A Bayesian Framework for Unsupervised One-Shot Learning of Object Categories
|
|
|
- Cora Dickerson
- 9 years ago
- Views:
Transcription
1 A Bayesian Framework for Unsupervised One-Shot Learning of Object Categories Li Fei-Fei 1 Rob Fergus 1,2 Pietro Perona 1 1. California Institute of Technology 2. Oxford University
2 Single Object Object Category Lowe et al. Schmidet al.
3 Algorithm Training Examples Categories Rowley et al. ~500 Faces Schneiderman, et al. ~2,000 Faces, Cars Viola et al. ~10,000 Faces Burl, et al. Weber, et al. Fergus, et al. 200 ~ 400 Faces, Motorbikes, Spotted cats, Airplanes, Cars
4 Algorithm Training Examples Categories Rowley et al. ~500 Faces Schneiderman, et al. ~2,000 Faces, Cars Viola et al. ~10,000 Faces Burl, et al. Weber, et al. Fergus, et al. 200 ~ 400 Faces, Motorbikes, Spotted cats, Airplanes, Cars
5 Words of wisdom from statisticians error Bayes error Test ~5 x (# of params) N* Train # training examples (N)
6 Goal One-Shot learning of object categories.
7 There are about 30,000 visual categories. Learn 4.5 categories per day 18 years! At age 6, a child can learn roughly all 30,000 visual categories. (13.5/day) P. Buegel, 1559
8 S. Savarese, 2003
9 P. Buegel, 1562
10 Sneak preview Algorithm Training Examples Categories Results (error) Burl, et al. Weber, et al. Fergus, et al. 200 ~ 400 Faces, Motorbikes, Spotted cats, Airplanes, Cars % Bayesian One-Shot 1 ~ 5 Faces, Motorbikes, Spotted cats, Airplanes 8 15 %
11 Outline of main points Intuition: Use prior knowledge Approach: Full Bayesian Implementation: Probabilistic model Variational EM Experiments
12 Prior knowledge about objects I Appearance Shape unlikely likely
13 Prior knowledge about objects II Appearance Shape unlikely likely
14 Bayesian framework P(object test, train) vs. P(clutter test, train) Bayes Rule p( test object, train) p(object) Expansion by parametrization p(test θ,object) p( θ object, train) dθ
15 Bayesian framework P(object test, train) vs. P(clutter test, train) Bayes Rule p( test object, train) p(object) Expansion by parametrization p(test θ,object) p( θ object, train) dθ Previous Work: ( ML ) δ θ θ
16 Model (θ) space ML θ ML p ( θ 1 ) δ (.) p ( θ ML n ) δ (.) ML p ( θ 2 ) δ (.) θ 1 θ n θ 2
17 Bayesian framework P(object test, train) vs. P(clutter test, train) Bayes Rule p( test object, train) p(object) Expansion by parametrization p(test θ,object) p( θ object, train) dθ
18 Bayesian framework P(object test, train) vs. P(clutter test, train) Bayes Rule p( test object, train) p(object) Expansion by parametrization p(test θ,object) p( θ object, train) dθ One-Shot learning: p ( train θ,object) p( θ )
19 Model (θ) space θ 1 θ 2 θ n
20 Representing θ Main issues: measuring the similarity of parts representing the configuration of parts φ Fischler & Elschlager 1973 φ Yuille 91 φ Brunelli & Poggio 93 φ Lades, v.d. Malsburg et al. 93 φ Cootes, Lanitis, Taylor et al. 95 φ Amit & Geman 95, 99 φ Perona et al. 95, 96, 98, 00, 03 φ Agarwal & Roth 02
21 model (θ) space Model Structure Each object model θ Gaussian shape pdf Gaussian part appearance pdf θ 1 θ n θ 2
22 model (θ) space Model Structure Each object model θ Gaussian shape pdf Gaussian part appearance pdf θ 1 θ n θ 2 model distribution: p(θ) conjugate priors
23 Variational EM Random initialization new θ s E-Step M-Step new estimate of p(θ train) Attias, Hinton, Minka, etc. prior knowledge of p(θ)
24 Maximum Likelihood method Bayesian Learning method
25 Summary of main points Goal: one-shot learning Intuition: use general prior knowledge Approach: full Bayesian Marginalize over all θ Implementation: Probability models Variational EM
26 Experiments Training: Testing: 1-6 images 50 fg/ 50 bg images (randomly drawn) object present/absent Datasets faces airplanes spotted cats motorbikes [
27 Faces Motorbikes Airplanes Spotted cats
28 No Manual Preprocessing No labeling No segmentation No alignment
29 Experiments: obtaining priors airplanes Prior distr. Learning spotted cats motorbikes Miller, et al. 00
30 One more word about priors Data Prior distr. Expertise Non-informative Others
31 Number of training examples
32 Number of training examples
33 Number of training examples
34 Number of training examples
35 Algorithm Training Examples Categories Results (error) Burl, et al. Weber, et al. Fergus, et al. 200 ~ 400 Faces, Motorbikes, Spotted cats, Airplanes, Cars % Bayesian One-Shot 1 ~ 5 Faces, Motorbikes, Spotted cats, Airplanes 8 15 %
36 Summary Learning categories w/ one example is possible Decreased # of training example from ~300 to 1~5 Bayesian treatment Priors from unrelated categories are useful Future Work Incremental learning More categories (e.g. >100) More on priors
37 Acknowledgements David MacKay, Cambridge University Brian Ripley, Oxford University Yaser Abu-Mostafa, Caltech Andrew Zisserman, Oxford University Leung, Burl, Perona, ICCV 95 Burl, Leung, Perona, CVPR 98 Weber, Welling, Perona, ECCV 00 Weber, Welling, Perona, CVPR 00 Set up constellation model Affine invariance in recognition Unsupervised learning, two-stage learning of shape & appearance Fergus, Perona, Zisserman, CVPR 03 Fei-Fei, Fergus, Perona, ICCV 03 Simultaneous learning of shape & appearance, scale invariance Full Bayesian treatment, One-Shot learning
Object class recognition using unsupervised scale-invariant learning
Object class recognition using unsupervised scale-invariant learning Rob Fergus Pietro Perona Andrew Zisserman Oxford University California Institute of Technology Goal Recognition of object categories
Object Class Recognition by Unsupervised Scale-Invariant Learning
Object Class Recognition by Unsupervised Scale-Invariant Learning R. Fergus 1 P. Perona 2 A. Zisserman 1 1 Dept. of Engineering Science 2 Dept. of Electrical Engineering University of Oxford California
3D Model based Object Class Detection in An Arbitrary View
3D Model based Object Class Detection in An Arbitrary View Pingkun Yan, Saad M. Khan, Mubarak Shah School of Electrical Engineering and Computer Science University of Central Florida http://www.eecs.ucf.edu/
Semantic Image Segmentation and Web-Supervised Visual Learning
Semantic Image Segmentation and Web-Supervised Visual Learning Florian Schroff Andrew Zisserman University of Oxford, UK Antonio Criminisi Microsoft Research Ltd, Cambridge, UK Outline Part I: Semantic
Principled Hybrids of Generative and Discriminative Models
Principled Hybrids of Generative and Discriminative Models Julia A. Lasserre University of Cambridge Cambridge, UK [email protected] Christopher M. Bishop Microsoft Research Cambridge, UK [email protected]
Object Recognition. Selim Aksoy. Bilkent University [email protected]
Image Classification and Object Recognition Selim Aksoy Department of Computer Engineering Bilkent University [email protected] Image classification Image (scene) classification is a fundamental
Discovering objects and their location in images
Discovering objects and their location in images Josef Sivic Bryan C. Russell Alexei A. Efros Andrew Zisserman William T. Freeman Dept. of Engineering Science CS and AI Laboratory School of Computer Science
Local features and matching. Image classification & object localization
Overview Instance level search Local features and matching Efficient visual recognition Image classification & object localization Category recognition Image classification: assigning a class label to
Basics of Statistical Machine Learning
CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu [email protected] Modern machine learning is rooted in statistics. You will find many familiar
Solving Big Data Problems in Computer Vision with MATLAB Loren Shure
Solving Big Data Problems in Computer Vision with MATLAB Loren Shure 2015 The MathWorks, Inc. 1 Why Are We Talking About Big Data? 100 hours of video uploaded to YouTube per minute 1 Explosive increase
Finding people in repeated shots of the same scene
Finding people in repeated shots of the same scene Josef Sivic 1 C. Lawrence Zitnick Richard Szeliski 1 University of Oxford Microsoft Research Abstract The goal of this work is to find all occurrences
Course: Model, Learning, and Inference: Lecture 5
Course: Model, Learning, and Inference: Lecture 5 Alan Yuille Department of Statistics, UCLA Los Angeles, CA 90095 [email protected] Abstract Probability distributions on structured representation.
STA 4273H: Statistical Machine Learning
STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! [email protected]! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct
Statistical Machine Learning from Data
Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Gaussian Mixture Models Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique
Scale-Invariant Object Categorization using a Scale-Adaptive Mean-Shift Search
in DAGM 04 Pattern Recognition Symposium, Tübingen, Germany, Aug 2004. Scale-Invariant Object Categorization using a Scale-Adaptive Mean-Shift Search Bastian Leibe ½ and Bernt Schiele ½¾ ½ Perceptual Computing
Cees Snoek. Machine. Humans. Multimedia Archives. Euvision Technologies The Netherlands. University of Amsterdam The Netherlands. Tree.
Visual search: what's next? Cees Snoek University of Amsterdam The Netherlands Euvision Technologies The Netherlands Problem statement US flag Tree Aircraft Humans Dog Smoking Building Basketball Table
Probabilistic Latent Semantic Analysis (plsa)
Probabilistic Latent Semantic Analysis (plsa) SS 2008 Bayesian Networks Multimedia Computing, Universität Augsburg [email protected] www.multimedia-computing.{de,org} References
Monotonicity Hints. Abstract
Monotonicity Hints Joseph Sill Computation and Neural Systems program California Institute of Technology email: [email protected] Yaser S. Abu-Mostafa EE and CS Deptartments California Institute of Technology
Statistics Graduate Courses
Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
How To Register Point Sets
Non-rigid point set registration: Coherent Point Drift Andriy Myronenko Xubo Song Miguel Á. Carreira-Perpiñán Department of Computer Science and Electrical Engineering OGI School of Science and Engineering
1 Prior Probability and Posterior Probability
Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which
Discovering objects and their location in images
Discovering objects and their location in images Josef Sivic Bryan C. Russell Alexei A. Efros Andrew Zisserman William T. Freeman Dept. of Engineering Science CS and AI Laboratory School of Computer Science
Learning Spatial Context: Using Stuff to Find Things
Learning Spatial Context: Using Stuff to Find Things Geremy Heitz Daphne Koller Department of Computer Science, Stanford University {gaheitz,koller}@cs.stanford.edu Abstract. The sliding window approach
Multi-Class Active Learning for Image Classification
Multi-Class Active Learning for Image Classification Ajay J. Joshi University of Minnesota Twin Cities [email protected] Fatih Porikli Mitsubishi Electric Research Laboratories [email protected] Nikolaos Papanikolopoulos
Practical Tour of Visual tracking. David Fleet and Allan Jepson January, 2006
Practical Tour of Visual tracking David Fleet and Allan Jepson January, 2006 Designing a Visual Tracker: What is the state? pose and motion (position, velocity, acceleration, ) shape (size, deformation,
Compacting ConvNets for end to end Learning
Compacting ConvNets for end to end Learning Jose M. Alvarez Joint work with Lars Pertersson, Hao Zhou, Fatih Porikli. Success of CNN Image Classification Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton,
Lecture 9: Introduction to Pattern Analysis
Lecture 9: Introduction to Pattern Analysis g Features, patterns and classifiers g Components of a PR system g An example g Probability definitions g Bayes Theorem g Gaussian densities Features, patterns
Visual Categorization with Bags of Keypoints
Visual Categorization with Bags of Keypoints Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cédric Bray Xerox Research Centre Europe 6, chemin de Maupertuis 38240 Meylan, France
Tracking in flussi video 3D. Ing. Samuele Salti
Seminari XXIII ciclo Tracking in flussi video 3D Ing. Tutors: Prof. Tullio Salmon Cinotti Prof. Luigi Di Stefano The Tracking problem Detection Object model, Track initiation, Track termination, Tracking
Convolutional Feature Maps
Convolutional Feature Maps Elements of efficient (and accurate) CNN-based object detection Kaiming He Microsoft Research Asia (MSRA) ICCV 2015 Tutorial on Tools for Efficient Object Detection Overview
Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014
Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about
CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.
Lecture Machine Learning Milos Hauskrecht [email protected] 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht [email protected] 539 Sennott
3F3: Signal and Pattern Processing
3F3: Signal and Pattern Processing Lecture 3: Classification Zoubin Ghahramani [email protected] Department of Engineering University of Cambridge Lent Term Classification We will represent data by
An Analysis of Single-Layer Networks in Unsupervised Feature Learning
An Analysis of Single-Layer Networks in Unsupervised Feature Learning Adam Coates 1, Honglak Lee 2, Andrew Y. Ng 1 1 Computer Science Department, Stanford University {acoates,ang}@cs.stanford.edu 2 Computer
Learning Motion Categories using both Semantic and Structural Information
Learning Motion Categories using both Semantic and Structural Information Shu-Fai Wong, Tae-Kyun Kim and Roberto Cipolla Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK {sfw26,
Bayesian Image Super-Resolution
Bayesian Image Super-Resolution Michael E. Tipping and Christopher M. Bishop Microsoft Research, Cambridge, U.K..................................................................... Published as: Bayesian
Transfer Learning by Borrowing Examples for Multiclass Object Detection
Transfer Learning by Borrowing Examples for Multiclass Object Detection Joseph J. Lim CSAIL, MIT [email protected] Ruslan Salakhutdinov Department of Statistics, University of Toronto [email protected]
Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite
Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite Philip Lenz 1 Andreas Geiger 2 Christoph Stiller 1 Raquel Urtasun 3 1 KARLSRUHE INSTITUTE OF TECHNOLOGY 2 MAX-PLANCK-INSTITUTE IS 3
Semantic Recognition: Object Detection and Scene Segmentation
Semantic Recognition: Object Detection and Scene Segmentation Xuming He [email protected] Computer Vision Research Group NICTA Robotic Vision Summer School 2015 Acknowledgement: Slides from Fei-Fei
High Level Describable Attributes for Predicting Aesthetics and Interestingness
High Level Describable Attributes for Predicting Aesthetics and Interestingness Sagnik Dhar Vicente Ordonez Tamara L Berg Stony Brook University Stony Brook, NY 11794, USA [email protected] Abstract
Package EstCRM. July 13, 2015
Version 1.4 Date 2015-7-11 Package EstCRM July 13, 2015 Title Calibrating Parameters for the Samejima's Continuous IRT Model Author Cengiz Zopluoglu Maintainer Cengiz Zopluoglu
Bayesian Statistics in One Hour. Patrick Lam
Bayesian Statistics in One Hour Patrick Lam Outline Introduction Bayesian Models Applications Missing Data Hierarchical Models Outline Introduction Bayesian Models Applications Missing Data Hierarchical
Bayesian networks - Time-series models - Apache Spark & Scala
Bayesian networks - Time-series models - Apache Spark & Scala Dr John Sandiford, CTO Bayes Server Data Science London Meetup - November 2014 1 Contents Introduction Bayesian networks Latent variables Anomaly
Supporting Online Material for
www.sciencemag.org/cgi/content/full/313/5786/504/dc1 Supporting Online Material for Reducing the Dimensionality of Data with Neural Networks G. E. Hinton* and R. R. Salakhutdinov *To whom correspondence
UNSUPERVISED COSEGMENTATION BASED ON SUPERPIXEL MATCHING AND FASTGRABCUT. Hongkai Yu and Xiaojun Qi
UNSUPERVISED COSEGMENTATION BASED ON SUPERPIXEL MATCHING AND FASTGRABCUT Hongkai Yu and Xiaojun Qi Department of Computer Science, Utah State University, Logan, UT 84322-4205 [email protected]
Object Categorization using Co-Occurrence, Location and Appearance
Object Categorization using Co-Occurrence, Location and Appearance Carolina Galleguillos Andrew Rabinovich Serge Belongie Department of Computer Science and Engineering University of California, San Diego
Introduction to Deep Learning Variational Inference, Mean Field Theory
Introduction to Deep Learning Variational Inference, Mean Field Theory 1 Iasonas Kokkinos [email protected] Center for Visual Computing Ecole Centrale Paris Galen Group INRIA-Saclay Lecture 3: recap
Image and Video Understanding
Image and Video Understanding 2VO 710.095 WS Christoph Feichtenhofer, Axel Pinz Slide credits: Many thanks to all the great computer vision researchers on which this presentation relies on. Most material
Automatic Attribute Discovery and Characterization from Noisy Web Data
Automatic Attribute Discovery and Characterization from Noisy Web Data Tamara L. Berg 1, Alexander C. Berg 2, and Jonathan Shih 3 1 Stony Brook University, Stony Brook NY 11794, USA, [email protected],
MS1b Statistical Data Mining
MS1b Statistical Data Mining Yee Whye Teh Department of Statistics Oxford http://www.stats.ox.ac.uk/~teh/datamining.html Outline Administrivia and Introduction Course Structure Syllabus Introduction to
HT2015: SC4 Statistical Data Mining and Machine Learning
HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric
Unsupervised Joint Alignment of Complex Images
Unsupervised Joint Alignment of Complex Images Gary B. Huang Vidit Jain University of Massachusetts Amherst Amherst, MA {gbhuang,vidit,elm}@cs.umass.edu Erik Learned-Miller Abstract Many recognition algorithms
MA2823: Foundations of Machine Learning
MA2823: Foundations of Machine Learning École Centrale Paris Fall 2015 Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr TAs: Jiaqian Yu [email protected]
Vehicle Tracking by Simultaneous Detection and Viewpoint Estimation
Vehicle Tracking by Simultaneous Detection and Viewpoint Estimation Ricardo Guerrero-Gómez-Olmedo, Roberto López-Sastre, Saturnino Maldonado-Bascón, and Antonio Fernández-Caballero 2 GRAM, Department of
Now we begin our discussion of exploratory data analysis.
Now we begin our discussion of exploratory data analysis. 1 Remember to keep in mind where we are in the big picture. For now, we will assume that the data we are given is a representative sample from
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
Fast R-CNN Object detection with Caffe
Fast R-CNN Object detection with Caffe Ross Girshick Microsoft Research arxiv code Latest roasts Goals for this section Super quick intro to object detection Show one way to tackle obj. det. with ConvNets
Forecasting Trade Direction and Size of Future Contracts Using Deep Belief Network
Forecasting Trade Direction and Size of Future Contracts Using Deep Belief Network Anthony Lai (aslai), MK Li (lilemon), Foon Wang Pong (ppong) Abstract Algorithmic trading, high frequency trading (HFT)
Inference of Probability Distributions for Trust and Security applications
Inference of Probability Distributions for Trust and Security applications Vladimiro Sassone Based on joint work with Mogens Nielsen & Catuscia Palamidessi Outline 2 Outline Motivations 2 Outline Motivations
Using SAS PROC MCMC to Estimate and Evaluate Item Response Theory Models
Using SAS PROC MCMC to Estimate and Evaluate Item Response Theory Models Clement A Stone Abstract Interest in estimating item response theory (IRT) models using Bayesian methods has grown tremendously
Object Class Recognition using Images of Abstract Regions
Object Class Recognition using Images of Abstract Regions Yi Li, Jeff A. Bilmes, and Linda G. Shapiro Department of Computer Science and Engineering Department of Electrical Engineering University of Washington
Markov Chain Monte Carlo Simulation Made Simple
Markov Chain Monte Carlo Simulation Made Simple Alastair Smith Department of Politics New York University April2,2003 1 Markov Chain Monte Carlo (MCMC) simualtion is a powerful technique to perform numerical
11. Time series and dynamic linear models
11. Time series and dynamic linear models Objective To introduce the Bayesian approach to the modeling and forecasting of time series. Recommended reading West, M. and Harrison, J. (1997). models, (2 nd
Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition
Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition Marc Aurelio Ranzato, Fu-Jie Huang, Y-Lan Boureau, Yann LeCun Courant Institute of Mathematical Sciences,
Università degli Studi di Bologna
Università degli Studi di Bologna DEIS Biometric System Laboratory Incremental Learning by Message Passing in Hierarchical Temporal Memory Davide Maltoni Biometric System Laboratory DEIS - University of
Part 2: One-parameter models
Part 2: One-parameter models Bernoilli/binomial models Return to iid Y 1,...,Y n Bin(1, θ). The sampling model/likelihood is p(y 1,...,y n θ) =θ P y i (1 θ) n P y i When combined with a prior p(θ), Bayes
Predict Influencers in the Social Network
Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, [email protected] Department of Electrical Engineering, Stanford University Abstract Given two persons
Detection. Perspective. Network Anomaly. Bhattacharyya. Jugal. A Machine Learning »C) Dhruba Kumar. Kumar KaKta. CRC Press J Taylor & Francis Croup
Network Anomaly Detection A Machine Learning Perspective Dhruba Kumar Bhattacharyya Jugal Kumar KaKta»C) CRC Press J Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor
Machine Learning for Data Science (CS4786) Lecture 1
Machine Learning for Data Science (CS4786) Lecture 1 Tu-Th 10:10 to 11:25 AM Hollister B14 Instructors : Lillian Lee and Karthik Sridharan ROUGH DETAILS ABOUT THE COURSE Diagnostic assignment 0 is out:
Gaussian Processes to Speed up Hamiltonian Monte Carlo
Gaussian Processes to Speed up Hamiltonian Monte Carlo Matthieu Lê Murray, Iain http://videolectures.net/mlss09uk_murray_mcmc/ Rasmussen, Carl Edward. "Gaussian processes to speed up hybrid Monte Carlo
Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut.
Machine Learning and Data Analysis overview Jiří Kléma Department of Cybernetics, Czech Technical University in Prague http://ida.felk.cvut.cz psyllabus Lecture Lecturer Content 1. J. Kléma Introduction,
Section 5. Stan for Big Data. Bob Carpenter. Columbia University
Section 5. Stan for Big Data Bob Carpenter Columbia University Part I Overview Scaling and Evaluation data size (bytes) 1e18 1e15 1e12 1e9 1e6 Big Model and Big Data approach state of the art big model
MACHINE LEARNING IN HIGH ENERGY PHYSICS
MACHINE LEARNING IN HIGH ENERGY PHYSICS LECTURE #1 Alex Rogozhnikov, 2015 INTRO NOTES 4 days two lectures, two practice seminars every day this is introductory track to machine learning kaggle competition!
Transform-based Domain Adaptation for Big Data
Transform-based Domain Adaptation for Big Data Erik Rodner University of Jena Judy Hoffman Jeff Donahue Trevor Darrell Kate Saenko UMass Lowell Abstract Images seen during test time are often not from
Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise
Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise Jacob Whitehill, Paul Ruvolo, Tingfan Wu, Jacob Bergsma, and Javier Movellan Machine Perception Laboratory
Multi-modal Human-Computer Interaction. Attila Fazekas. [email protected]
Multi-modal Human-Computer Interaction Attila Fazekas [email protected] Szeged, 04 July 2006 Debrecen Big Church Multi-modal Human-Computer Interaction - 2 University of Debrecen Main Building
Manifold Learning with Variational Auto-encoder for Medical Image Analysis
Manifold Learning with Variational Auto-encoder for Medical Image Analysis Eunbyung Park Department of Computer Science University of North Carolina at Chapel Hill [email protected] Abstract Manifold
FastKeypointRecognitioninTenLinesofCode
FastKeypointRecognitioninTenLinesofCode Mustafa Özuysal Pascal Fua Vincent Lepetit Computer Vision Laboratory École Polytechnique Fédérale de Lausanne(EPFL) 115 Lausanne, Switzerland Email: {Mustafa.Oezuysal,
Efficient Cluster Detection and Network Marketing in a Nautural Environment
A Probabilistic Model for Online Document Clustering with Application to Novelty Detection Jian Zhang School of Computer Science Cargenie Mellon University Pittsburgh, PA 15213 [email protected] Zoubin
Fast Matching of Binary Features
Fast Matching of Binary Features Marius Muja and David G. Lowe Laboratory for Computational Intelligence University of British Columbia, Vancouver, Canada {mariusm,lowe}@cs.ubc.ca Abstract There has been
Image Segmentation and Registration
Image Segmentation and Registration Dr. Christine Tanner ([email protected]) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation
A Hybrid Neural Network-Latent Topic Model
Li Wan Leo Zhu Rob Fergus Dept. of Computer Science, Courant institute, New York University {wanli,zhu,fergus}@cs.nyu.edu Abstract This paper introduces a hybrid model that combines a neural network with
