3D Printing and Structural Analysis: Is There an Alternative to FE Analysis for Quick Design Info & for FEM Validation?
|
|
|
- Britney Hart
- 9 years ago
- Views:
Transcription
1 Orange County Chapter 3D Printing and Structural Analysis: Is There an Alternative to FE Analysis for Quick Design Info & for FEM Validation? FW Palmieri, Ph.D. 3/24/2014 Copyright 2014 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a trademark of Raytheon Company Page 1
2 In spite of the advances we have made in recent years using computer technology to improve the accuracy of stresses predicted to occur in our aerospace structures, and in the process improve structural efficiency and hence reduce weight, we have not really gained much in terms of the lead time associated therein with completion of the analyses. In fact, in many instances our lead time from receipt of the design/cad details to output of information to the designers has actually increased along with the associated analysis costs. Page 2
3 This has been justified by the fact that we have increased the aforementioned structural optimization (i.e., less weight). Yet: "... recent studies have shown that, surprisingly enough, modern methods do not do a better job of predicting failure of the resulting designs, as shown by recent Air Force data." This means that, although we may have reduced weight, we have not improved our capability for predicting failures. Page 3
4 There exists an idea for a process improvement that would potentially produce a shorter interval between receipt of the design and evaluation of its structural integrity, at least as far as strength under static or dynamic loads or stiffness is concerned. What is that idea? Page 4
5 This idea is to simply utilize the 3D Printing design specimen as a basis for modern photoelastic evaluation techniques. These specimens are currently being developed as standard practice in many industries today, including the aerospace industry. The PhotoStress sheet material is cast on a flat surface and then applied to any flat, single or doubly contoured surface of a test item and bonded thereupon. The test item can then be subjected to static and even dynamic applied loads and modern photoelasticity techniques can permit the accurate evaluation of stress fields arising in these plastic, metallic or composite specimens through optical interference patterns and stroboscopic technology. PhotoStress is a registered trademark of Vishay Precision Group Page 5
6 The following material regarding the definition of 3D Printing, the various processes and the materials that are involved therein have been obtained with permission from the web site*: entitled: A Brief Tutorial What is Rapid Prototyping *Worldwide Guide to Rapid Prototyping web-site (C) Copyright Castle Island Co., All rights reserved. Page 6
7 3D Printing is now the most common name given to a host of related technologies that are used to fabricate physical objects directly from CAD data sources. These methods are unique in that they add and bond materials in layers to form objects. While 3D printing has displaced rapid prototyping for top honors, that term is still quite popular. Such systems are also known by the names: additive manufacturing, additive fabrication, solid freeform fabrication (SFF) and layered manufacturing and many others. Today's additive technologies offer advantages in many applications compared to classical subtractive fabrication methods such as milling or turning: Objects can be formed with any geometric complexity or intricacy without the need for elaborate machine setup or final assembly; Rapid prototyping systems reduce the construction of complex objects to a manageable, straightforward, and relatively fast process. Page 7
8 This has resulted in their wide use by engineers as a way to reduce time to market in manufacturing, to better understand and communicate product designs, and to make rapid tooling to manufacture those products. Surgeons, architects, artists and individuals from many other disciplines also routinely use the technology. With the advent of low-cost and open-source systems hobbyists and consumers are also now using additive technologies in substantial numbers. Page 8
9 Additive methods aren t a solution to every part fabrication problem. After all, CNC technology is economical, widely understood and available, offers wide material selection and excellent accuracy. However, if the requirement involves producing a part or object of even moderately complex geometry, and doing so quickly - RP has the advantage. It's very easy to look at extreme cases and make a determination of which technology route to pursue, CNC or RP. For many other less extreme cases the selection crossover line is hazy, moves all the time, and depends on a number of variably-weighted, case-dependent factors. While the accuracy of rapid prototyping isn't generally as good as CNC, it's adequate today for a wide range of exacting applications. Page 9
10 The materials used in rapid prototyping are limited and dependent on the method chosen. However, the range and properties available are growing quickly. Numerous plastics, ceramics, metals ranging from aluminum, stainless steel to titanium, and wood-like paper are available. At any rate, numerous secondary processes are available to convert patterns made in a rapid prototyping process to final materials or tools. Page 10
11 The names of specific processes themselves are also often used as synonyms for the entire field. Among these are stereolithography (SLA for stereolithography apparatus), selective laser sintering (SLS), fused deposition modeling (FDM), laminated object manufacturing (LOM), inkjet systems and three dimensional printing (3DP). Each of these technologies - and many others - has its singular strengths and weaknesses. Page 11
12 Page 12
13 Page 13
14 What is the Modern PhotoStress Methodology? I have taken the liberty of extracting some of the information presented on Vishay Precision Group s web site with their approval and included it in this presentation in the following slides*: (see: * Courtesy of Micro-Measurements, Raleigh, NC, USA Page 14
15 Page 15
16 Page 16
17 Page 17
18 Page 18
19 So, what I have presented in the material we have just reviewed is a combination of: 1) the creation of rapid prototyping models, 2) using modern PhotoStress techniques, and 3) structural tests to obtain quick turn-around information on the structural integrity of potential designs. Of course, one could argue that it would take time and money to design and build a test fixture and this would offset the potential savings. So, this trade-off would have to be evaluated for each potential use. It would be interesting to investigate the feasibility of the application of this technique to the evaluation of the structural capability of a typical aerospace component and compare the results with the cost and time that would be required for the structural analysis by our conventional finite element method (as well as, perhaps, the accuracy of the predictions). It could also be useful for obtaining rapid validation of our analytic models (as shown in one of the previous slides), something that ordinarily does not happen until after the design is finalized, hardware produced and environmental tests conducted. Page 19
20 David England Product Marketing Engineer I also received the following interesting comment from Vishay s Product Marketing Engineer, David England: What you didn t mention, and may find interesting is that at least two rapid prototype materials (clearvue and Accura 60) are strain sensitive and bi-refringent as produced. Unfortunately their K value or optical sensitivity isn t enough to be useful in practical applications. What would be ideal would be to print an object, spray the far side with an aluminized paint and use a reflection polariscope to study the loaded structure. This would save the user from the craftsmanship required in coating preparation. In the future, this method may prove to greater simplify the whole stress/strain visualization process. Page 20
RAPID PROTOTYPING. Learning Objectives: By the end of the lecture the student should be able to: Explain the fundamentals of Rapid Prototyping
RAPID PROTOTYPING Learning Objectives: By the end of the lecture the student should be able to: Explain the fundamentals of Rapid Prototyping Outline and explain differences of Rapid Prototyping Technologies
Tool Design and Concurrent Engineering using Rapid Tooling Construction Methods
Section Number 3563 Tool Design and Concurrent Engineering using Rapid Tooling Construction Methods Nicole Hoekstra Engineering Technology Department Western Washington University Abstract Prior to rapid
Rapid prototyping. CAD / lecture. October 5, 2010. TO&I Vermelding onderdeel organisatie
1 Rapid prototyping is: Rapid prototyping is an additive (layered) digital fabrication technology Layers of material are added forming the final 3d physical model The digital data of the virtual 3d model
RAPID PRODUCT DEVELOPMENT
Rapid Product Development and Rapid Prototyping service American Engineering Group (AEG) offer rapid product development service, a rapid and more costeffective solution for manufacturing. Bringing new
Tutorial: Rapid Prototyping Technologies
1. Introduction Tutorial: Rapid Prototyping Technologies Rapid prototyping (RP) is a new manufacturing technique that allows for fast fabrication of computer models designed with three-dimension (3D) computer
How To Build A 3D Model From Scratch
SERVICES AND CAPABILITIES 1. Rapid prototyping What is rapid prototyping? Rapid prototyping (RP) or more recently Free Form Fabrication refers to the fabrication of a physical, three-dimensional part of
Additive Manufacturing: Processes and Standard Terminology
Additive Manufacturing: Processes and Standard Terminology Gary Coykendall Copyright Edmonds Community College 2012; Permission granted for use and reproduction for educational purposes only. Abstract
TUTOR NOTES. How to use this pack. Rapid prototyping in schools. Definition
TUTOR NOTES How to use this pack This pack is aimed at students studying for both Intermediate 2 and Higher Product Design. Students of other subjects might find it useful, and a Curriculum Map has been
How to Effectively Move from 3D Printing to Injection Molding. Tony Holtz Technical Specialist, Proto Labs
How to Effectively Move from 3D Printing to Injection Molding Tony Holtz Technical Specialist, Proto Labs Overview 3D Printing CNC Machining Injection Molding Design Considerations for Injection Molding
CHAPTER 1. Introduction to CAD/CAM/CAE Systems
CHAPTER 1 1.1 OVERVIEW Introduction to CAD/CAM/CAE Systems Today s industries cannot survive worldwide competition unless they introduce new products with better quality (quality, Q), at lower cost (cost,
Theoretical and Experimental Contributions Regarding the Optimization of Rapid Prototyping Technologies
TECHNICAL UNIVERSITY OF CLUJ-NAPOCA FACULTY OF MACHINE BUILDING Theoretical and Experimental Contributions Regarding the Optimization of Rapid Prototyping Technologies Doctoral thesis ABSTRACT Scientific
Product Design (Part 4)
Product Design (Part 4) Engineering Drawing Chapter 16 Drawing Standards Line conventions and lettering- ANSI/ASME Y14.2M-1992 Multiview and sectional view drawings- ANSI/ASME Y14.3M-1994 Pictorial drawing-ansi/asme
Automotive Applications of 3D Laser Scanning Introduction
Automotive Applications of 3D Laser Scanning Kyle Johnston, Ph.D., Metron Systems, Inc. 34935 SE Douglas Street, Suite 110, Snoqualmie, WA 98065 425-396-5577, www.metronsys.com 2002 Metron Systems, Inc
Innovation From Concept to Production
Industrial Design Product Development Rapid Prototypes 3D Mold Design Short Run Production Legacy Data Translation Paradigm Engineering, Inc. is built on a foundation of innovation. Our unique expertise
RAPID PROTOTYPING. Principles and Applications. RAFIQ NOORANI, Ph.D. Professor of Mechanical Engineering Loyola Marymount University Los Angeles, CA
RAPID PROTOTYPING Principles and Applications RAFIQ NOORANI, Ph.D. Professor of Mechanical Engineering Loyola Marymount University Los Angeles, CA WILEY JOHN WILEY & SONS, INC. CONTENTS Preface Acknowledgments
Decision Support System for Rapid Prototyping Process Selection
International Journal of Scientific and Research Publications, Volume 4, Issue 1, January 2014 1 Decision Support System for Rapid Prototyping Process Selection Vikram Shende*, Dr. Prafulla Kulkarni**
Ningbo Yinzhou Keao Prototyping & Mould Factory Services include : CNC machining prototypes,
Ningbo Yinzhou Keao Prototyping & Mould Factory Services include : CNC machining prototypes, STEREOLITHOGRAPHY (SLA) Selective Laser Sintering (SLS) RTV MOLDING AND CAST URETHANE PROTOTYPES Tel : +86 574
Advanced Manufacturing Choices
Advanced Manufacturing Choices MAE 195-MAE 156 Spring 2009, Dr. Marc Madou Class 8: Rapid Prototyping By Dr. Miodrag Micic, [email protected] Two Ways for Fabrication: Substractive manufacturing Additive
Andreas Gebhardt. Rapid Prototyping HANSER. Hanser Publishers, Munich Hanser Gardner Publications, Inc., Cincinnati
Andreas Gebhardt Rapid Prototyping HANSER Hanser Publishers, Munich Hanser Gardner Publications, Inc., Cincinnati Contents 1 Product Development - Product Formation - Rapid Product Development 1 1.1 New
PRELIMINARY COMPONENT INTEGRATION USING RAPID PROTOTYPING TECHNIQUES
J! PRELIMINARY COMPONENT INTEGRATION USING RAPID PROTOTYPING TECHNIQUES by Ken Cooper National Aeronautics and Space Administration Building 4707, Marshall Space Flight Center George C. Marshall Space
MEM23131A Evaluate rapid prototyping applications
MEM23131A Evaluate rapid prototyping applications Release: 1 MEM23131A Evaluate rapid prototyping applications Modification History Release 1 (MEM05v9). Unit Descriptor This unit of competency covers the
DECISION SUPPORT SYSTEM IN RAPID PROTOTYPING TECHNOLOGY Arkadiusz Rzucidło, Grzegorz Budzik, Łukasz Przeszłowski
Transactions on Business and Engineering Intelligent Applications 111 DECISION SUPPORT SYSTEM IN RAPID PROTOTYPING TECHNOLOGY Arkadiusz Rzucidło, Grzegorz Budzik, Łukasz Przeszłowski Abstract: Article
Allison Rae Paramount Industries Rhode Island School of Design ID 87. Prototyping Overview
Allison Rae Paramount Industries Rhode Island School of Design ID 87 Prototyping Overview Prototyping for Mechanical Parts Paramount Industries Started as prototyping vendor, then added: Industrial Design
GLOBAL MANUFACTURING. ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ
GLOBAL MANUFACTURING ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ Workpiece Presentation Powder Metallurgy and Additive Manufacturing [#7] Powder Metallurgy PM parts can
Rapid Prototyping. Training Objective
Training Objective After watching the program and reviewing this printed material, the viewer will understand the principles and practical applications of Rapid Prototyping. Basic concepts are explained
Determining the Right Molding Process for Part Design
Determining the Right Molding Process for Part Design How RIM Molding Advantages Compare with Traditional Production Technologies Page 2 Introduction This White Paper details the part production processes
e-manufacturing Solutions
Laser-sintering produces directly from 3D CAD data fast, flexibly and cost-effectively. Process and Benefits Process Laser-sintering is a generative layer manufacturing technology. Any three-dimensional
MANUFACTURING THE FUTURE
Paul Miller 803-554-3590 [email protected] MANUFACTURING THE FUTURE PAUL MILLER DIRECTOR OF SALES WWW.3DSYSTEMS.COM NYSE:DDD 2013 3DSYSTEMS A 3D PRINTER FOR YOU RESULTING IN UNMATCHED 3D PRINTER
How To Design A 3D Model For A 3D Printer
Poznan 11. 12.10.2010 RAPIDPROTOTYPINGSERVICE MODEL BY THE CDIO *) EDUCATIONAL FRAMEWORK *) Conceive Design Implement Operate Lauri Tenhunen Seppo Aarnio CDIO INNOVATION PROCESSES OF INDUSTRY RPS ELEMENTS
Production of Wind Tunnel Testing Models with use of Rapid Prototyping Methods
Production of Wind Tunnel Testing Models with use of Rapid Prototyping Methods R. ADELNIA 1, S. DANESHMAND 2, S. AGHANAJAFI 3 Mechanical Group, Majlesi Azad University Isfahan IRAN Abstract: In a time
Back to Elements - Tetrahedra vs. Hexahedra
Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different
BRINGING INNOVATIVE MEDICAL PRODUCTS TO MARKET FASTER
W H I T E P A P E R BRINGING INNOVATIVE MEDICAL PRODUCTS TO MARKET FASTER Overview To succeed in today s medical device manufacturing industry, product designers must not only create innovative medical
NASA FACULTY FELLOWSHIP PROGRAM MARSHALL SPACE FLIGHT CENTER THE UNIVERSITY OF ALABAMA
2002 NASA FACULTY FELLOWSHIP PROGRAM MARSHALL SPACE FLIGHT CENTER THE UNIVERSITY OF ALABAMA Development of Processing Parameters for Organic Binders Using Selective Laser Sintering Prepared By: Academic
Chapter 5 POWDER-BASED RAPID PROTOTYPING SYSTEMS
Chapter 5 POWDER-BASED RAPID PROTOTYPING SYSTEMS 5.1 3D SYSTEMS SELECTIVE LASER SINTERING (SLS) 5.1.1 Company 3D Systems Corporation was founded by Charles W. Hull and Raymond S. Freed in 1986. The founding
COURSE: ADVANCED MANUFACTURING PROCESSES. Module No. 5: OTHER PROCESSES
COURSE: ADVANCED MANUFACTURING PROCESSES Module No. 5: OTHER PROCESSES Lecture No-2 Rapid Prototyping Technology (RPT) Background: In this age of fast growth (rapid technology age), customer demands are
Lapping and Polishing Basics
Lapping and Polishing Basics Applications Laboratory Report 54 Lapping and Polishing 1.0: Introduction Lapping and polishing is a process by which material is precisely removed from a workpiece (or specimen)
APPLYING RAPID TOOLING FOR INJECTION MOLDING & DIE CASTING From a RT users perspective
APPLYING RAPID TOOLING FOR INJECTION MOLDING & DIE CASTING From a RT users perspective Glenn Anderson Senior Engineer, Research and Development Southco, Inc. RPA/SME Technical Forum on Rapid Tooling 20
SHIMS STAMPINGS MACHINED COMPONENTS
SHIMS STAMPINGS MACHINED COMPONENTS The Spirol Concept WE ARE SHORT-RUN PRODUCTION SPECIALISTS Our objective is to provide our customers with the highest quality, short run stamped and machined components,
Design & Drafting Services
Design & Drafting Services 1. Mechanical CAD Services 1. Mechanical CAD Services Mechanical Design Services: Custom machine design Packaging machine design Mechanism design Machine tool design Material
DEVELOPMENT. Shorter time to market More product variants Increasing design complexity. Rapid. Prototyping PRODUCTION
EOSINT P EOSINT P Plastic laser-sintering for direct manufacture of styling models, functional prototypes, patterns for plaster, investment and vacuum casting, end products and spare parts Laser-sintering
Selecting Rapid Prototyping Systems
Volume 18, Number 1 - November 2001 to January 2002 Selecting Rapid Prototyping Systems By Dr. Ryan Brown and Dr. Kenneth W. Stier KEYWORD SEARCH CAD CAM Design Manufacturing Rapid Prototyping Reviewed
Advanced solutions for 5 pieces or 5,ooo,ooo pieces and everything in between. T E C H N O L O G I E S. High Volume Hydromat.
MACHINING T E C H N O L O G I E S High Volume Hydromat CNC Milling CNC Swiss Machining CNC Turning Engraving Secondary Operations Advanced solutions for 5 pieces or 5,ooo,ooo pieces and everything in between.
CAD / CAM Dr. P. V. Madhusuthan Rao Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 12 Reverse Engineering
CAD / CAM Dr. P. V. Madhusuthan Rao Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 12 Reverse Engineering So what we will do in today s lecture is basically take
Estimation of Work Hardening in Bent Sheet Metal Products at an Early Stage of Virtual Product Development
Estimation of Work Hardening in Bent Sheet Metal Products at an Early Stage of Virtual Product Development RokneddinAzizi HosseinAmiryousefi Department of Mechanical Engineering Blekinge Institute of Technology
LOST FOAM PROTOTYPING METHODS
LOST FOAM PROTOTYPING METHODS A Comparison of Methods and Processes Copyright 2002 Austin Group, LLC. All rights reserved. INTRODUCTION TERRY AUSTIN PRESIDENT AUSTIN GROUP, LLC QUINCY, ILLINOIS INTRODUCTION
Prototyping Process Choosing the best process for your project
Prototyping Process Choosing the best process for your project Proto Labs, Inc. 5540 Pioneer Creek Dr. Maple Plain, MN 55359 P: (763) 479 3680 F: (763) 479 2679 www.protolabs.com 2009 Proto Labs. All rights
Computer Integrated Manufacturing Course Description
Computer Integrated Manufacturing Course Description Computer Integrated Manufacturing (CIM) is the study of manufacturing planning, integration, and implementation of automation. The course explores manufacturing
Get PCB Prototypes Sooner with In-House Rapid PCB Prototyping
Get PCB Prototypes Sooner with In-House Rapid PCB Prototyping Save Time with In-House Prototyping In-house circuit board prototyping eliminates waiting for external suppliers. With LPKF systems and solutions,
www.studymafia.org Seminar report Rapid Prototyping Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical
A Seminar report On Rapid Prototyping Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org Preface
EXPERIENCES USING RAPID PROTOTYPING TECHNIQUES TO MANUFACTURE SHEET METAL FORMING TOOLS 00SE008
EXPERIENCES USING RAPID PROTOTYPING TECHNIQUES TO MANUFACTURE SHEET METAL FORMING TOOLS 00SE008 Prof. Dr.-Ing. D. H. Mueller and Dipl.-Ing. H. Mueller, BIBA (Bremer Institut für Betriebstechnik und angewandte
Rapid Prototyping and Rapid Manufacturing at Foster + Partners
Rapid Prototyping and Rapid Manufacturing at Foster + Partners Complex Geometry Design Generative Brady Peters Foster + Partners Xavier De Kestelier Foster + Partners Over the last 15 years, rapid prototyping
Rapid Prototyping Technologies. May, 2016
Rapid Prototyping Technologies May, 2016 WE HAVE ALL THE NECESSARY TOOLS TO ENSURE THE FINAL SUCCESS OF YOUR PROTOTYPE. Andaltec can help you in all the steps, from the design to fully finished prototype
Tvrdé struženie vs. Broušení - ekonomické aspekty. Hard Turning vs. Grinding - economical aspects
Tvrdé struženie vs. Broušení - ekonomické aspekty Hard Turning vs. Grinding - economical aspects M.Sc Engg Jakub Siwiec Supervisor: dr hab. inż. Wojciech Zębala, prof. PK Abstract New production technologies
The creation of tooling using the selective laser sintering process. Scott Schermer S.C. Johnson
The creation of tooling using the selective laser sintering process Scott Schermer S.C. Johnson 1 TOOLING utilizing traditional rapid prototyping machines to produce metal inserts. 2 LaserForm ST-100?
EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR PRODUCTION ON THE PIERCED FLAT SHEET METAL USING LASER FORMING PROCESS
JOURNAL OF CURRENT RESEARCH IN SCIENCE (ISSN 2322-5009) CODEN (USA): JCRSDJ 2014, Vol. 2, No. 2, pp:277-284 Available at www.jcrs010.com ORIGINAL ARTICLE EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR
Manufacturability of Turbine Blade Die from Composite Material Using Rapid Tooling Techniques
Manufacturability of Turbine Blade Die from Composite Material Using Rapid Tooling Techniques D. Safaeian 1, M. Shakeri 2 and A.L. Darvish 2 Faculty of Engineering, Mazandaran University, Shariati Ave.
The standard in 3D printer control and cloud encryption
The standard in 3D printer control and cloud encryption The standard in 3D printer control and cloud encryption The standard in 3D printer control and cloud encryption Jet Engine Parts Current 3D Printing
Choosing optimal rapid manufacturing process for thin-walled products using expert algorithm
Choosing optimal rapid manufacturing process for thin-walled products using expert algorithm Filip Górski, Wiesław Kuczko, Radosław Wichniarek, Adam Dudziak, Maciej Kowalski, Przemysław Zawadzki Poznan
Technical Services & Capabilities
Technical Services & Capabilities Machining Welding MIG TIG Robotic TIG Friction Stir Welding Solution Heat Treat & Artificial Aging Assemblies & Fabrication Bike Frame Specialists Technical Services Product
CAD/ CAM Prof. P. V. Madhusudhan Rao Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 03 What is CAD/ CAM
CAD/ CAM Prof. P. V. Madhusudhan Rao Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 03 What is CAD/ CAM Now this lecture is in a way we can say an introduction
Selecting Either Layered Manufacturing or CNC Machining to Build Your Prototype.
Selecting Either Layered Manufacturing or CNC Machining to Build Your Prototype. Lex Lennings Delft Spline Systems PO Box 2071 3500 GB Utrecht The Netherlands Tel +31 30 296 5957 Fax +31 30 296 2292 Email
www.centralcoating.com Largest Applicator The the Northeast TEL: 508-835-6225 of Coatings in
TEL: 508-835-6225 www.centralcoating.com in The Largest Applicator of Coatings in the Northeast cosmetic PAINTING With over 30 years of experience Central Coating has a solid history of providing our customers
3D Printing & Medical Technology: New Risks & Potential for Liability Joe Coray, Vice President Corey LaFlamme, Assistant Vice President The Hartford
3D Printing & Medical Technology: New Risks & Potential for Liability Joe Coray, Vice President Corey LaFlamme, Assistant Vice President The Hartford http://www.thehartford.com/business-insurance/life-science-insurance
Brief Report on machines available in the 3D Printers market and their characteristics
Brief Report on machines available in the 3D Printers market and their characteristics by AJIU Asociaciòn de investigacion de la industria del juguete, conexas y afines, Contenido 1. 3D PRINTING... 3 2.
ID@GT prepared by Gabe Landes for T. Purdy 2009
Rapid prototyping is the automatic construction of physical objects using solid freeform fabrication. The first techniques for rapid prototyping became available in the late 1980s and were used to produce
AS9100 Quality Manual
Origination Date: August 14, 2009 Document Identifier: Quality Manual Revision Date: 8/5/2015 Revision Level: Q AS 9100 UNCONTROLLED IF PRINTED Page 1 of 17 1 Scope Advanced Companies (Advanced) has established
CHAPTER 4 4 NUMERICAL ANALYSIS
41 CHAPTER 4 4 NUMERICAL ANALYSIS Simulation is a powerful tool that engineers use to predict the result of a phenomenon or to simulate the working situation in which a part or machine will perform in
Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)
Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Outline -1-! This part of the module consists of seven lectures and will focus
Simulation in design of high performance machine tools
P. Wagner, Gebr. HELLER Maschinenfabrik GmbH 1. Introduktion Machine tools have been constructed and used for industrial applications for more than 100 years. Today, almost 100 large-sized companies and
Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope
Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,
CAD/CAM in schools initiative
CAD/CAM in schools initiative 10 years on... where are we now? John Lee June 2009 what is CAD/CAM? Engineering Design & development Rapid prototyping Virtual testing DATA management Production scheduling
3 D Printing Threat or Opportunity? 13:45 p.m./29 April 2014
3 D Printing Threat or Opportunity? 13:45 p.m./29 April 2014 Additive Manufacturing Printing...Evolutionary Revolutionary Additive Sensors and Micro Flex Circuits 3 D Printing Prototypes and Production
Fused Deposition Modeling: A Technology Evaluation
Fused Deposition Modeling: A Technology Evaluation Todd Grimm T. A. Grimm & Associates, Inc. Selecting the best rapid prototyping process can be challenging. Without hands-on experience, uncovering both
PRODUCT BROCHURE 7.10.7 SF. Shop-Floor Coordinate Measuring Machine
PRODUCT BROCHURE 7.10.7 SF Shop-Floor Coordinate Measuring Machine HEXAGON METROLOGY 7.10.7 SF Quality Insight at the Point of Production The Hexagon Metrology 7.10.7 SF is like a machine tool for quality
Revolutionizing Healthcare: How 3D Printing is Creating New Business Opportunities A SMARTECH WHITE PAPER
Revolutionizing Healthcare: How 3D Printing is Creating New Business Opportunities A SMARTECH WHITE PAPER PUBLISHED MARCH 2015 This White Paper is based on market research and industry analysis carried
ARMSTRONG MOLD GRAPHITE DIE CASTING DIVISION
ARMSTRONG MOLD CORPORATION GRAPHITE DIE CASTING DIVISION Getting Started The Evolution of GDC The GDC technology was developed as a hybrid of traditional permanent mold, graphite mold and the die casting
Computer Integrated Manufacturing CIM A T I L I M U N I V E R S I T Y
MFGE 404 Computer Integrated Manufacturing CIM A T I L I M U N I V E R S I T Y Manufacturing Engineering Department Lecture 1 - Introduction Dr. Saleh AMAITIK Fall 2005/2006 Production Systems Production
Getting rid of the wires: Curved Layer Fused Deposition Modeling in Conductive Polymer Additive Manufacturing
Getting rid of the wires: Curved Layer Fused Deposition Modeling in Conductive Polymer Additive Manufacturing DIEGEL, Olaf 1, a, SINGAMNENI, Sarat 1, b, HUANG, Ben 1, c, GIBSON, Ian 2, d 1 Centre for Rapid
SprutCAM is a CAM system for NC program generation for machining using multi-axis milling, turning, turn/mill, Wire EDM numerically controlled
SprutCAM is a CAM system for NC program generation for machining using multi-axis milling, turning, turn/mill, Wire EDM numerically controlled machines and machining centers. The system enables the creation
Howmet Aluminum Casting. Responding to your needs for high-quality aluminum investment castings
Howmet Aluminum Casting Responding to your needs for high-quality aluminum investment castings You want quality aluminum investment castings Howmet Aluminum Casting has manufacturing facilities in three
Mechanical Engineering Technologies
Technologies 1 Technologies Graduates of the Technology program are prepared to design mechanical systems, operate CAD systems, manage design projects, and perform product testing. Examples of graduate
16. Product Design and CAD/CAM
16. Product Design and CAD/CAM 16.1 Unit Introduction 16.2 Unit Objectives 16.3 Product Design and CAD 16.4 CAD System Hardware 16.5 CAM, CAD/CAM, and CIM 16.6 Unit Review 16.7 Self Assessment Questions
The Aerial Map of the 3D Printing / Additive Manufacturing Eco-system
The Aerial Map of the 3D Printing / Additive Manufacturing Eco-system 2nd Additive Disruption Investment Business Models Strategic Impact Tuesday, March 31st Pre-Summit Executive Briefing Ivan J Madera
The Prototyping Challenges with Micro Molding: A Comparative Study of Prototyping Methods for Micro Molding Applications
I. The Premise A lot has changed in the last 20+ years. Just two short decades ago our top speed personal computer processors were clocked at 386 MHz, hard drive space and RAM memory were still measured
RHINO TO STL BEST PRACTICES
WHITE PAPER RHINO TO STL BEST PRACTICES AUTHOR VERONICA DE LA ROSA RHINO TO STL BEST PRACTICES INTRODUCTION In order to get the best quality 3D prints from RHINO CAD models it is important to be familiar
3D Printing, Additive Manufacturing, and Solid Freeform Fabrication: The Technologies of the Past, Present
and Future Joseph J Beaman NSF Additive Manufacturing Workshop 3D Printing, Additive Manufacturing, and Solid Freeform Fabrication: The Technologies of the Past, Present The University of Texas Solid
1) Cut-in Place Thermoforming Process
Standard Thermoforming Equipment Overview There are three standard configurations for thermoforming equipment: 1. Heat and Cut-in-Place Forming 2. In-Line Forming with Steel Rule or Forged Steel Trim wand
HEALTHCARE AND MEDICAL DEVICES
HEALTHCARE AND MEDICAL DEVICES PORTUGUESE ENGINEERING AND TOOLING ENGINEERING & TOOLING FROM PORTUGAL A Cluster supporting Healthcare Industries. The Portuguese Engineering & Tooling Industry coordinated
L.E.J. Styger and S.R. Reece Laminated Object Manufacturing: rapid challenge versus traditional model making techniques
Working Papers on Design Volume 1 L.E.J. Styger and S.R. Reece Laminated Object Manufacturing: rapid challenge versus traditional model making techniques Abstract. Laminated Object Manufacturing was first
Modern CAD/CAE/CAM Tools and Their Applications
MECH 410 and MECH520 Computer-Aided Design Introduction Modern CAD/CAE/CAM Tools and Their Applications CAD (Mechanical Design Automation) State of the Art An Essential Tool for Mech. Design and Drafting
