Digital Audio and Video Data
|
|
|
- John Paul
- 9 years ago
- Views:
Transcription
1 Multimedia Networking Reading: Sections 3.1.2, 3.3, 4.5, and 6.5 CS-375: Computer Networks Dr. Thomas C. Bressoud 1 Digital Audio and Video Data 2
2 Challenges for Media Streaming Large volume of data Each sample is a sound or an image Many samples per second Volume of data may vary over time Due to compression of the data Cannot tolerate much variation in delay Once playout starts, need to keep playing Sometimes cannot tolerate much delay, period For interactive applications (e.g., VoIP and gaming) Though some loss is acceptable 3 Digital Audio Sampling the analog signal Sample at some fixed rate Each sample is an arbitrary real number Quantizing each sample Round each sample to one of a finite number of values Represent each sample in a fixed number of bits 4 bit representation (values 0-15) 4
3 Audio Examples Speech Sampling rate: 8000 samples/second Sample size: 8 bits per sample Rate: 64 kbps Compact Disc (CD) Sampling rate: 44,100 samples/second Sample size: 16 bits per sample Rate: kbps for mono, Mbps for stereo 5 Audio Compression Audio data requires too much bandwidth Speech: 64 kbps is too high for a dial-up modem user Stereo music: Mbps exceeds most access rates Compression to reduce the size Remove redundancy Remove details that human tend not to perceive Example audio formats Speech: GSM (13 kbps), G.729 (8 kbps), and G (6.4 and 5.3 kbps) Stereo music: MPEG 1 layer 3 (MP3) at 96 kbps, 128 kbps, and 160 kbps 6
4 Digital Video Sampling the analog signal Sample at some fixed rate (e.g., 24 or 30 times per sec) Each sample is an image Quantizing each sample Representing an image as an array of picture elements Each pixel is a mixture of colors (red, green, and blue) E.g., 24 bits, with 8 bits per color 7 The 2272 x 1704 hand The 320 x 240 hand 8
5 Video Compression: Within an Image Image compression Exploit spatial redundancy (e.g., regions of same color) Exploit aspects humans tend not to notice Common image compression formats Joint Pictures Expert Group (JPEG) Graphical Interchange Format (GIF) Uncompressed: 167 KB Good quality: 46 KB Poor quality: 9 KB 9 Video Compression: Across Images Compression across images Exploit temporal redundancy across images Common video compression formats MPEG 1: CD-ROM quality video (1.5 Mbps) MPEG 2: high-quality DVD video (3-6 Mbps) Proprietary protocols like QuickTime and RealNetworks 10
6 Streaming Over the Internet 11 Transferring Audio and Video Data Simplest case: just like any other file Audio and video data stored in a file File downloaded using conventional protocol Playback does not overlap with data transfer A variety of more interesting scenarios Live vs. pre-recorded content Interactive vs. non-interactive Single receiver vs. multiple receivers Examples Streaming audio and video data from a server Interactive audio in a phone call 12
7 Streaming Stored Audio and Video Client-server system Server stores the audio and video files Clients request files, play them as they download, and perform VCR-like functions (e.g., rewind and pause) Playing data at the right time Server divides the data into segments and labels each segment with timestamp or frame id so the client knows when to play the data Avoiding starvation at the client The data must arrive quickly enough otherwise the client cannot keep playing 13 Playout Buffer Client buffer Store the data as it arrives from the server Play data for the user in a continuous fashion Playout delay Client typically waits a few seconds to start playing to allow some data to build up in the buffer to help tolerate some delays down the road 14
8 Influence of Playout Delay 15 Requirements for Data Transport Delay Some small delay at the beginning is acceptable E.g., start-up delays of a few seconds are okay Jitter Variability of packet delay within the same packet stream Client cannot tolerate high variation if the buffer starves Loss Small amount of missing data does not disrupt playback Retransmitting a lost packet might take too long anyway 16
9 Streaming From Web Servers Data stored in a file Audio: an audio file Video: interleaving of audio and images in a single file HTTP request-response TCP connection between client and server Client HTTP request and server HTTP response Client invokes the media player Content-type indicates the encoding Browser launches the media player Media player then renders the file 17 Initiating Streams from Web Servers Avoid passing all data through the Web browser Web server returns a meta file describing the object Browser launches media player and passes the meta file The player sets up its own connection to the Web server 18
10 Using a Streaming Server Avoiding the use of HTTP (and perhaps TCP, too) Web server returns a meta file describing the object Player requests the data using a different protocol 19 TCP is Not a Good Fit Reliable delivery Retransmission of lost packets even though retransmission may not be useful Adapting the sending rate Slowing down after a packet loss even though it may cause starvation at the client Protocol overhead TCP header of 20 bytes in every packet which is large for sending audio samples Sending ACKs for every other packet which may be more feedback than needed 20
11 Better Ways of Transporting Data User Datagram Protocol (UDP) No automatic retransmission of lost packets No automatic adaptation of sending rate Smaller packet header UDP leaves many things to the application When to transmit the data How to encapsulate the data Whether to retransmit lost data Whether to adapt the sending rate or adapt quality of the audio/video encoding 21 Recovering From Packet Loss Loss is defined in a broader sense Does a packet arrive in time for playback? A packet that arrives late is as good as lost Retransmission is not useful if deadline passed Selective retransmission Sometimes retransmission is acceptable E.g., if client has not already started playing data Data can be retransmitted within time constraint Could do Forward Error Correction (FEC) Send redundant info so receiver can reconstruct 22
12 Delay Jitter Cumulative data constant bit rate transmission variable network delay (jitter) client reception buffered data constant bit rate playout at client client playout delay time consider end-to-end delays of two consecutive packets: difference can be more or less than 20 msec (transmission time difference) Internet Phone: Fixed Playout Delay receiver attempts to playout each chunk exactly q msecs after chunk was generated. - chunk has time stamp t: play out chunk at t+q. - chunk arrives after t+q: data arrives too late for playout, data lost tradeoff in choosing q: - large q: less packet loss - small q: better interactive experience
13 Fixed Playout Delay sender generates packets every 20 msec during talk spurt. first packet received at time r first playout schedule: begins at p second playout schedule: begins at p Adaptive Playout Delay (1) Goal: minimize playout delay, keeping late loss rate low Approach: adaptive playout delay adjustment: - estimate network delay, adjust playout delay at beginning of each talk spurt. - silent periods compressed and elongated. dynamic estimate of average delay at receiver: where u is a fixed constant (e.g., u =.01).
14 Adaptive playout delay (2)! also useful to estimate average deviation of delay, v i :! estimates d i, v i calculated for every received packet (but used only at start of talk spurt! for first packet in talk spurt, playout time is: where K is positive constant! remaining packets in talkspurt are played out periodically Adaptive Playout (3) Q: How does receiver determine whether packet is first in a talkspurt? if no loss, receiver looks at successive timestamps. - difference of successive stamps > 20 msec -->talk spurt begins. with loss possible, receiver must look at both time stamps and sequence numbers. - difference of successive stamps > 20 msec and sequence numbers without gaps --> talk spurt begins.
15 Recovery from packet loss (1) Forward Error Correction (FEC): simple scheme for every group of n chunks create redundant chunk by exclusive OR-ing n original chunks send out n+1 chunks, increasing bandwidth by factor 1/n. can reconstruct original n chunks if at most one lost chunk from n+1 chunks playout delay: enough time to receive all n+1 packets tradeoff: - increase n, less bandwidth waste - increase n, longer playout delay - increase n, higher probability that 2 or more chunks will be lost Recovery from packet loss (2) 2nd FEC scheme! piggyback lower quality stream! send lower resolution audio stream as redundant information! e.g., nominal stream PCM at 64 kbps and redundant stream GSM at 13 kbps.! whenever there is non-consecutive loss, receiver can conceal the loss.! can also append (n-1)st and (n-2)nd low-bit rate chunk
16 Recovery from packet loss (3) Interleaving chunks divided into smaller units for example, four 5 msec units per chunk packet contains small units r r if packet lost, still have most of every chunk no redundancy overhead, but increases playout delay Interactive Audio and Video Two or more users interacting Telephone call Video conference Video game Strict delay constraints Delays over msec are very noticeable delays over 400 msec are a disaster for voice Much harder than streaming applications Receiver cannot introduce much playout delay Difficult if network doesn t guarantee performance 32
17 Conclusions Digital audio and video Increasingly popular media on the Internet Video on demand, VoIP, online gaming, IPTV Interaction with the network Adapt to delivering data over best-effort network Adapt network to offer better quality-of-service 33
Classes of multimedia Applications
Classes of multimedia Applications Streaming Stored Audio and Video Streaming Live Audio and Video Real-Time Interactive Audio and Video Others Class: Streaming Stored Audio and Video The multimedia content
Sources: Chapter 6 from. Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose and Ross
Multimedia Communication Multimedia Systems(Module 5 Lesson 2) Summary: H Internet Phone Example Making the Best use of Internet s Best-Effort Service. Sources: H Chapter 6 from Computer Networking: A
Mul$media Networking. #3 Mul$media Networking Semester Ganjil PTIIK Universitas Brawijaya. #3 Requirements of Mul$media Networking
Mul$media #3 Mul$media Semester Ganjil PTIIK Universitas Brawijaya Schedule of Class Mee$ng 1. Introduc$on 2. Applica$ons of MN 3. Requirements of MN 4. Coding and Compression 5. RTP 6. IP Mul$cast 7.
Lecture 33. Streaming Media. Streaming Media. Real-Time. Streaming Stored Multimedia. Streaming Stored Multimedia
Streaming Media Lecture 33 Streaming Audio & Video April 20, 2005 Classes of applications: streaming stored video/audio streaming live video/audio real-time interactive video/audio Examples: distributed
Voice-Over-IP. Daniel Zappala. CS 460 Computer Networking Brigham Young University
Voice-Over-IP Daniel Zappala CS 460 Computer Networking Brigham Young University Coping with Best-Effort Service 2/23 sample application send a 160 byte UDP packet every 20ms packet carries a voice sample
internet technologies and standards
Institute of Telecommunications Warsaw University of Technology 2015 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński multimedia in the Internet Voice-over-IP multimedia
Streaming Stored Audio & Video
Streaming Stored Audio & Video Streaming stored media: Audio/video file is stored in a server Users request audio/video file on demand. Audio/video is rendered within, say, 10 s after request. Interactivity
Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.
Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet
Final for ECE374 05/06/13 Solution!!
1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -
Multimedia Networking. Yao Wang Polytechnic University, Brooklyn, NY11201 [email protected]
Multimedia Networking Yao Wang Polytechnic University, Brooklyn, NY11201 [email protected] These slides are adapted from the slides made by authors of the book (J. F. Kurose and K. Ross), available from
Multimedia Communications Voice over IP
Multimedia Communications Voice over IP Anandi Giridharan Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India Voice over IP (Real time protocols) Internet Telephony
Basic principles of Voice over IP
Basic principles of Voice over IP Dr. Peter Počta {[email protected]} Department of Telecommunications and Multimedia Faculty of Electrical Engineering University of Žilina, Slovakia Outline VoIP Transmission
Network Service Model. What Transport Services Does an App Need?
Network Service Model What potential service model an application may ask from the channel transporting packets from sender to receiver? Example services for individual packets: guaranteed delivery guaranteed
Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme
Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Protocols Quality of Service and Resource Management
An Introduction to VoIP Protocols
An Introduction to VoIP Protocols www.netqos.com Voice over IP (VoIP) offers the vision of a converged network carrying multiple types of traffic (voice, video, and data, to name a few). To carry out this
QOS Requirements and Service Level Agreements. LECTURE 4 Lecturer: Associate Professor A.S. Eremenko
QOS Requirements and Service Level Agreements LECTURE 4 Lecturer: Associate Professor A.S. Eremenko Application SLA Requirements Different applications have different SLA requirements; the impact that
An Analysis of Error Handling Techniques in Voice over IP
An Analysis of Error Handling Techniques in Voice over IP Martin John Lipka ABSTRACT The use of Voice over IP (VoIP) has been growing in popularity, but unlike its wired circuit-switched telephone network
Multimedia Networking and Network Security
CMPT371 12-1 Multimedia Networking and Network Security 1 Multimedia Networking and Network Security This note is based on Chapters 7 and 8 of the text book. Outline of multimedia networking Multimedia
Internet Services & Protocols Multimedia Applications, Voice over IP
Department of Computer Science Institute for System Architecture, Chair for Computer Networks Internet Services & Protocols Multimedia Applications, Voice over IP Dipl.-Inform. Stephan Groß Room: GRU314
Internet Services & Protocols Multimedia Applications, Voice over IP
Department of Computer Science Institute for System Architecture, Chair for Computer Networks Internet Services & Protocols Multimedia Applications, Voice over IP Dr.-Ing. Stephan Groß Room: INF 3099 E-Mail:
Chapter 3 ATM and Multimedia Traffic
In the middle of the 1980, the telecommunications world started the design of a network technology that could act as a great unifier to support all digital services, including low-speed telephony and very
Network Traffic #5. Traffic Characterization
Network #5 Section 4.7.1, 5.7.2 1 Characterization Goals to: Understand the nature of what is transported over communications networks. Use that understanding to improve network design Characterization
15-441: Computer Networks Homework 2 Solution
5-44: omputer Networks Homework 2 Solution Assigned: September 25, 2002. Due: October 7, 2002 in class. In this homework you will test your understanding of the TP concepts taught in class including flow
Transfer and Control Protocols H.261. Standards of ITU
Transfer and Control Protocols Chapter 2: Basics Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Multimedia Transfer and Control Protocols Quality
3.2: Transfer and Control Protocols Multimedia Operating Systems. The H.x Protocols Chapter 4: Multimedia Systems
Chapter 2: Basics Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Multimedia Transfer and Control Protocols Quality of Service and Resource Management
Clearing the Way for VoIP
Gen2 Ventures White Paper Clearing the Way for VoIP An Alternative to Expensive WAN Upgrades Executive Overview Enterprises have traditionally maintained separate networks for their voice and data traffic.
Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages
Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages
Computer Networks. Chapter 5 Transport Protocols
Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data
(Refer Slide Time: 01:46)
Data Communication Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture - 38 Multimedia Services Hello viewers, welcome to today's lecture on multimedia
Unit 23. RTP, VoIP. Shyam Parekh
Unit 23 RTP, VoIP Shyam Parekh Contents: Real-time Transport Protocol (RTP) Purpose Protocol Stack RTP Header Real-time Transport Control Protocol (RTCP) Voice over IP (VoIP) Motivation H.323 SIP VoIP
Application Note. IPTV Services. Contents. Title Managing IPTV Performance Series IP Video Performance Management. Overview... 1. IPTV Services...
Title Managing IPTV Performance Series IP Video Performance Management Date September 2012 (orig. February 2008) Contents Overview... 1 IPTV Services... 1 Factors that Affect the Performance of IPTV...2
Application Note How To Determine Bandwidth Requirements
Application Note How To Determine Bandwidth Requirements 08 July 2008 Bandwidth Table of Contents 1 BANDWIDTH REQUIREMENTS... 1 1.1 VOICE REQUIREMENTS... 1 1.1.1 Calculating VoIP Bandwidth... 2 2 VOIP
White paper. Latency in live network video surveillance
White paper Latency in live network video surveillance Table of contents 1. Introduction 3 2. What is latency? 3 3. How do we measure latency? 3 4. What affects latency? 4 4.1 Latency in the camera 4 4.1.1
VoIP QoS. Version 1.0. September 4, 2006. AdvancedVoIP.com. [email protected] [email protected]. Phone: +1 213 341 1431
VoIP QoS Version 1.0 September 4, 2006 AdvancedVoIP.com [email protected] [email protected] Phone: +1 213 341 1431 Copyright AdvancedVoIP.com, 1999-2006. All Rights Reserved. No part of this
IMPROVING QUALITY OF VIDEOS IN VIDEO STREAMING USING FRAMEWORK IN THE CLOUD
IMPROVING QUALITY OF VIDEOS IN VIDEO STREAMING USING FRAMEWORK IN THE CLOUD R.Dhanya 1, Mr. G.R.Anantha Raman 2 1. Department of Computer Science and Engineering, Adhiyamaan college of Engineering(Hosur).
Combining Voice over IP with Policy-Based Quality of Service
TechBrief Extreme Networks Introduction Combining Voice over IP with Policy-Based Quality of Service Businesses have traditionally maintained separate voice and data networks. A key reason for this is
Protocols. Packets. What's in an IP packet
Protocols Precise rules that govern communication between two parties TCP/IP: the basic Internet protocols IP: Internet Protocol (bottom level) all packets shipped from network to network as IP packets
Application Note. IPTV Services. Contents. TVQM Video Quality Metrics Understanding IP Video Performance. Series. Overview. Overview...
Title Series TVQM Video Quality Metrics Understanding IP Video Performance Date September 2012 (orig. Feb 2008) Overview IPTV, Internet TV, and Video on Demand provide exciting new revenue opportunities
RTP / RTCP. Announcements. Today s Lecture. RTP Info RTP (RFC 3550) I. Final Exam study guide online. Signup for project demos
Announcements I. Final Exam study guide online RTP / RTCP Internet Protocols CSC / ECE 573 Fall, 2005 N. C. State University II. III. Signup for project demos Teaching evaluations at end today copyright
Chapter 6: Broadcast Systems. Mobile Communications. Unidirectional distribution systems DVB DAB. High-speed Internet. architecture Container
Mobile Communications Chapter 6: Broadcast Systems Unidirectional distribution systems DAB DVB architecture Container High-speed Internet Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC
920-803 - technology standards and protocol for ip telephony solutions
920-803 - technology standards and protocol for ip telephony solutions 1. Which CODEC delivers the greatest compression? A. B. 711 C. D. 723.1 E. F. 726 G. H. 729 I. J. 729A Answer: C 2. To achieve the
Requirements of Voice in an IP Internetwork
Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.
How To Understand How Bandwidth Is Used In A Network With A Realtime Connection
CoS and QoS - Managing Bandwidth, Complexity, and Cost One area of networking technology that has been heavily discussed, but less well actually understood is the topic of QoS or Quality of Service. Within
Voice over IP: RTP/RTCP The transport layer
Advanced Networking Voice over IP: /RTCP The transport layer Renato Lo Cigno Requirements For Real-Time Transmission Need to emulate conventional telephone system Isochronous output timing same with input
Transport Layer Protocols
Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements
Introduction VOIP in an 802.11 Network VOIP 3
Solutions to Performance Problems in VOIP over 802.11 Wireless LAN Wei Wang, Soung C. Liew Presented By Syed Zaidi 1 Outline Introduction VOIP background Problems faced in 802.11 Low VOIP capacity in 802.11
Understanding Latency in IP Telephony
Understanding Latency in IP Telephony By Alan Percy, Senior Sales Engineer Brooktrout Technology, Inc. 410 First Avenue Needham, MA 02494 Phone: (781) 449-4100 Fax: (781) 449-9009 Internet: www.brooktrout.com
Voice over IP. Demonstration 1: VoIP Protocols. Network Environment
Voice over IP Demonstration 1: VoIP Protocols Network Environment We use two Windows workstations from the production network, both with OpenPhone application (figure 1). The OpenH.323 project has developed
Assessing the quality of VoIP transmission affected by playout buffer scheme and encoding scheme
Assessing the quality of VoIP transmission affected by playout buffer scheme and encoding scheme Miroslaw Narbutt, Mark Davis Communications Network Research Institute Dublin Institute of Technology Wireless
Access Control: Firewalls (1)
Access Control: Firewalls (1) World is divided in good and bad guys ---> access control (security checks) at a single point of entry/exit: in medieval castles: drawbridge in corporate buildings: security/reception
ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM
ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 Outline The transport service Elements of transport protocols A
IP-Telephony Real-Time & Multimedia Protocols
IP-Telephony Real-Time & Multimedia Protocols Bernard Hammer Siemens AG, Munich Siemens AG 2001 1 Presentation Outline Media Transport RTP Stream Control RTCP RTSP Stream Description SDP 2 Real-Time Protocol
Lost Packets Recovery during Video Broadcasting Over Data Network
Lost Packets Recovery during Video Broadcasting Over Data Network Hassan H. Soliman, Hossam E. Mostafa and Eman A.E. Ahmed Department of Electronics and Communicatios Engineering, Faculty of Engineering
Transport and Network Layer
Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a
Multimedia Networking
CHAPTER 7 Multimedia Networking People in all corners of the world are currently using the Internet to watch movies and television shows on demand. Internet movie and television distribution companies
Introduction to Packet Voice Technologies and VoIP
Introduction to Packet Voice Technologies and VoIP Cisco Networking Academy Program Halmstad University Olga Torstensson 035-167575 [email protected] IP Telephony 1 Traditional Telephony 2 Basic
Advanced Networking Voice over IP: RTP/RTCP The transport layer
Advanced Networking Voice over IP: RTP/RTCP The transport layer Renato Lo Cigno Requirements For Real-Time Transmission Need to emulate conventional telephone system Isochronous output timing same with
How to Send Video Images Through Internet
Transmitting Video Images in XML Web Service Francisco Prieto, Antonio J. Sierra, María Carrión García Departamento de Ingeniería de Sistemas y Automática Área de Ingeniería Telemática Escuela Superior
Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding
Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)
EDA095 Audio and Video Streaming
EDA095 Audio and Video Streaming Pierre Nugues Lund University http://cs.lth.se/pierre_nugues/ April 22, 2015 Pierre Nugues EDA095 Audio and Video Streaming April 22, 2015 1 / 35 What is Streaming Streaming
Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages
Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages
Project Code: SPBX. Project Advisor : Aftab Alam. Project Team: Umair Ashraf 03-1853 (Team Lead) Imran Bashir 02-1658 Khadija Akram 04-0080
Test Cases Document VOIP SOFT PBX Project Code: SPBX Project Advisor : Aftab Alam Project Team: Umair Ashraf 03-1853 (Team Lead) Imran Bashir 02-1658 Khadija Akram 04-0080 Submission Date:23-11-2007 SPBX
encoding compression encryption
encoding compression encryption ASCII utf-8 utf-16 zip mpeg jpeg AES RSA diffie-hellman Expressing characters... ASCII and Unicode, conventions of how characters are expressed in bits. ASCII (7 bits) -
Multimedia Applications. Streaming Stored Multimedia. Classification of Applications
Chapter 2: Basics Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Multimedia Transfer and Protocols Quality of Service and Resource Management
Encapsulating Voice in IP Packets
Encapsulating Voice in IP Packets Major VoIP Protocols This topic defines the major VoIP protocols and matches them with the seven layers of the OSI model. Major VoIP Protocols 15 The major VoIP protocols
QoS issues in Voice over IP
COMP9333 Advance Computer Networks Mini Conference QoS issues in Voice over IP Student ID: 3058224 Student ID: 3043237 Student ID: 3036281 Student ID: 3025715 QoS issues in Voice over IP Abstract: This
Video streaming and playback
Video streaming and playback January 2006 Sony Ericsson mobile phones Preface Purpose of this document This Developers Guideline contains descriptions of the streaming video standards supported in Sony
A study of Skype over IEEE 802.16 networks: voice quality and bandwidth usage
Iowa State University Digital Repository @ Iowa State University Graduate Theses and Dissertations Graduate College 2011 A study of Skype over IEEE 802.16 networks: voice quality and bandwidth usage Kuan-yu
Methods for Mitigating IP Network Packet Loss in Real Time Audio Streaming Applications
Methods for Mitigating IP Network Packet Loss in Real Time Audio Streaming Applications Keyur Parikh and Junius Kim Harris Broadcast Mason Ohio Abstract Increasingly, IP based networks are being used for
Applications that Benefit from IPv6
Applications that Benefit from IPv6 Lawrence E. Hughes Chairman and CTO InfoWeapons, Inc. Relevant Characteristics of IPv6 Larger address space, flat address space restored Integrated support for Multicast,
Bandwidth Adaptation for MPEG-4 Video Streaming over the Internet
DICTA2002: Digital Image Computing Techniques and Applications, 21--22 January 2002, Melbourne, Australia Bandwidth Adaptation for MPEG-4 Video Streaming over the Internet K. Ramkishor James. P. Mammen
Active Queue Management for Real-time IP Traffic
Active Queue Management for Real-time IP Traffic Xiaoyan Wang SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Department of Electronic Engineering Queen Mary University of London October 2006 To my parents
VoIP network planning guide
VoIP network planning guide Document Reference: Volker Schüppel 08.12.2009 1 CONTENT 1 CONTENT... 2 2 SCOPE... 3 3 BANDWIDTH... 4 3.1 Control data 4 3.2 Audio codec 5 3.3 Packet size and protocol overhead
Data Storage 3.1. Foundations of Computer Science Cengage Learning
3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how
Question: 3 When using Application Intelligence, Server Time may be defined as.
1 Network General - 1T6-521 Application Performance Analysis and Troubleshooting Question: 1 One component in an application turn is. A. Server response time B. Network process time C. Application response
Computer Networks. Data Link Layer
Computer Networks The Data Link Layer 1 Data Link Layer Application Transport Network DLL PHY 2 What does it do? What functions it performs? Typically: Handling transmission errors, a.k.a., error control.
Configuration Guide. T.38 Protocol in AOS. 61950851L1-29.1D September 2011
61950851L1-29.1D September 2011 Configuration Guide This configuration guide describes the T.38 fax protocol and its use on ADTRAN Operating System (AOS) voice products including a protocol overview, common
Evaluating Data Networks for Voice Readiness
Evaluating Data Networks for Voice Readiness by John Q. Walker and Jeff Hicks NetIQ Corporation Contents Introduction... 2 Determining Readiness... 2 Follow-on Steps... 7 Summary... 7 Our focus is on organizations
Voice over IP. Overview. What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP
Voice over IP Andreas Mettis University of Cyprus November 23, 2004 Overview What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP 1 VoIP VoIP (voice over IP - that is,
Introduction to VoIP. 陳 懷 恩 博 士 副 教 授 兼 所 長 國 立 宜 蘭 大 學 資 訊 工 程 研 究 所 Email: [email protected] TEL: 03-9357400 # 255
Introduction to VoIP 陳 懷 恩 博 士 副 教 授 兼 所 長 國 立 宜 蘭 大 學 資 訊 工 程 研 究 所 Email: [email protected] TEL: 3-93574 # 55 Outline Introduction VoIP Call Tpyes VoIP Equipments Speech and Codecs Transport Protocols
Video compression: Performance of available codec software
Video compression: Performance of available codec software Introduction. Digital Video A digital video is a collection of images presented sequentially to produce the effect of continuous motion. It takes
Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc
(International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan [email protected]
2.1 Introduction. 2.2 Voice over IP (VoIP)
2.1 Introduction In this section can provide the necessary background on the structure of VoIP applications and on their component, and the transmission protocols generally used in VoIP. 2.2 Voice over
Networking Test 4 Study Guide
Networking Test 4 Study Guide True/False Indicate whether the statement is true or false. 1. IPX/SPX is considered the protocol suite of the Internet, and it is the most widely used protocol suite in LANs.
IAB CONCERNS ABOUT CONGESTION CONTROL. Iffat Hasnian 1832659
IAB CONCERNS ABOUT CONGESTION CONTROL Iffat Hasnian 1832659 IAB CONCERNS Outline 1- Introduction 2- Persistent High Drop rate Problem 3- Current Efforts in the IETF 3.1 RTP 3.2 TFRC 3.3 DCCP 3.4 Audio
Audio and Video for the Internet
RTP Audio and Video for the Internet Colin Perkins TT rvaddison-wesley Boston San Francisco New York Toronto Montreal London Munich Paris Madrid Capetown Sydney 'lokyo Singapore Mexico City CONTENTS PREFACE
Multimedia Requirements. Multimedia and Networks. Quality of Service
Multimedia Requirements Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Transfer/Control Protocols Quality of Service
Protocol Architecture. ATM architecture
Asynchronous Transfer Mode (ATM) Asynchronous Transfer Mode: ATM 1990 s/00 standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture Goal: integrated,
Architecture and Performance of the Internet
SC250 Computer Networking I Architecture and Performance of the Internet Prof. Matthias Grossglauser School of Computer and Communication Sciences EPFL http://lcawww.epfl.ch 1 Today's Objectives Understanding
Calculating Bandwidth Requirements
Calculating Bandwidth Requirements Codec Bandwidths This topic describes the bandwidth that each codec uses and illustrates its impact on total bandwidth. Bandwidth Implications of Codec 22 One of the
Protocol Data Units and Encapsulation
Chapter 2: Communicating over the 51 Protocol Units and Encapsulation For application data to travel uncorrupted from one host to another, header (or control data), which contains control and addressing
7 Streaming Architectures
7 Streaming Architectures 7.1 Streaming: Basic Terminology 7.2 High-Level Streaming Architecture 7.3 Real-Time Data Transport * 7.4 Scalability and Multicast * Literature: David Austerberry: The Technology
