Comparison of Voice over IP with circuit switching techniques
|
|
|
- Kristian Sutton
- 10 years ago
- Views:
Transcription
1 Comparison of Voice over IP with circuit switching techniques Author Richard Sinden Richard Sinden 1 of 9
2 Abstract Voice-over-IP is a growing technology. Companies are beginning to consider commercial investments in these services. Will it be able to provide the quality of service necessary to satisfy customers? If not what will need to be done to remedy the situation. Introduction Circuit Switched Networks, also known as Public Switched Telephone Network (PSTN) are the major telecommunications networks in the world today. Almost all phones are connected to a PSTN. The question is, is this all set to change with the introduction of Voice over IP, which promises lower costs for service provider, and hence the customer, by using the existing internet infrastructure to provide cheaper calls. But, is the internet ready to handle this relatively new type of real-time data traffic. Overview of Voice over IP The idea behind Voice over IP(VoIP) is to allow audio and video communications across IP-based networks, which, of course, includes the Internet. It also allows calls to be made between an IP-based network, and a Switched Circuit Network(SCN), such as a PSTN, or ISDN. The system can deal with the translations required between the 2 networks. It is also able to handle multipoint connections as well as point-point ones. The Protocols There are currently no standard protocol top level protocols for VoIP. There are, however, two competing protocols which are being developed by different organisation. H.323 is being developed by the ITU. This is a multimedia conferencing protocol, which includes voice, video and data conferencing. SIP (Session Initiation Protocol) is being developed by the IETF, and is used for the session initiation rather than dealing with the actual call after it is connected. H.323 H.323 is a complex protocol, and calls on many other protocols for the handling of audio and video compression, call control, bandwidth management etc. Elements of an H.323 system Terminals The end points of the network, e.g. Telephones, videophones or PCs. Gateways These act as an interface between the IP-based network, and other networks e.g. PSTN Richard Sinden 2 of 9
3 Gatekeeper This is an optional component which can be used to provide call control services and address resolution for other elements in its zone. Multipoint Controllers(MC) These are used to manage connections between two or more terminals. These are usually combined into one of the terminals and known as an Multipoint control unit (MCU). Call Terminal Signalling Control Data Audio Video A/V Control Gatekeeper Control H H.245 T.120 G.7xx H.26x RTCP RAS RTP IP Multicast TCP IP UDP Figure 1: The H.323 protocol stack H Call control messages, e.g. signalling and registration H.245 Terminal control, opening and closing of channels, etc. T.120 Data conferencing G.7xx Audio codecs at various rates G.711 PCM, 64kbps uncompressed G MP-MLQ 6.4kbps compression G AC-ELP 5.3kbps compression G.726 ADPCM 32kbps compression G.728 LD-CELP 16kbps compression G.729A CS-CELP 8kbps compression H.26x Video codecs Session Initiation Protocol (SIP) SIP is a far simpler protocol, which has been designed with the idea of providing a simple way of setting up a call to another person. It provides functions such as resolving a called party s address, negotiation of terminal capabilities, and passing additional information (e.g. CLI). This protocol has the advantage that the messages are in text format, which although means more data is being sent, it does mean that the messages are clear and easy to understand and debug. Richard Sinden 3 of 9
4 Server Server 2 Terminal Terminal 1 Figure 2: Overview of a basic SIP system In this case, to begin with the user at terminal 2 would register themselves with server 1(1). When the user at terminal 1 wanted to contact terminal 2, they would send a request to server 2. The request would go to server 2(2) which would look in its database and find that the address for terminal 2 was at server 1, so it would forward the call to server 1(3), which would again look in its database, and find that Terminal 2 was registered to a specific address, which it would send a call request to Terminal 2(4). When the phone is answered the acceptance message goes all the way back to Terminal 1(5,6, and 7) where Terminal 1 is then able to directly contact Terminal 2(8) without the need for the servers any longer. At this point the servers can destroy all call state information if they wish. This has the advantage that servers do not need to maintain call state throughout the call which obviously reduces load. Potential problems with Voice over IP There are two main areas where Quality of Service(QoS) needs to be addressed, the setting up of the call, and the call itself. Setting up the call needs to be as speedy as possibly, and this relies on being able to locate the user quickly and efficiently, and keeping any handshaking between terminals and gateways to a minimum. Generally, a setup time of a few seconds is the maximum that would be acceptable. Here SIP has the advantage over H.323 despite its lengthy text based headers, the simplicity of its approach means that there is a minimum of handshaking and messages passed between servers before a connection can be established. The quality of the call itself can be affected by six main factors: latency, bandwidth, jitter, packet loss, network/service availability and transcoding loss. Richard Sinden 4 of 9
5 Latency is the delay between the data leaving one terminal and arriving at another. This affects both VoIP and PSTN. It is agreed that an average person will not notice any delay with a 300ms round trip time(rtt) for the data. The current recommendation from the European telecoms industry association, ETSI is that the round trip time for VoIP should not exceed 200ms. Bandwidth is probably the major factor in determining the latency of a connection, provided that efficient routing is in place. Low bandwidth can cause packet queuing which will obviously increase the RTT. Jitter is another problem which can be caused by low bandwidth, this is where the variation in packet delays because too great. Which can cause packets to arrive out of sequence. Buffering helps to deal with this, but obviously with too much buffering then the latency will increase. Packet loss is also caused when the network is congested due to insufficient bandwidth. Audio and video can handle this to a certain extent, but too much and quality will be reduced. Availability of the route after it has been setup is also important. If a route was to become unavailable during a call then it would be necessary to find a new one, before too much data was lost. Transcoding loss is not a problem in a purely IP-based call, but it can be a problem when switching between analogue and digital networks. This is where to much encoding and decoding of a audio stream can cause a deterioration in the quality of the audio. Richard Sinden 5 of 9
6 Audio Codecs Comparison A survey by the telecommunications industry association(tia) returned the following data on user satisfaction with latency problems and packet loss. A circuit switched network, obviously does not have to deal with packet loss, but was tested with varying latencies, and produced the following results. Figure 3: PSTN performance with increasing latency [TIA 2001] These results indicate that it is indeed the case that when the RTT begins to rise over 300ms it does become noticeable to the user, as satisfaction levels begin to drop off quite steeply at this point. Using VoIP with the G.711 audio codec, as you would expect, without packet loss then the results are identical to those of the PSTN. Once packet loss is introduced however, the QoS begins to drop dramatically, especially with no packet loss concealment in place. Although with the packet loss concealment and packet loss under 3% and the one-way delay under 100ms as ETSI recommends, the quality is still in the satisfactory boundary defined by the PSTN (see figure 4). Richard Sinden 6 of 9
7 Figure 4: G.711 performance with increasing packet loss and increasing latency [TIA 2001] However, compressed data is another story. As you can see from the diagram with the G at 6.3kbit/s the audio quality is never even reaches the satisfactory level at 0% packet loss. Figure 5: G performance with increasing packet loss and increasing latency [TIA 2001] The G.729A protocol, which is compressed to 8kbit/s, is slightly better with the user response residing in the satisfactory zone provided that the RTT is under 200ms and there is very little packet loss. This still does not provide the same kind of quality as a circuit switched network though. Richard Sinden 7 of 9
8 Figure 6: G.729A performance with increasing packet loss and increasing latency [TIA 2001] Summary It is clear from these figures that circuit switched networks have a definite advantage over packet switched networks, by not being affected by packet loss. This is currently a stumbling block for Voice over IP. Packet loss on the networks needs to be reduced, and this can be done by reducing congestion. To do this, either bandwidth capacities need to be increased, or a priority system needs to be developed which allows packets to be identified as high priority real time traffic. A Type of Service(ToS) field is being introduced into the IP header in an effort to allow prioritising of packets, but this is not yet widely supported. In the future maybe this will become a viable technology, but with the current state of the internet latency and packet loss issues will degrade quality too much to make it a widely used service. Richard Sinden 8 of 9
9 References Telecommunications Industry Association (TIA)(2001) TIA/EIA/TSB116 rtial_match=on&nbr_rows=25 David Willis (1999) Voice Over IP, The Way It Should Be Camarillo (2001) Signalling in the circuit switched network _Ch01.pdf Rosenberg et al. (2001) SIP: Session Initiation Protocol Communicate (2000) Clarity is the best policy Shara Evans (2000) H.323 Updates CommsWorld Richard Chirgwin (2000) Real-time Enough? CommsWorld Paul E. Jones (2001) Current Status of H Boaz Michaely (2000) H.323 Overview Richard Sinden 9 of 9
Voice over IP (VoIP) Overview. Introduction. David Feiner ACN 2004. Introduction VoIP & QoS H.323 SIP Comparison of H.323 and SIP Examples
Voice over IP (VoIP) David Feiner ACN 2004 Overview Introduction VoIP & QoS H.323 SIP Comparison of H.323 and SIP Examples Introduction Voice Calls are transmitted over Packet Switched Network instead
VIDEOCONFERENCING. Video class
VIDEOCONFERENCING Video class Introduction What is videoconferencing? Real time voice and video communications among multiple participants The past Channelized, Expensive H.320 suite and earlier schemes
VoIP QoS. Version 1.0. September 4, 2006. AdvancedVoIP.com. [email protected] [email protected]. Phone: +1 213 341 1431
VoIP QoS Version 1.0 September 4, 2006 AdvancedVoIP.com [email protected] [email protected] Phone: +1 213 341 1431 Copyright AdvancedVoIP.com, 1999-2006. All Rights Reserved. No part of this
An Introduction to VoIP Protocols
An Introduction to VoIP Protocols www.netqos.com Voice over IP (VoIP) offers the vision of a converged network carrying multiple types of traffic (voice, video, and data, to name a few). To carry out this
Online course syllabus. MAB: Voice over IP
Illuminating Technology Course aim: Online course syllabus MAB: Voice over IP This course introduces the principles and operation of telephony services that operate over Internet Protocol (IP) networks
VoIP Analysis Fundamentals with Wireshark. Phill Shade (Forensic Engineer Merlion s Keep Consulting)
VoIP Analysis Fundamentals with Wireshark Phill Shade (Forensic Engineer Merlion s Keep Consulting) 1 Phillip D. Shade (Phill) [email protected] Phillip D. Shade is the founder of Merlion s Keep Consulting,
Indepth Voice over IP and SIP Networking Course
Introduction SIP is fast becoming the Voice over IP protocol of choice. During this 3-day course delegates will examine SIP technology and architecture and learn how a functioning VoIP service can be established.
Hands on VoIP. Content. Tel +44 (0) 845 057 0176 [email protected]. Introduction
Introduction This 4-day course offers a practical introduction to 'hands on' VoIP engineering. Voice over IP promises to reduce your telephony costs and provides unique opportunities for integrating voice
B12 Troubleshooting & Analyzing VoIP
B12 Troubleshooting & Analyzing VoIP Phillip Sherlock Shade, Senior Forensics / Network Engineer Merlion s Keep Consulting [email protected] Phillip Sherlock Shade (Phill) [email protected] Phillip
Receiving the IP packets Decoding of the packets Digital-to-analog conversion which reproduces the original voice stream
Article VoIP Introduction Internet telephony refers to communications services voice, fax, SMS, and/or voice-messaging applications that are transported via the internet, rather than the public switched
VOICE over IP H.323 Advanced Computer Network SS2005 Presenter : Vu Thi Anh Nguyet
VOICE over IP H.323 Advanced Computer Network SS2005 Presenter : Vu Thi Anh Nguyet 1 Outlines 1. Introduction 2. QoS in VoIP 3. H323 4. Signalling in VoIP 5. Conclusions 2 1. Introduction to VoIP Voice
Combining Voice over IP with Policy-Based Quality of Service
TechBrief Extreme Networks Introduction Combining Voice over IP with Policy-Based Quality of Service Businesses have traditionally maintained separate voice and data networks. A key reason for this is
TECHNICAL CHALLENGES OF VoIP BYPASS
TECHNICAL CHALLENGES OF VoIP BYPASS Presented by Monica Cultrera VP Software Development Bitek International Inc 23 rd TELELCOMMUNICATION CONFERENCE Agenda 1. Defining VoIP What is VoIP? How to establish
Troubleshooting Voice Over IP with WireShark
Hands-On Course Description Voice over IP is being widely implemented both within companies and across the Internet. The key problems with IP voice services are maintaining the quality of the voice service
Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme
Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Protocols Quality of Service and Resource Management
Understanding Voice over IP
Introduction Understanding Voice over IP For years, many different data networking protocols have existed, but now, data communications has firmly found its home in the form of IP, the Internet Protocol.
Encapsulating Voice in IP Packets
Encapsulating Voice in IP Packets Major VoIP Protocols This topic defines the major VoIP protocols and matches them with the seven layers of the OSI model. Major VoIP Protocols 15 The major VoIP protocols
VOICE OVER IP AND NETWORK CONVERGENCE
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Assaid O. SHAROUN* VOICE OVER IP AND NETWORK CONVERGENCE As the IP network was primarily designed to carry data, it
Unit 23. RTP, VoIP. Shyam Parekh
Unit 23 RTP, VoIP Shyam Parekh Contents: Real-time Transport Protocol (RTP) Purpose Protocol Stack RTP Header Real-time Transport Control Protocol (RTCP) Voice over IP (VoIP) Motivation H.323 SIP VoIP
VoIP Bandwidth Considerations - design decisions
VoIP Bandwidth Considerations - design decisions When calculating the bandwidth requirements for a VoIP implementation the two main protocols are: a signalling protocol such as SIP, H.323, SCCP, IAX or
Voice over IP Protocols And Compression Algorithms
University of Tehran Electrical and Computer Engineering School SI Lab. Weekly Presentations Voice over IP Protocols And Compression Algorithms Presented by: Neda Kazemian Amiri Agenda Introduction to
PacketizerTM. Overview of H.323 http://www.packetizer.com/voip/h323/papers/ Paul E. Jones. Rapporteur, ITU-T Q2/SG16 paulej@packetizer.
A resource for packet-switched conversational protocols Overview of H.323 http:///voip/h323/papers/ Paul E. Jones Rapporteur, ITU-T Q2/SG16 [email protected] June 2004 Copyright 2004 Executive Summary
Session Initiation Protocol (SIP) The Emerging System in IP Telephony
Session Initiation Protocol (SIP) The Emerging System in IP Telephony Introduction Session Initiation Protocol (SIP) is an application layer control protocol that can establish, modify and terminate multimedia
Voice over IP (VoIP) Part 2
Kommunikationssysteme (KSy) - Block 5 Voice over IP (VoIP) Part 2 Dr. Andreas Steffen 1999-2001 A. Steffen, 10.12.2001, KSy_VoIP_2.ppt 1 H.323 Network Components Terminals, gatekeepers, gateways, multipoint
Requirements of Voice in an IP Internetwork
Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.
Software Engineering 4C03 VoIP: The Next Telecommunication Frontier
Software Engineering 4C03 VoIP: The Next Telecommunication Frontier Rudy Muslim 0057347 McMaster University Computing and Software Department Hamilton, Ontario Canada Introduction Voice over Internet Protocol
SIP Trunking and Voice over IP
SIP Trunking and Voice over IP Agenda What is SIP Trunking? SIP Signaling How is Voice encoded and transported? What are the Voice over IP Impairments? How is Voice Quality measured? VoIP Technology Confidential
Application Notes. Introduction. Contents. Managing IP Centrex & Hosted PBX Services. Series. VoIP Performance Management. Overview.
Title Series Managing IP Centrex & Hosted PBX Services Date July 2004 VoIP Performance Management Contents Introduction... 1 Quality Management & IP Centrex Service... 2 The New VoIP Performance Management
Internet Working 15th lecture (last but one) Chair of Communication Systems Department of Applied Sciences University of Freiburg 2005
15th lecture (last but one) Chair of Communication Systems Department of Applied Sciences University of Freiburg 2005 1 43 administrational stuff Next Thursday preliminary discussion of network seminars
VoIP Overview for Operators. Gene Lew VP, Advanced Services NANOG 34 Seattle, Washington May 2005
VoIP Overview for Operators Gene Lew VP, Advanced Services NANOG 34 Seattle, Washington May 2005 VoIP World IP networks enable creation of virtual phone companies Potential for anyone to be their own phone
VoIP and IP Telephony
VoIP and IP Telephony Reach Out and Ping Someone ISAC Spring School 2006 21 March 2006 Anthony Kava, Sr. Network Admin Pottawattamie County IT Definition VoIP Voice over Internet Protocol Voice Transport
Goal We want to know. Introduction. What is VoIP? Carrier Grade VoIP. What is Meant by Carrier-Grade? What is Meant by VoIP? Why VoIP?
Goal We want to know Introduction What is Meant by Carrier-Grade? What is Meant by VoIP? Why VoIP? VoIP Challenges 2 Carrier Grade VoIP Carrier grade Extremely high availability 99.999% reliability (high
IP Ports and Protocols used by H.323 Devices
IP Ports and Protocols used by H.323 Devices Overview: The purpose of this paper is to explain in greater detail the IP Ports and Protocols used by H.323 devices during Video Conferences. This is essential
Advanced Networking Voice over IP: RTP/RTCP The transport layer
Advanced Networking Voice over IP: RTP/RTCP The transport layer Renato Lo Cigno Requirements For Real-Time Transmission Need to emulate conventional telephone system Isochronous output timing same with
Measurement of IP Transport Parameters for IP Telephony
Measurement of IP Transport Parameters for IP Telephony B.V.Ghita, S.M.Furnell, B.M.Lines, E.C.Ifeachor Centre for Communications, Networks and Information Systems, Department of Communication and Electronic
Project Code: SPBX. Project Advisor : Aftab Alam. Project Team: Umair Ashraf 03-1853 (Team Lead) Imran Bashir 02-1658 Khadija Akram 04-0080
Test Cases Document VOIP SOFT PBX Project Code: SPBX Project Advisor : Aftab Alam Project Team: Umair Ashraf 03-1853 (Team Lead) Imran Bashir 02-1658 Khadija Akram 04-0080 Submission Date:23-11-2007 SPBX
VoIP. Overview. Jakob Aleksander Libak [email protected]. Introduction Pros and cons Protocols Services Conclusion
VoIP Jakob Aleksander Libak [email protected] 1 Overview Introduction Pros and cons Protocols Services Conclusion 2 1 Introduction Voice over IP is routing of voice conversations over the internet or
Multimedia Communications Voice over IP
Multimedia Communications Voice over IP Anandi Giridharan Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India Voice over IP (Real time protocols) Internet Telephony
4. H.323 Components. VOIP, Version 1.6e T.O.P. BusinessInteractive GmbH Page 1 of 19
4. H.323 Components VOIP, Version 1.6e T.O.P. BusinessInteractive GmbH Page 1 of 19 4.1 H.323 Terminals (1/2)...3 4.1 H.323 Terminals (2/2)...4 4.1.1 The software IP phone (1/2)...5 4.1.1 The software
Voice over IP. Presentation Outline. Objectives
Voice over IP Professor Richard Harris Presentation Outline Brief overview of VoIP and applications Challenges of VoIP IP Support for Voice Protocols used for VoIP (current views) RTP RTCP RSVP H.323 Semester
Applied Networks & Security
Applied Networks & Security VoIP with Critical Analysis http://condor.depaul.edu/~jkristof/it263/ John Kristoff [email protected] IT 263 Spring 2006/2007 John Kristoff - DePaul University 1 Critical analysis
Special Module on Media Processing and Communication
Special Module on Media Processing and Communication Multimedia Communication Fundamentals Dayalbagh Educational Institute (DEI) Dayalbagh Agra PHM 961 Indian Institute of Technology Delhi (IITD) New Delhi
Network Considerations for IP Video
Network Considerations for IP Video H.323 is an ITU standard for transmitting voice and video using Internet Protocol (IP). It differs from many other typical IP based applications in that it is a real-time
icall VoIP (User Agent) Configuration
icall VoIP (User Agent) Configuration 1 General 1.1 Topic General Document summarizing the general requirements for the configuration of VoIP hardware and / or software to utilize the icall service. 1.2
A Comparative Study of Signalling Protocols Used In VoIP
A Comparative Study of Signalling Protocols Used In VoIP Suman Lasrado *1, Noel Gonsalves *2 Asst. Prof, Dept. of MCA, AIMIT, St. Aloysius College (Autonomous), Mangalore, Karnataka, India Student, Dept.
Voice over IP: RTP/RTCP The transport layer
Advanced Networking Voice over IP: /RTCP The transport layer Renato Lo Cigno Requirements For Real-Time Transmission Need to emulate conventional telephone system Isochronous output timing same with input
Curso de Telefonía IP para el MTC. Sesión 1 Introducción. Mg. Antonio Ocampo Zúñiga
Curso de Telefonía IP para el MTC Sesión 1 Introducción Mg. Antonio Ocampo Zúñiga Conceptos Generales VoIP Essentials Family of technologies Carries voice calls over an IP network VoIP services convert
Need for Signaling and Call Control
Need for Signaling and Call Control VoIP Signaling In a traditional voice network, call establishment, progress, and termination are managed by interpreting and propagating signals. Transporting voice
Voice over Internet Protocol (VoIP) systems can be built up in numerous forms and these systems include mobile units, conferencing units and
1.1 Background Voice over Internet Protocol (VoIP) is a technology that allows users to make telephone calls using a broadband Internet connection instead of an analog phone line. VoIP holds great promise
Evaluating Data Networks for Voice Readiness
Evaluating Data Networks for Voice Readiness by John Q. Walker and Jeff Hicks NetIQ Corporation Contents Introduction... 2 Determining Readiness... 2 Follow-on Steps... 7 Summary... 7 Our focus is on organizations
Voice over IP (VoIP) for Telephony. Advantages of VoIP Migration for SMBs BLACK BOX. 724-746-5500 blackbox.com
Voice over IP (VoIP) for Telephony Advantages of VoIP Migration for SMBs BLACK BOX Hybrid PBX VoIP Gateways SIP Phones Headsets 724-746-5500 blackbox.com Table of Contents Introduction...3 About Voice
Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network
Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Jianguo Cao School of Electrical and Computer Engineering RMIT University Melbourne, VIC 3000 Australia Email: [email protected]
12 Quality of Service (QoS)
Burapha University ก Department of Computer Science 12 Quality of Service (QoS) Quality of Service Best Effort, Integrated Service, Differentiated Service Factors that affect the QoS Ver. 0.1 :, [email protected]
Voice Over Internet Protocol (VoIP)
Voice Over Internet Protocol (VoIP) Submitted By: Amit Prakash Computer Communication Networks- II ECE 436 University of Illinois at Chicago Abstract: This paper discuses the Voice Over Internet Protocol,
Overview of Voice Over Internet Protocol
Overview of Voice Over Internet Protocol Purva R. Rajkotia, Samsung Electronics November 4,2004 Overview of Voice Over Internet Protocol Presentation Outline History of VoIP What is VoIP? Components of
Integrate VoIP with your existing network
Integrate VoIP with your existing network As organisations increasingly recognise and require the benefits voice over Internet Protocol (VoIP) offers, they stop asking "Why?" and start asking "How?". A
159.334 Computer Networks. Voice over IP (VoIP) Professor Richard Harris School of Engineering and Advanced Technology (SEAT)
Voice over IP (VoIP) Professor Richard Harris School of Engineering and Advanced Technology (SEAT) Presentation Outline Basic IP phone set up The SIP protocol Computer Networks - 1/2 Learning Objectives
Master Kurs Rechnernetze Computer Networks IN2097
Chair for Network Architectures and Services Institute for Informatics TU München Prof. Carle, Dr. Fuhrmann Master Kurs Rechnernetze Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Dr. Thomas Fuhrmann
Curso de Telefonía IP para el MTC. Sesión 2 Requerimientos principales. Mg. Antonio Ocampo Zúñiga
Curso de Telefonía IP para el MTC Sesión 2 Requerimientos principales Mg. Antonio Ocampo Zúñiga Factors Affecting Audio Clarity Fidelity: Audio accuracy or quality Echo: Usually due to impedance mismatch
Application Notes. Introduction. Sources of delay. Contents. Impact of Delay in Voice over IP Services VoIP Performance Management.
Application Notes Title Series Impact of Delay in Voice over IP Services VoIP Performance Management Date January 2006 Overview This application note describes the sources of delay in Voice over IP services,
Secure VoIP Transmission through VPN Utilization
Secure VoIP Transmission through VPN Utilization Prashant Khobragade Department of Computer Science & Engineering RGCER Nagpur, India [email protected] Disha Gupta Department of Computer Science
The use of IP networks, namely the LAN and WAN, to carry voice. Voice was originally carried over circuit switched networks
Voice over IP Introduction VoIP Voice over IP The use of IP networks, namely the LAN and WAN, to carry voice Voice was originally carried over circuit switched networks PSTN (Public Switch Telephone Network)
Packetized Telephony Networks
Packetized Telephony Networks Benefits of Packet Telephony Networks Traditionally, the potential savings on long-distance costs was the driving force behind the migration to converged voice and data networks.
Voice-Over-IP. Daniel Zappala. CS 460 Computer Networking Brigham Young University
Voice-Over-IP Daniel Zappala CS 460 Computer Networking Brigham Young University Coping with Best-Effort Service 2/23 sample application send a 160 byte UDP packet every 20ms packet carries a voice sample
Voice over IP Basics for IT Technicians
Voice over IP Basics for IT Technicians White Paper Executive summary The IP phone is coming or has arrived on desk near you. The IP phone is not a PC, but does have a number of hardware and software elements
ALCATEL CRC Antwerpen Fr. Wellesplein 1 B-2018 Antwerpen +32/3/240.8550; [email protected] +32/3/240.7830; Guy.Reyniers@alcatel.
Contact: ALCATEL CRC Antwerpen Fr. Wellesplein 1 B-2018 Antwerpen +32/3/240.8550; [email protected] +32/3/240.7830; [email protected] Voice over (Vo) was developed at some universities to diminish
802.1p An IEEE standard for providing QoS using three bits (defined in 802.1q) to allow switches to reorder packets based on priority level.
Glossary and Terms 802.1p An IEEE standard for providing QoS using three bits (defined in 802.1q) to allow switches to reorder packets based on priority level. 802.1q An IEEE standard for providing virtual
A Brief Overview of VoIP Security. By John McCarron. Voice of Internet Protocol is the next generation telecommunications method.
A Brief Overview of VoIP Security By John McCarron Voice of Internet Protocol is the next generation telecommunications method. It allows to phone calls to be route over a data network thus saving money
IP-Telephony Quality of Service (QoS)
IP-Telephony Quality of Service (QoS) Bernard Hammer Siemens AG, Munich Siemens AG 2001 1 Presentation Outline End-to-end OoS of VoIP services Quality of speech codecs Network-QoS IntServ RSVP DiffServ
TSIN02 - Internetworking
TSIN02 - Internetworking Lecture 9: SIP and H323 Literature: Understand the basics of SIP and it's architecture Understand H.323 and how it compares to SIP Understand MGCP (MEGACO/H.248) SIP: Protocol
Voice over IP. Demonstration 1: VoIP Protocols. Network Environment
Voice over IP Demonstration 1: VoIP Protocols Network Environment We use two Windows workstations from the production network, both with OpenPhone application (figure 1). The OpenH.323 project has developed
ACD: Average Call Duration is the average duration of the calls routed bya a VoIP provider. It is a quality parameter given by the VoIP providers.
ACD: Average Call Duration is the average duration of the calls routed bya a VoIP provider. It is a quality parameter given by the VoIP providers. API: An application programming interface (API) is a source
Internet Technology Voice over IP
Internet Technology Voice over IP Peter Gradwell BT Advert from 1980s Page 2 http://www.youtube.com/v/o0h65_pag04 Welcome to Gradwell Gradwell provides technology for every line on your business card Every
Glossary of Terms and Acronyms for Videoconferencing
Glossary of Terms and Acronyms for Videoconferencing Compiled by Irene L. Ferro, CSA III Education Technology Services Conferencing Services Algorithm an algorithm is a specified, usually mathematical
Avancerede Datanet VoIP
Avancerede Datanet VoIP Ole Brun Madsen Professor University of Aalborg Avancerede Datanet VoIP 1 Voice over IP (VoIP) IP telephony switches enable voice calls to be made within Protocol (IP) networks,
Understanding Voice over IP Protocols
Understanding Voice over IP Protocols Cisco Systems Service Provider Solutions Engineering February, 2002 1 Topics to Discuss History of VoIP VoIP Early Adopters VoIP Standards and Standards Bodies VoIP
Application Note. Pre-Deployment and Network Readiness Assessment Is Essential. Types of VoIP Performance Problems. Contents
Title Six Steps To Getting Your Network Ready For Voice Over IP Date January 2005 Overview This provides enterprise network managers with a six step methodology, including predeployment testing and network
Course 4: IP Telephony and VoIP
Course 4: IP Telephony and VoIP Telecommunications Technical Curriculum Program 3: Voice Knowledge 6/9/2009 1 Telecommunications Technical Curriculum Program 1: General Industry Knowledge Course 1: General
Clearing the Way for VoIP
Gen2 Ventures White Paper Clearing the Way for VoIP An Alternative to Expensive WAN Upgrades Executive Overview Enterprises have traditionally maintained separate networks for their voice and data traffic.
ICTTEN5168A Design and implement an enterprise voice over internet protocol and a unified communications network
ICTTEN5168A Design and implement an enterprise voice over internet protocol and a unified communications network Release: 1 ICTTEN5168A Design and implement an enterprise voice over internet protocol and
How To Understand The Differences Between A Fax And A Fax On A G3 Network
The Fax on IP Networks White Paper February 2011 2 The Fax on IP Networks Contents Overview... 3 Group 3 Fax Technology... 4 G.711 Fax Pass-Through... 5 T.38 IP Fax Relay... 6 Network Design Considerations...
Case in Point. Voice Quality Parameter Tuning
Case in Point To continue our efforts to help you with your network needs, we will be making several real-world network troubleshooting case studies available to you. The attached case study,, discusses
VoIP Bandwidth Calculation
VoIP Bandwidth Calculation AI0106A VoIP Bandwidth Calculation Executive Summary Calculating how much bandwidth a Voice over IP call occupies can feel a bit like trying to answer the question; How elastic
Broadband Quality of Service Experience (QoSE)
Broadband Quality of Service Experience (QoSE) Indicators 1 Price is not the only dimension that is of interest to customers and regulators. Quality of Service Experience (QoSE) is integrally connected
5. DEPLOYMENT ISSUES Having described the fundamentals of VoIP and underlying IP infrastructure, let s address deployment issues.
5. DEPLOYMENT ISSUES Having described the fundamentals of VoIP and underlying IP infrastructure, let s address deployment issues. 5.1 LEGACY INTEGRATION In most cases, enterprises own legacy PBX systems,
Alexandre Weffort Thenorio - Data. IP-Telephony
Alexandre Weffort Thenorio - Data IP-Telephony 1. Introduction... 3 2. What is it?... 4 3. Why IP-Telephony?... 4 3.1. Advantages... 4 3.1.1. Cost... 4 3.1.2. Functionality and Mobility... 4 3.2. Disadvantages...
Is Your Network Ready For IP Telephony?
WHITE PAPER Is Your Network Ready For IP Telephony? Straight facts about IP telephony planning and deployment 1. Introduction Enterprises are rapidly adopting IP telephony for cost savings, productivity
INVESTIGATING THE PERFORMANCE OF VOIP OVER ETHERNET LAN IN CAMPUS NETWORK
ISSN: 0976-3031. Available Online at http://www.recentscientific.com International Journal of Recent Scientific Research Vol. 6, Issue, 6, pp.4389-4394, June, 2015 RESEARCH ARTICLE INVESTIGATING THE PERFORMANCE
VA Enterprise Standard: VIDEO CODEC/RECORDING
DEPARTMENT OF VETERANS AFFAIRS (VA) OFFICE OF INFORMATION AND TECHNOLOGY (OIT) VA SERVICE DELIVERY ENGINEERING (SDE) ENTERPRISE SYSTEMS ENGINEERING (ESE) VA Enterprise Standard: VIDEO CODEC/RECORDING Version
Voice over IP: Issues and Challenges
Voice over IP: Issues and Challenges IP is now at Columbus, OH 43210 [email protected] Washington University in Saint Louis [email protected] http://www.cse.ohio-state.edu/~jain/ http://www.cse.wustl.edu/~jain/
1. Public Switched Telephone Networks vs. Internet Protocol Networks
Internet Protocol (IP)/Intelligent Network (IN) Integration Tutorial Definition Internet telephony switches enable voice calls between the public switched telephone network (PSTN) and Internet protocol
Application Note How To Determine Bandwidth Requirements
Application Note How To Determine Bandwidth Requirements 08 July 2008 Bandwidth Table of Contents 1 BANDWIDTH REQUIREMENTS... 1 1.1 VOICE REQUIREMENTS... 1 1.1.1 Calculating VoIP Bandwidth... 2 2 VOIP
2.1 Introduction. 2.2 Voice over IP (VoIP)
2.1 Introduction In this section can provide the necessary background on the structure of VoIP applications and on their component, and the transmission protocols generally used in VoIP. 2.2 Voice over
Voice over IP (VoIP) Basics for IT Technicians
Voice over IP (VoIP) Basics for IT Technicians VoIP brings a new environment to the network technician that requires expanded knowledge and tools to deploy and troubleshoot IP phones. This paper provides
SingTel WorldConference Multipoint Video Conference
SingTel WorldConference Multipoint Video Conference FREQUENTLY ASKED QUESTIONS December 2006 TABLE OF CONTENTS GENERAL... 1 1. Can the Multipoint Video Conference bridge support different types of connections
