViPR Global Data Services Abstract The following paper opens with the evolution of enterprise storage infrastructure in the era
Radware ADC-VX Solution. The Agility of Virtual; The Predictability of Physical
Radware ADC-VX Solution The Agility of Virtual; The Predictability of Physical Table of Contents General... 3 Virtualization and consolidation trends in the data centers... 3 How virtualization and consolidation
HUAWEI TECHNOLOGIES CO., LTD. HUAWEI FusionServer X6800 Data Center Server
HUAWEI TECHNOLOGIES CO., LTD. HUAWEI FusionServer X6800 Data Center Server HUAWEI FusionServer X6800 Data Center Server Data Center Cloud Internet App Big Data HPC As the IT infrastructure changes with
Radware ADC-VX Solution. The Agility of Virtual; The Predictability of Physical
Radware ADC-VX Solution The Agility of Virtual; The Predictability of Physical Table of Contents General... 3 Virtualization and consolidation trends in the data centers... 3 How virtualization and consolidation
Huawei Service-Driven Distributed Cloud Data Center (SD-DC 2 ) White Paper
Huawei Service-Driven Distributed Cloud Data Center (SD-DC 2 ) White Paper Prepared by Chen Jian 00224079 Date 2015-02-13 Reviewed by Yang Min 00224058 Wang Jinjun 00257498 Li Ke 00246921 Date 2015-02-13
Bricata Next Generation Intrusion Prevention System A New, Evolved Breed of Threat Mitigation
Bricata Next Generation Intrusion Prevention System A New, Evolved Breed of Threat Mitigation Iain Davison Chief Technology Officer Bricata, LLC WWW.BRICATA.COM The Need for Multi-Threaded, Multi-Core
1 Network Service Development Trends and Challenges
1 Network Service Development Trends and Challenges Mobility 1. Shift the focus from technology, device, and connectivity to services and user experience. Cloud Computing 2. Shift from single-point security
The Next Phase of Datacenter Network Resource Management and Automation March 2011
I D C T E C H N O L O G Y S P O T L I G H T The Next Phase of Datacenter Network Resource Management and Automation March 2011 Adapted from Worldwide Datacenter Network 2010 2015 Forecast and Analysis
The Open Cloud Near-Term Infrastructure Trends in Cloud Computing
The Open Cloud Near-Term Infrastructure Trends in Cloud Computing Markus Leberecht BELNET Networking Conference 25-Oct-2012 1 Growth & IT Challenges Drive Need for Cloud Computing IT Pros Growth IT Challenges
Virtual Machine in Data Center Switches Huawei Virtual System
Virtual Machine in Data Center Switches Huawei Virtual System Contents 1 Introduction... 3 2 VS: From the Aspect of Virtualization Technology... 3 3 VS: From the Aspect of Market Driving... 4 4 VS: From
Relational Databases in the Cloud
Contact Information: February 2011 zimory scale White Paper Relational Databases in the Cloud Target audience CIO/CTOs/Architects with medium to large IT installations looking to reduce IT costs by creating
Different NFV/SDN Solutions for Telecoms and Enterprise Cloud
Solution Brief Artesyn Embedded Technologies* Telecom Solutions Intel Xeon Processors Different NFV/SDN Solutions for Telecoms and Enterprise Cloud Networking solutions from Artesyn Embedded Technologies*
SDN Applications in Today s Data Center
SDN Applications in Today s Data Center Harry Petty Director Data Center & Cloud Networking Cisco Systems, Inc. Santa Clara, CA USA October 2013 1 Customer Insights: Research/ Academia OpenFlow/SDN components
White Paper. Innovate Telecom Services with NFV and SDN
White Paper Innovate Telecom Services with NFV and SDN 2 NEXCOM White Paper As telecommunications companies seek to expand beyond telecommunications services to data services, they find their purposebuilt
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK SOFTWARE DEFINED NETWORKING A NEW ARCHETYPE PARNAL P. PAWADE 1, ANIKET A. KATHALKAR
THE SDN TRANSFORMATION A Framework for Sustainable Success
WHITE PAPER THE SDN TRANSFORMATION A Framework for Sustainable Success The promise of Software Defined Networking (SDN) is gaining more and more attention as traffic growth increases the costs and complexity
SDN/Virtualization and Cloud Computing
SDN/Virtualization and Cloud Computing Agenda Software Define Network (SDN) Virtualization Cloud Computing Software Defined Network (SDN) What is SDN? Traditional Network and Limitations Traditional Computer
How the Software-Defined Data Center Is Transforming End User Computing
How the Software-Defined Data Center Is Transforming End User Computing The Essentials Series sponsored by David Davis SDDC Powered Virtual Desktops and Applications... 1 Three Pillars of SDDC and Desktop/Application
Next-generation data center infrastructure
ericsson White paper Uen 284 23-3264 February 2015 Next-generation data center infrastructure MAKING HYPERSCALE AVAILABLE In the Networked Society, enterprises will need 10 times their current IT capacity
CS6204 Advanced Topics in Networking
CS6204 Advanced Topics in Networking Assoc Prof. Chan Mun Choon School of Computing National University of Singapore Aug 14, 2015 CS6204 Lecturer Chan Mun Choon Office: COM2, #04-17 Email: [email protected]
Emerging storage and HPC technologies to accelerate big data analytics Jerome Gaysse JG Consulting
Emerging storage and HPC technologies to accelerate big data analytics Jerome Gaysse JG Consulting Introduction Big Data Analytics needs: Low latency data access Fast computing Power efficiency Latest
Simplifying Big Data Deployments in Cloud Environments with Mellanox Interconnects and QualiSystems Orchestration Solutions
Simplifying Big Data Deployments in Cloud Environments with Mellanox Interconnects and QualiSystems Orchestration Solutions 64% of organizations were investing or planning to invest on Big Data technology
Huawei Smart Education Solution
Copyright Huawei Technologies Co., Ltd. 2013. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies
The Shortcut Guide to Balancing Storage Costs and Performance with Hybrid Storage
The Shortcut Guide to Balancing Storage Costs and Performance with Hybrid Storage sponsored by Dan Sullivan Chapter 1: Advantages of Hybrid Storage... 1 Overview of Flash Deployment in Hybrid Storage Systems...
Data Center and Cloud Computing Market Landscape and Challenges
Data Center and Cloud Computing Market Landscape and Challenges Manoj Roge, Director Wired & Data Center Solutions Xilinx Inc. #OpenPOWERSummit 1 Outline Data Center Trends Technology Challenges Solution
An Oracle White Paper October 2013. Realizing the Superior Value and Performance of Oracle ZFS Storage Appliance
An Oracle White Paper October 2013 Realizing the Superior Value and Performance of Oracle ZFS Storage Appliance Executive Overview... 2 Introduction... 3 Delivering Superior Performance at a Lower Price...
Advancing Applications Performance With InfiniBand
Advancing Applications Performance With InfiniBand Pak Lui, Application Performance Manager September 12, 2013 Mellanox Overview Ticker: MLNX Leading provider of high-throughput, low-latency server and
ebay Storage, From Good to Great
ebay Storage, From Good to Great Farid Yavari Sr. Storage Architect - Global Platform & Infrastructure September 11,2014 ebay Journey from Good to Great 2009 to 2011 TURNAROUND 2011 to 2013 POSITIONING
Simplified Management With Hitachi Command Suite. By Hitachi Data Systems
Simplified Management With Hitachi Command Suite By Hitachi Data Systems April 2015 Contents Executive Summary... 2 Introduction... 3 Hitachi Command Suite v8: Key Highlights... 4 Global Storage Virtualization
How To Connect Virtual Fibre Channel To A Virtual Box On A Hyperv Virtual Machine
Virtual Fibre Channel for Hyper-V Virtual Fibre Channel for Hyper-V, a new technology available in Microsoft Windows Server 2012, allows direct access to Fibre Channel (FC) shared storage by multiple guest
Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association
Making Multicore Work and Measuring its Benefits Markus Levy, president EEMBC and Multicore Association Agenda Why Multicore? Standards and issues in the multicore community What is Multicore Association?
Software-Defined Storage: What it Means for the IT Practitioner WHITE PAPER
What it Means for the IT Practitioner WHITE PAPER Extending the Power of Virtualization to Storage Server virtualization has changed the way IT runs data centers across the world. According to Gartner,
Software-Defined Networking Architecture Framework for Multi-Tenant Enterprise Cloud Environments
Software-Defined Networking Architecture Framework for Multi-Tenant Enterprise Cloud Environments Aryan TaheriMonfared Department of Electrical Engineering and Computer Science University of Stavanger
Software Define Storage (SDs) and its application to an Openstack Software Defined Infrastructure (SDi) implementation
Software Define Storage (SDs) and its application to an Openstack Software Defined Infrastructure (SDi) implementation This paper discusses how data centers, offering a cloud computing service, can deal
ALCATEL-LUCENT ENTERPRISE DATA CENTER SWITCHING SOLUTION Automation for the next-generation data center
ALCATEL-LUCENT ENTERPRISE DATA CENTER SWITCHING SOLUTION Automation for the next-generation data center A NEW NETWORK PARADIGM What do the following trends have in common? Virtualization Real-time applications
NEC s Carrier-Grade Cloud Platform
NEC s Carrier-Grade Cloud Platform Deploying Virtualized Network Functions in Cloud INDEX 1. Paving the way to Telecom Network Function Virtualization P.3 2. Open Carrier-grade Hypervisor P.3 Latency and
Data Center is the Foundation of Carrier ICT Transformation. The challenges of building a service driven data center
P a g e 1 Data Center is the Foundation of Carrier ICT Transformation As we transform into the digital economy, the role of the Data Center has evolved from just being a container holding its individual
Private cloud computing advances
Building robust private cloud services infrastructures By Brian Gautreau and Gong Wang Private clouds optimize utilization and management of IT resources to heighten availability. Microsoft Private Cloud
Fabrics that Fit Matching the Network to Today s Data Center Traffic Conditions
Sponsored by Fabrics that Fit Matching the Network to Today s Data Center Traffic Conditions In This Paper Traditional network infrastructures are often costly and hard to administer Today s workloads
Leveraging SDN and NFV in the WAN
Leveraging SDN and NFV in the WAN Introduction Software Defined Networking (SDN) and Network Functions Virtualization (NFV) are two of the key components of the overall movement towards software defined
Brocade Solution for EMC VSPEX Server Virtualization
Reference Architecture Brocade Solution Blueprint Brocade Solution for EMC VSPEX Server Virtualization Microsoft Hyper-V for 50 & 100 Virtual Machines Enabled by Microsoft Hyper-V, Brocade ICX series switch,
Understanding Data Locality in VMware Virtual SAN
Understanding Data Locality in VMware Virtual SAN July 2014 Edition T E C H N I C A L M A R K E T I N G D O C U M E N T A T I O N Table of Contents Introduction... 2 Virtual SAN Design Goals... 3 Data
Achieving Real-Time Business Solutions Using Graph Database Technology and High Performance Networks
WHITE PAPER July 2014 Achieving Real-Time Business Solutions Using Graph Database Technology and High Performance Networks Contents Executive Summary...2 Background...3 InfiniteGraph...3 High Performance
Cloud-ready network architecture
IBM Systems and Technology Thought Leadership White Paper May 2011 Cloud-ready network architecture 2 Cloud-ready network architecture Contents 3 High bandwidth with low latency 4 Converged communications
How To Manage A Virtualization Server
Brain of the Virtualized Data Center Contents 1 Challenges of Server Virtualization... 3 1.1 The virtual network breaks traditional network boundaries... 3 1.2 The live migration function of VMs requires
Zenoss for Cisco ACI: Application-Centric Operations
Zenoss for Cisco ACI: Application-Centric Operations Introduction Zenoss is a systems management software company focused on the challenges of operating and helping ensure the delivery of large-scale IT
Huawei esight Brief Product Brochure
Huawei esight Brief Product Brochure esight Integrated Enterprise NMS As the network scales and the number of enterprise network applications continue to grow, so does the number of devices, such as multi-service
Flexible SDN Transport Networks With Optical Circuit Switching
Flexible SDN Transport Networks With Optical Circuit Switching Multi-Layer, Multi-Vendor, Multi-Domain SDN Transport Optimization SDN AT LIGHT SPEED TM 2015 CALIENT Technologies 1 INTRODUCTION The economic
Flash Memory Arrays Enabling the Virtualized Data Center. July 2010
Flash Memory Arrays Enabling the Virtualized Data Center July 2010 2 Flash Memory Arrays Enabling the Virtualized Data Center This White Paper describes a new product category, the flash Memory Array,
SDN and NFV in the WAN
WHITE PAPER Hybrid Networking SDN and NFV in the WAN HOW THESE POWERFUL TECHNOLOGIES ARE DRIVING ENTERPRISE INNOVATION rev. 110615 Table of Contents Introduction 3 Software Defined Networking 3 Network
From Bus and Crossbar to Network-On-Chip. Arteris S.A.
From Bus and Crossbar to Network-On-Chip Arteris S.A. Copyright 2009 Arteris S.A. All rights reserved. Contact information Corporate Headquarters Arteris, Inc. 1741 Technology Drive, Suite 250 San Jose,
Low-Overhead Hard Real-time Aware Interconnect Network Router
Low-Overhead Hard Real-time Aware Interconnect Network Router Michel A. Kinsy! Department of Computer and Information Science University of Oregon Srinivas Devadas! Department of Electrical Engineering
Cloud, SDN and the Evolution of
Cloud, SDN and the Evolution of Enterprise Networks Neil Rickard Gartner is a registered trademark of Gartner, Inc. or its affiliates. This publication may not be reproduced or distributed in any form
From Ethernet Ubiquity to Ethernet Convergence: The Emergence of the Converged Network Interface Controller
White Paper From Ethernet Ubiquity to Ethernet Convergence: The Emergence of the Converged Network Interface Controller The focus of this paper is on the emergence of the converged network interface controller
Grid Computing Vs. Cloud Computing
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 6 (2013), pp. 577-582 International Research Publications House http://www. irphouse.com /ijict.htm Grid
Support a New Class of Applications with Cisco UCS M-Series Modular Servers
Solution Brief December 2014 Highlights Support a New Class of Applications Cisco UCS M-Series Modular Servers are designed to support cloud-scale workloads In which a distributed application must run
Powerful Duo: MapR Big Data Analytics with Cisco ACI Network Switches
Powerful Duo: MapR Big Data Analytics with Cisco ACI Network Switches Introduction For companies that want to quickly gain insights into or opportunities from big data - the dramatic volume growth in corporate
MRV EMPOWERS THE OPTICAL EDGE.
Pro-Vision Service Delivery Software MRV EMPOWERS THE OPTICAL EDGE. WE DELIVER PACKET AND OPTICAL SOLUTIONS ORCHESTRATED WITH INTELLIGENT SOFTWARE TO MAKE SERVICE PROVIDER NETWORKS SMARTER. www.mrv.com
Enterprise Storage Solution for Hyper-V Private Cloud and VDI Deployments using Sanbolic s Melio Cloud Software Suite April 2011
Enterprise Storage Solution for Hyper-V Private Cloud and VDI Deployments using Sanbolic s Melio Cloud Software Suite April 2011 Executive Summary Large enterprise Hyper-V deployments with a large number
Why Service Providers Need an NFV Platform Strategic White Paper
Why Service Providers Need an NFV Platform Strategic White Paper Network Functions Virtualization (NFV) brings proven cloud computing and IT technologies into the networking domain to help service providers
Photonic Switching Applications in Data Centers & Cloud Computing Networks
Photonic Switching Applications in Data Centers & Cloud Computing Networks 2011 CALIENT Technologies www.calient.net 1 INTRODUCTION In data centers and networks, video and cloud computing are driving an
Control Plane architectures for Photonic Packet/Circuit Switching-based Large Scale Data Centres
Control Plane architectures for Photonic Packet/Circuit Switching-based Large Scale Data Centres Salvatore Spadaro Optical Communications group Universitat Politècnica de Catalunya (UPC) Barcelona, Spain
Get More Scalability and Flexibility for Big Data
Solution Overview LexisNexis High-Performance Computing Cluster Systems Platform Get More Scalability and Flexibility for What You Will Learn Modern enterprises are challenged with the need to store and
Performance Management for Cloud-based Applications STC 2012
Performance Management for Cloud-based Applications STC 2012 1 Agenda Context Problem Statement Cloud Architecture Key Performance Challenges in Cloud Challenges & Recommendations 2 Context Cloud Computing
The Next Evolution in Storage Virtualization Management
The Next Evolution in Storage Virtualization Management Global Storage Virtualization Simplifies Management, Lowers Operational Costs By Hitachi Data Systems July 2014 Contents Executive Summary... 3 Introduction...
Switching Solution Creating the foundation for the next-generation data center
Alcatel-Lucent Enterprise Data Center Switching Solution Creating the foundation for the next-generation data center a new network paradigm What do the following trends have in common? Virtualization Real-time
How To Create A Network Access Control (Nac) Solution
Huawei Terminal Security Management Solution Create Enterprise Intranet Security Terminal Security Management Solution 01 Introduction According to the third-party agencies such as the Computer Security
An Oracle White Paper November 2010. Achieving New Levels of Datacenter Performance and Efficiency with Software-optimized Flash Storage
An Oracle White Paper November 2010 Achieving New Levels of Datacenter Performance and Efficiency with Software-optimized Flash Storage Overview Escalating data growth, ongoing budgetary pressures, and
Overview of Next-Generation Green Data Center
Overview of Next-Generation Green Data Center Kouichi Kumon The dramatic growth in the demand for data centers is being accompanied by increases in energy consumption and operating costs. To deal with
The Advantages of Multi-Port Network Adapters in an SWsoft Virtual Environment
The Advantages of Multi-Port Network Adapters in an SWsoft Virtual Environment Introduction... 2 Virtualization addresses key challenges facing IT today... 2 Introducing Virtuozzo... 2 A virtualized environment
Transform Your Business and Protect Your Cisco Nexus Investment While Adopting Cisco Application Centric Infrastructure
White Paper Transform Your Business and Protect Your Cisco Nexus Investment While Adopting Cisco Application Centric Infrastructure What You Will Learn The new Cisco Application Centric Infrastructure
