Real-time Particle Filters
|
|
|
- Dina Sutton
- 9 years ago
- Views:
Transcription
1 Real-ime Paricle Filers Cody Kwok Dieer Fox Marina Meilă Dep. of Compuer Science & Engineering, Dep. of Saisics Universiy of Washingon Seale, WA 9895 Absrac Paricle filers esimae he sae of dynamical sysems from sensor informaion. In many real ime applicaions of paricle filers, however, sensor informaion arrives a a significanly higher rae han he updae rae of he filer. The prevalen approach o dealing wih such siuaions is o updae he paricle filer as ofen as possible and o discard sensor informaion ha canno be processed in ime. In his paper we presen real-ime paricle filers, which make use of all sensor informaion even when he filer updae rae is below he updae rae of he sensors. This is achieved by represening poseriors as mixures of sample ses, where each mixure componen inegraes one observaion arriving during a filer updae. The weighs of he mixure componens are se so as o minimize he approximaion error inroduced by he mixure represenaion. Thereby, our approach focuses compuaional resources (samples) on valuable sensor informaion. Experimens using daa colleced wih a mobile robo show ha our approach yields srong improvemens over oher approaches. Inroducion Due o heir sample-based represenaion, paricle filers are well suied o esimae he sae of non-linear dynamic sysems. Over he las years, paricle filers have been applied wih grea success o a variey of sae esimaion problems including visual racking, speech recogniion, and mobile roboics []. The increased represenaional power of paricle filers, however, comes a he cos of higher compuaional complexiy. The applicaion of paricle filers o online, real-ime esimaion raises new research quesions. The key quesion in his conex is: How can we deal wih siuaions in which he rae of incoming sensor daa is higher han he updae rae of he paricle filer? To he bes of our knowledge, his problem has no been addressed in he lieraure so far. The prevalen approach in real ime applicaions is o updae he filer as ofen as possible and o discard sensor informaion ha arrives during he updae process. Obviously, his approach is prone o losing valuable sensor informaion. A firs sigh, he sample based represenaion of paricle filers suggess an alernaive approach similar o an any-ime implemenaion: Whenever a new observaion arrives, sampling is inerruped and he nex observaion is processed. Unforunaely, such an approach can resul in oo small sample ses, causing he filer o diverge [, 2]. In his paper we inroduce real-ime paricle filers (RTPF) o deal wih consrains imposed by limied compuaional resources. Insead of discarding sensor readings, we disribue he
2 (a) (b) z z z z z + z + 2 z (c) z 2 z z z z 2 + S u u S + S S S u u S 2 u S S Figure : Differen sraegies for dealing wih limied compuaional power. All approaches process he same number of samples per esimaion inerval (window sizeq hree). (a) Skip observaions, i.e. inegrae only every hird observaion. (b) Aggregae observaions wihin a window and inegrae hem in one sep. (c) Reduce sample se size so ha each observaion can be considered. samples among he differen observaions arriving during a filer updae. Hence RTPF represens densiies over he sae space by mixures of sample ses, hereby avoiding he problem of filer divergence due o an insufficien number of independen samples. The weighs of he mixure componens are compued so as o minimize he approximaion error inroduced by he mixure represenaion. The resuling approach naurally focuses compuaional resources (samples) on valuable sensor informaion. The remainder of his paper is organized as follows: In he nex secion we ouline he basics of paricle filers in he conex of real-ime consrains. Then, in Secion, we inroduce our novel echnique o real-ime paricle filers. Finally, we presen experimenal resuls followed by a discussion of he properies of RTPF. 2 Paricle filers Paricle filers are a sample-based varian of Bayes filers, which recursively esimae poserior densiies, or beliefs, over he sae of a dynamical sysem (see [, ] for deails):!#" $ () Here % is a sensor measuremen and is conrol informaion measuring he dynamics of he sysem. Paricle filers represen beliefs by ses & of weighed samples ' )(++, - 0/ (+.,. Each (.+, is a sae, and he - (+., are non-negaive numerical facors called imporance weighs, which sum up o one. The basic form of he paricle filer realizes he recursive Bayes filer according o a sampling procedure, ofen referred o as sequenial imporance sampling wih resampling (SISR):. Resampling: Draw wih replacemen a random sae from he se & according o he (discree) disribuion defined hrough he imporance weighs -(.+,. 2. Sampling: Use and he conrol informaion o sample 2 according o he disribuion 2!, which describes he dynamics of he sysem.. Imporance sampling: Weigh he sample 2 by he observaion likelihood Each ieraion of hese hree seps generaes a sample ' 2-2 / represening he poserior. Afer 4 ieraions, he imporance weighs of he samples are normalized so ha hey sum up o one. Paricle filers can be shown o converge o he rue poserior even in non-gaussian, non-linear dynamic sysems [4]. A ypical assumpion underlying paricle filers is ha all samples can be updaed whenever new sensor informaion arrives. Under realime condiions, however, i is possible ha he updae canno be compleed before he nex sensor measuremen arrives. This can be he case for compuaionally complex sensor models or whenever he underlying poserior requires large sample ses [2]. The majoriy of filering approaches deals wih his problem by skipping sensor informaion ha arrives during he updae of he filer. While his approach works reasonably well in many siuaions, i is prone o miss valuable sensor informaion.
3 z z z z z 2 S S S S 2 + S S +2 + α α 2 α α α 2 α Esmaion window z + Esimaion window + Figure 2: Real ime paricle filers. The samples are disribued among he observaions wihin one esimaion inerval (window size hree in his example). The belief is a mixure of he individual sample ses. Each arrow addiionally represens he sysem dynamics. Before we discuss ways of dealing wih such siuaions, le us inroduce some noaion. We assume ha observaions arrive a ime inervals, which we will call observaion inervals. Le 4 be he number of samples required by he paricle filer. Assume ha he resuling updae cycle of he paricle filer akes and is called he esimaion inerval or esimaion window. Accordingly, observaions arrive during one esimaion inerval. We call his number he window size of he filer, i.e. he number of observaions obained during a filer updae. The -h observaion and sae wihin window are denoed and, respecively. Fig. illusraes differen approaches o dealing wih window sizes larger han one. The simples and mos common aproach is shown in Fig. (a). Here, observaions arriving during he updae of he sample se are discarded, which has he obvious disadvanage ha valuable sensor informaion migh ge los. The approach in Fig. (b) overcomes his problem by aggregaing muliple observaions ino one. While his echnique avoids he loss of informaion, i is no applicable o arbirary dynamical sysems. For example, i assumes ha observaions can be aggregaed opimally, and ha he inegraion of an aggregaed observaion can be performed as efficienly as he inegraion of individual observaions, which is ofen no he case. The hird approach, shown in Fig. (c), simply sops generaing new samples whenever an observaion is made (hence each sample se conains only 4 samples). While his approach akes advanage of he any-ime capabiliies of paricle filers, i is suscepible o filer divergence due o an insufficen number of samples [2, ]. Real ime paricle filers In his paper we propose real ime paricle filers (RTPFs), a novel approach o dealing wih limied compuaional resources. The key idea of RTPFs is o consider all sensor measuremens by disribuing he samples among he observaions wihin an updae window. Addiionally, by weighing he differen sample ses wihin a window, our approach focuses he compuaional resources (samples) on he mos valuable observaions. Fig. 2 illusraes he approach. As can be seen, insead of one sample se a ime, we mainain smaller sample ses a $$ $!. We rea such a virual sample se, or belief, as a mixure of he disribuions represened in i. The mixure componens represen he sae of he sysem a differen poins in ime. If needed, however, he complee belief can be generaed by considering he dynamics beween he individual mixure componens. Compared o he firs approach discussed in he previous secion, his mehod has he advanage of no skipping any observaions. In conras o he approach shown in Fig. (b), RTPFs do no make any assumpions abou he naure of he sensor daa, i.e. wheher i can be aggregaed or no. The difference o he hird approach (Fig. (c)) is more suble. In boh approaches, each of he sample ses can only conain 4 samples. The belief sae ha is propagaed by RTPF o he nex esimaion inerval is a mixure disribuion where each mixure componen is represened by one of he sample ses, all generaed independenly from he previous window. Thus, he belief sae propagaion is simulaed by "$# sample rajecories, ha for compuaional convenience are represened a he poins in ime where he observaions are inegraed. In he approach (c) however, he belief propagaion is simulaed wih only 4 independen samples.
4 We will now show how RTPF deermines he weighs of he mixure belief. The key idea is o choose he weighs ha minimize he KL-divergence beween he mixure belief and he opimal belief. The opimal belief is he belief we would ge if here was enough ime o compue he full poserior wihin he updae window.. Mixure represenaion Le us resric our aenion o one esimaion inerval consising of observaions. The opimal belief%! a he end of an esimaion window resuls from ieraive applicaion of he Bayes filer updae on each obseraion []: %! $$ $ " #$ $$ " $ (2) Here denoes he belief generaed in he previous esimaion window. In essence, (2) compues he belief by inegraing over all rajecories hrough he esimaion inerval, where he sar posiion of he rajecories is drawn from he previous belief. The probabiliy of each rajecory is deermined using he conrol informaion $$ $, and he likelihoods of he observaions %$ $$ along he rajecory. Now le denoe he belief resuling from inegraing only he observaion wihin he esimaion window. RTPF compues a mixure of such beliefs, one for each observaion. The mixure, denoed, is he weighed sum of he mixure componens, where denoes he mixure weighs: where and % $$ $ % %! " $.$.$ " $ (). Here, oo, we inegrae over all rajecories. In conras o (2), however, each rajecory selecively inegraes only one of he observaions wihin he esimaion inerval..2 Opimizing he mixure weighs We will now urn o he problem of finding he weighs of he mixure. These weighs reflec he imporance of he respecive observaions for describing he opimal belief. The idea is o se hem so as o minimize he approximaion error inroduced by he mixure disribuion. More formally, we deermine he mixing weighs "! by minimizing he KL-divergence [5] beween and #.! $&%(')+#, -/.0 2 #!" 4.%! (4) $&%(')+#, -/ # 4! " $ (5) In he above 8 :9 # ; <. Opimizing he weighs of mixure approximaions can be done using EM [6] or (consrained) =?> gradien descen [7]. Here, we perform a small number of gradien descen seps o find he mixure weighs. Denoe by Noe ha ypically he individual predicions $ can be concaenaed so ha only wo predicions for each rajecory have o be performed, one before and one afer he corresponding observaion.
5 he crierion o be minimized in (5). The gradien of is given by ' # '! ' # " $ $$ $ (6) The sar poin for he gradien descen is chosen o be he cener of he weigh domain8, ha is $ $$.. Mone Carlo gradien esimaion The exac compuaion of he gradiens in (6) requires he compuaion of he differen beliefs, each in urn requiring several paricle filer updaes (see (2), ()), and inegreaion over all saes. This is clearly no feasible in our case. We solve his problem by Mone Carlo approximaion. The approach is based on he observaion ha he beliefs in (6) share he same rajecories hrough space and differ only in he observaions hey inegrae. Therefore, we firs generae sample rajecories hrough he esimaion window wihou considering he observaions, and hen use imporance sampling o generae he beliefs needed for he gradien esimaion. Trajecory generaion is done as follows: we draw a sample from a sample se of he previous mixure belief, where he probabiliy of chosing a se &) is given by he mixure weighs. This sample is hen moved forward in ime by consecuively drawing samples from he disribuions! a each ime sep $$ $. The resuling rajecories are drawn from he following proposal disribuion : $$ $ #" #$$ $ " (7) Using imporance sampling, we obain sample-based esimaes of weighing each rajecory wih or and! by simply %, respecively (compare (2) and ()). is generaed wih minimal compuaional overhead by averaging he weighs compued for # he individual disribuions. The use of he same rajecories for all disribuions has he advanage ha i is highly efficien and ha i reduces he variance of he gradien esimae. This variance reducion is due o using he same random bis in evaluaing he diverse scenarios of incorporaing one or anoher of he observaions [8]. Furher variance reducion is achieved by using sraified sampling on rajecories. The rajecories are grouped by deermining conneced regions in a grid over he sae space (a ime ). Neighboring cells are considered conneced if boh conain samples. To compue he gradiens by formula (6), we hen perform summaion and normalizaion over he grouped rajecories. Empirical evaluaions showed ha his grouping grealy reduces he number of rajecories needed o ge smooh gradien esimaes. An addiional, very imporan benefi of grouping is he reducion of he bias due o differen dynamics applied o he differen sample ses in he esimaion window. In our experimens he number of rajecories is less han of he oal number of samples, resuling in a compuaional overhead of abou % of he oal esimaion ime. To summarize, he RTPF algorihm works as follows. The number 4 of independen samples needed o represen he belief, he updae rae of incoming sensor daa, and he available processing power deermine he size of he esimaion window and hence he number of mixure componens. RTPF compues he opimal weighs of he mixure disribuion a he end of each esimaion window. This is done by gradien descen using he Mone Carlo esimaes of he gradiens. The resuling weighs are used o generae samples for he individual sample ses of he nex esimaion window. To do so, we keep rack of he conrol informaion (dynamics) beween he differen sample ses of wo consecuive windows.
6 8m 54m Fig. : Map of he environmen used for he experimen. The robo was moved around he symmeric loop on he lef. The ask of he robo was o deermine is posiion using daa colleced by wo disance measuring devices, one poining o is lef, he oher poining o is righ. 4 Experimens In his secion we evaluae he effeciveness of RTPF agains he alernaives, using daa colleced from a mobile robo in a real-world environmen. Figure shows he seup of he experimen: The robo was placed in he office floor and moved around he loop on he lef. The ask of he robo was o deermine is posiion wihin he map, using daa colleced by wo laser-beams, one poining o is lef, he oher poining o is righ. The wo laser beams were exraced from a planar laser range-finder, allowing he robo only o deermine he disance o he walls on is lef and righ. Beween each observaion he robo moved approximaely 50cm (see [] for deails on robo localizaion and sensor models). Noe ha he loop in he environmen is symmeric excep for a few landmarks along he walls of he corridor. Localizaion performance was measured by he average disance beween he samples and he reference robo posiions, which were compued offline. In he experimens, our real-ime algorihm, RTPF, is compared o paricle filers wih skipping observaions, called Skip daa (Figure a), and paricle filers wih insufficien samples, called Naive (Figure c). Furhermore, o gauge he efficiency of our mixure weighing, we also obained resuls for our real-ime algorihm wihou weighing, i.e. we used mixure disribuions and fixed he weighs o. We denoe his varian Uniform. Finally, we also include as reference he Baseline approach, which is allowed o generae 4 samples for each observaion, hereby no considering real-ime consrains. The experimen is se up as follows. Firs, we fix he sample se size 4 which is sufficien for he robo o localize iself. In our experimen 4 is se empirically o 20,000 (he paricle filers may fail a lower 4, see also [2]). We hen vary he compuaional resources, resuling in differen window sizes. Larger window size means lower compuaional power, and he number of samples ha can be generaed for each observaion decreases o (4 ). Figure 4 shows he evoluions of average localizaion errors over ime, using differen window sizes. Each graph is obained by averaging over 0 runs wih differen random seeds and sar posiions. The error bars indicae 95% confidence inervals. As he figures show, Naive gives he wors resuls, which is due o insufficien numbers of samples, resuling in divergence of he filer. While Uniform performs slighly beer han Skip daa, RTPF is he mos effecive of all algorihms, localizing he robo in he leas amoun of ime. Furhermore, RTPF shows he leas degradaion wih limied compuaional power (larger window sizes). The key advanage of RTPF over Uniform lies in he mixure weighing, which allows our approach o focus compuaional resources on valuable sensor informaion, for example when he robo passes an informaive feaure in one of he hallways. For shor window sizes (Fig. 4(a)), his advanage is no very srong since in his environmen, mos feaures can be deeced in several consecuive sensor measuremens. Noe ha because he Baseline approach was allowed o inegrae all observaions wih all of he 20,000 samples, i converges o a lower error level han all he oher approaches.
7 Average Localizaion error [cm] Baseline Skip daa RTPF Naive Uniform Average Localizaion error [cm] Baseline Skip daa RTPF Naive Uniform Time [sec] (a) Time [sec] (b) Average Localizaion error [cm] Baseline Skip daa RTPF Naive Uniform Time [sec] (c) Localizaion speedup Window size Fig. 4(a)-(c): Performance of he differen algorihms for window sizes of 4, 8, and 2 respecively. The -axis represens ime elapsed since he beginning of he localizaion experimen. The -axis plos he localizaion error measured in average disance from he reference posiion. Each figure includes he performance achieved wih unlimied compuaional power as he Baseline graph. Each poin is averaged over 0 runs, and error bars indicae 95% confidence inervals. Fig. 4(d) represens he localizaion speedup of RTPF over Skip daa for various window sizes. The advanage of RTPF increases wih he difficuly of he ask, i.e. wih increasing window size. Beween window size 6 and 2, RTPF localizes a leas wice as fas as Skip daa. Wihou mixure weighing of RTPF, we did no expec Uniform o ouperform Skip daa significanly. To see his, consider one esimaion window of lengh. Suppose only one of he observaions deecs a landmark, or very informaive feaure in he hallway. In such a siuaion, Uniform considers his landmark every ime he robo passes i. However, i only assigns 4 samples o his landmark deecion. Skip daa on he oher hand, deecs he landmark only every -h ime, bu assigns all 4 samples o i. Therefore, averaged over many differen runs, he mean performance of Uniform and Skip daa is very similar. However, he variance of he error is significanly lower for Uniform since i considers he deecion in every run. In conras o boh approaches, RTPF deecs all landmarks and generaes more samples for he landmark deecions, hereby gaining he bes of boh worlds, and Figures 4(a) (c) show his is indeed he case. In Figure 4(d) we summarize he performance gain of RTPF over Skip daa for differen window sizes in erms of localizaion ime. We considered he robo o be localized if he average localizaion error remains below 200 cm over a period of 0 seconds. If he run never reaches his level, he localizaion ime is se o he lengh of he enire run, which is 574 seconds. The -axis represens he window size and he -axis he localizaion speedup. For each window size speedups were deermined using -ess on he localizaion imes for he 0 pairs of daa runs. All resuls are significan a he 95% level. The graph shows ha wih increasing window size (i.e. decreasing processing power), he localizaion speedup increases. A small window sizes he speedup is 20-50%, bu i goes up o 2.7 imes for larger windows, demonsraing he benefis of he RTPF approach over radiional paricle filers. Ulimaely, for very large window sizes, he speedup decreases again, which is due o he fac ha none of he approaches is able o reduce he error below 200cm wihin he run ime of an experimen. (d)
8 5 Conclusions In his paper we ackled he problem of paricle filering under he consrain of limied compuing resources. Our approach makes near-opimal use of sensor informaion by dividing sample ses beween all available observaions and hen represening he sae as a mixure of sample ses. Nex we opimize he mixing weighs in order o be as close o he rue poserior disribuion as possible. Opimizaion is performed efficienly by gradien descen using a Mone Carlo approximaion of he gradiens. We showed ha RTPF produces significan performance improvemens in a robo localizaion ask. The resuls indicae ha our approach ouperforms all alernaive mehods for dealing wih limied compuaion. Furhermore, RTPF localized he robo more han 2.7 imes faser han he original paricle filer approach, which skips sensor daa. Based on hese resuls, we expec our mehod o be highly valuable in a wide range of real-ime applicaions of paricle filers. RTPF yields maximal performance gain for daa sreams conaining highly valuable sensor daa occuring a unpredicable ime poins. The idea of approximaing belief saes by mixures has also been used in he conex of dynamic Bayesian neworks [9]. However, Boyen and Koller use mixures o represen belief saes a a specific poin in ime, no over muliple ime seps. Our work is moivaed by real-ime consrains ha are no presen in [9]. So far RTPF uses fixed sample sizes and fixed window sizes. The nex naural sep is o adap hese wo srucural parameers o furher speed up he compuaion. For example, by he mehod of [2] we can change he sample size on-he-fly, which in urn allows us o change he window size. Ongoing experimens sugges ha his combinaion yields furher performance improvemens: When he sae uncerainy is high, many samples are used and hese samples are spread ou over muliple observaions. On he oher hand, when he uncerainy is low, he number of samples is very small and RTPF becomes idenical o he vanilla paricle filer wih one updae (sample se) per observaion. 6 Acknowledgemens This research is sponsored in par by he Naional Science Foundaion (CAREER gran number ) and by DARPA (MICA program). References [] A. Douce, N. de Freias, and N. Gordon, ediors. Sequenial Mone Carlo in Pracice. Springer- Verlag, New York, 200. [2] D. Fox. KLD-sampling: Adapive paricle filers and mobile robo localizaion. In Advances in Neural Informaion Processing Sysems (NIPS), 200. [] D. Fox, S. Thrun, F. Dellaer, and W. Burgard. Paricle filers for mobile robo localizaion. In Douce e al. []. [4] P. Del Moral and L. Miclo. Branching and ineracing paricle sysems approximaions of feynamkac formulae wih applicaions o non linear filering. In Seminaire de Probabilies XXXIV, number 729 in Lecure Noes in Mahemaics. Springer-Verlag, [5] T. M. Cover and J. A. Thomas. Elemens of Informaion Theory. Wiley Series in Telecommunicaions. Wiley, New York, 99. [6] W. Poland and R. Shacher. Mixures of Gaussians and minimum relaive enropy echniques for modeling coninuous uncerainies. In Proc. of he Conference on Uncerainy in Arificial Inelligence (UAI), 99. [7] T. Jaakkola and M. Jordan. Improving he mean field approximaion via he use of mixure disribuions. In Learning in Graphical Models. Kluwer, 997. [8] P. R. Cohen. Empirical mehods for arificial inelligence. MIT Press, 995. [9] X. Boyen and D. Koller. Tracable inference for complex sochasic processes. In Proc. of he Conference on Uncerainy in Arificial Inelligence (UAI), 998.
SELF-EVALUATION FOR VIDEO TRACKING SYSTEMS
SELF-EVALUATION FOR VIDEO TRACKING SYSTEMS Hao Wu and Qinfen Zheng Cenre for Auomaion Research Dep. of Elecrical and Compuer Engineering Universiy of Maryland, College Park, MD-20742 {wh2003, qinfen}@cfar.umd.edu
Bayesian Filtering with Online Gaussian Process Latent Variable Models
Bayesian Filering wih Online Gaussian Process Laen Variable Models Yali Wang Laval Universiy [email protected] Marcus A. Brubaker TTI Chicago [email protected] Brahim Chaib-draa Laval Universiy
Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters
1 Improved Techniques for Grid Mapping wih Rao-Blackwellized Paricle Filers Giorgio Grisei Cyrill Sachniss Wolfram Burgard Universiy of Freiburg, Dep. of Compuer Science, Georges-Köhler-Allee 79, D-79110
Chapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
Making a Faster Cryptanalytic Time-Memory Trade-Off
Making a Faser Crypanalyic Time-Memory Trade-Off Philippe Oechslin Laboraoire de Securié e de Crypographie (LASEC) Ecole Polyechnique Fédérale de Lausanne Faculé I&C, 1015 Lausanne, Swizerland [email protected]
Single-machine Scheduling with Periodic Maintenance and both Preemptive and. Non-preemptive jobs in Remanufacturing System 1
Absrac number: 05-0407 Single-machine Scheduling wih Periodic Mainenance and boh Preempive and Non-preempive jobs in Remanufacuring Sysem Liu Biyu hen Weida (School of Economics and Managemen Souheas Universiy
Multiprocessor Systems-on-Chips
Par of: Muliprocessor Sysems-on-Chips Edied by: Ahmed Amine Jerraya and Wayne Wolf Morgan Kaufmann Publishers, 2005 2 Modeling Shared Resources Conex swiching implies overhead. On a processing elemen,
Task is a schedulable entity, i.e., a thread
Real-Time Scheduling Sysem Model Task is a schedulable eniy, i.e., a hread Time consrains of periodic ask T: - s: saring poin - e: processing ime of T - d: deadline of T - p: period of T Periodic ask T
The Application of Multi Shifts and Break Windows in Employees Scheduling
The Applicaion of Muli Shifs and Brea Windows in Employees Scheduling Evy Herowai Indusrial Engineering Deparmen, Universiy of Surabaya, Indonesia Absrac. One mehod for increasing company s performance
Market Liquidity and the Impacts of the Computerized Trading System: Evidence from the Stock Exchange of Thailand
36 Invesmen Managemen and Financial Innovaions, 4/4 Marke Liquidiy and he Impacs of he Compuerized Trading Sysem: Evidence from he Sock Exchange of Thailand Sorasar Sukcharoensin 1, Pariyada Srisopisawa,
An Online Learning-based Framework for Tracking
An Online Learning-based Framework for Tracking Kamalika Chaudhuri Compuer Science and Engineering Universiy of California, San Diego La Jolla, CA 9293 Yoav Freund Compuer Science and Engineering Universiy
Statistical Analysis with Little s Law. Supplementary Material: More on the Call Center Data. by Song-Hee Kim and Ward Whitt
Saisical Analysis wih Lile s Law Supplemenary Maerial: More on he Call Cener Daa by Song-Hee Kim and Ward Whi Deparmen of Indusrial Engineering and Operaions Research Columbia Universiy, New York, NY 17-99
Journal Of Business & Economics Research September 2005 Volume 3, Number 9
Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: [email protected]), George Washingon Universiy Yi-Kang Liu, ([email protected]), George Washingon Universiy ABSTRACT The advanage of Mone Carlo
USE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES
USE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES Mehme Nuri GÖMLEKSİZ Absrac Using educaion echnology in classes helps eachers realize a beer and more effecive learning. In his sudy 150 English eachers were
PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
Combination of UWB and GPS for indoor-outdoor vehicle localization
ombinaion of UW and for indoor-oudoor vehicle localizaion González J., lanco J.L., Galindo., Oriz-de-Galiseo., Fernández-Madrigal J.., Moreno F.., and Marínez J.L. {jgonzalez, jlblanco,cipriano,jafma}@cima.uma.es,
The naive method discussed in Lecture 1 uses the most recent observations to forecast future values. That is, Y ˆ t + 1
Business Condiions & Forecasing Exponenial Smoohing LECTURE 2 MOVING AVERAGES AND EXPONENTIAL SMOOTHING OVERVIEW This lecure inroduces ime-series smoohing forecasing mehods. Various models are discussed,
TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS
TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS RICHARD J. POVINELLI AND XIN FENG Deparmen of Elecrical and Compuer Engineering Marquee Universiy, P.O.
Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.
Principal componens of sock marke dynamics Mehodology and applicaions in brief o be updaed Andrei Bouzaev, [email protected] Why principal componens are needed Objecives undersand he evidence of more han one
Particle Filtering for Geometric Active Contours with Application to Tracking Moving and Deforming Objects
Paricle Filering for Geomeric Acive Conours wih Applicaion o Tracking Moving and Deforming Objecs Yogesh Rahi Namraa Vaswani Allen Tannenbaum Anhony Yezzi Georgia Insiue of Technology School of Elecrical
Morningstar Investor Return
Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion
Measuring macroeconomic volatility Applications to export revenue data, 1970-2005
FONDATION POUR LES ETUDES ET RERS LE DEVELOPPEMENT INTERNATIONAL Measuring macroeconomic volailiy Applicaions o expor revenue daa, 1970-005 by Joël Cariolle Policy brief no. 47 March 01 The FERDI is a
The Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
Network Discovery: An Estimation Based Approach
Nework Discovery: An Esimaion Based Approach Girish Chowdhary, Magnus Egersed, and Eric N. Johnson Absrac We consider he unaddressed problem of nework discovery, in which, an agen aemps o formulae an esimae
How To Predict A Person'S Behavior
Informaion Theoreic Approaches for Predicive Models: Resuls and Analysis Monica Dinculescu Supervised by Doina Precup Absrac Learning he inernal represenaion of parially observable environmens has proven
Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
Automatic measurement and detection of GSM interferences
Auomaic measuremen and deecion of GSM inerferences Poor speech qualiy and dropped calls in GSM neworks may be caused by inerferences as a resul of high raffic load. The radio nework analyzers from Rohde
MACROECONOMIC FORECASTS AT THE MOF A LOOK INTO THE REAR VIEW MIRROR
MACROECONOMIC FORECASTS AT THE MOF A LOOK INTO THE REAR VIEW MIRROR The firs experimenal publicaion, which summarised pas and expeced fuure developmen of basic economic indicaors, was published by he Minisry
Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur
Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,
A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation
A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion
AP Calculus BC 2010 Scoring Guidelines
AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board
Distributing Human Resources among Software Development Projects 1
Disribuing Human Resources among Sofware Developmen Proecs Macario Polo, María Dolores Maeos, Mario Piaini and rancisco Ruiz Summary This paper presens a mehod for esimaing he disribuion of human resources
Individual Health Insurance April 30, 2008 Pages 167-170
Individual Healh Insurance April 30, 2008 Pages 167-170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve
Sampling Time-Based Sliding Windows in Bounded Space
Sampling Time-Based Sliding Windows in Bounded Space Rainer Gemulla Technische Universiä Dresden 01062 Dresden, Germany [email protected] Wolfgang Lehner Technische Universiä Dresden 01062 Dresden,
SPEC model selection algorithm for ARCH models: an options pricing evaluation framework
Applied Financial Economics Leers, 2008, 4, 419 423 SEC model selecion algorihm for ARCH models: an opions pricing evaluaion framework Savros Degiannakis a, * and Evdokia Xekalaki a,b a Deparmen of Saisics,
Term Structure of Prices of Asian Options
Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 1-1-1 Nojihigashi, Kusasu, Shiga 525-8577, Japan E-mail:
Large Scale Online Learning.
Large Scale Online Learning. Léon Boou NEC Labs America Princeon NJ 08540 [email protected] Yann Le Cun NEC Labs America Princeon NJ 08540 [email protected] Absrac We consider siuaions where raining daa is abundan
Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary
Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes
Efficient One-time Signature Schemes for Stream Authentication *
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 611-64 (006) Efficien One-ime Signaure Schemes for Sream Auhenicaion * YONGSU PARK AND YOOKUN CHO + College of Informaion and Communicaions Hanyang Universiy
CHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m
Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m
How To Calculate Price Elasiciy Per Capia Per Capi
Price elasiciy of demand for crude oil: esimaes for 23 counries John C.B. Cooper Absrac This paper uses a muliple regression model derived from an adapaion of Nerlove s parial adjusmen model o esimae boh
Biology at Home - Pariion Funcion Guillaume
On Tracking The Pariion Funcion Guillaume Desjardins, Aaron Courville, Yoshua Bengio {desjagui,courvila,bengioy}@iro.umonreal.ca Déparemen d informaique e de recherche opéraionnelle Universié de Monréal
Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.
Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa
Direc Manipulaion Inerface and EGN algorithms
A Direc Manipulaion Inerface for 3D Compuer Animaion Sco Sona Snibbe y Brown Universiy Deparmen of Compuer Science Providence, RI 02912, USA Absrac We presen a new se of inerface echniques for visualizing
Bayesian model comparison with un-normalised likelihoods
Saisics and Compuing manuscrip No. (will be insered by he edior) Bayesian model comparison wih un-normalised likelihoods Richard G. Everi Adam M. Johansen Ellen Rowing Melina Evdemon-Hogan Each of hese
ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS
ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,
Why Did the Demand for Cash Decrease Recently in Korea?
Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in
Model-Based Monitoring in Large-Scale Distributed Systems
Model-Based Monioring in Large-Scale Disribued Sysems Diploma Thesis Carsen Reimann Chemniz Universiy of Technology Faculy of Compuer Science Operaing Sysem Group Advisors: Prof. Dr. Winfried Kalfa Dr.
PATHWISE PROPERTIES AND PERFORMANCE BOUNDS FOR A PERISHABLE INVENTORY SYSTEM
PATHWISE PROPERTIES AND PERFORMANCE BOUNDS FOR A PERISHABLE INVENTORY SYSTEM WILLIAM L. COOPER Deparmen of Mechanical Engineering, Universiy of Minnesoa, 111 Church Sree S.E., Minneapolis, MN 55455 [email protected]
Option Put-Call Parity Relations When the Underlying Security Pays Dividends
Inernaional Journal of Business and conomics, 26, Vol. 5, No. 3, 225-23 Opion Pu-all Pariy Relaions When he Underlying Securiy Pays Dividends Weiyu Guo Deparmen of Finance, Universiy of Nebraska Omaha,
A New Adaptive Ensemble Boosting Classifier for Concept Drifting Stream Data
A New Adapive Ensemble Boosing Classifier for Concep Drifing Sream Daa Kapil K. Wankhade and Snehlaa S. Dongre, Members, IACSIT Absrac Wih he emergence of large-volume and high speed sreaming daa, mining
Acceleration Lab Teacher s Guide
Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion
Hotel Room Demand Forecasting via Observed Reservation Information
Proceedings of he Asia Pacific Indusrial Engineering & Managemen Sysems Conference 0 V. Kachivichyanuul, H.T. Luong, and R. Piaaso Eds. Hoel Room Demand Forecasing via Observed Reservaion Informaion aragain
Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
Nikkei Stock Average Volatility Index Real-time Version Index Guidebook
Nikkei Sock Average Volailiy Index Real-ime Version Index Guidebook Nikkei Inc. Wih he modificaion of he mehodology of he Nikkei Sock Average Volailiy Index as Nikkei Inc. (Nikkei) sars calculaing and
The Grantor Retained Annuity Trust (GRAT)
WEALTH ADVISORY Esae Planning Sraegies for closely-held, family businesses The Granor Reained Annuiy Trus (GRAT) An efficien wealh ransfer sraegy, paricularly in a low ineres rae environmen Family business
Chapter 7. Response of First-Order RL and RC Circuits
Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
Monte Carlo Observer for a Stochastic Model of Bioreactors
Mone Carlo Observer for a Sochasic Model of Bioreacors Marc Joannides, Irène Larramendy Valverde, and Vivien Rossi 2 Insiu de Mahémaiques e Modélisaion de Monpellier (I3M UMR 549 CNRS Place Eugène Baaillon
Analogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar
Analogue and Digial Signal Processing Firs Term Third Year CS Engineering By Dr Mukhiar Ali Unar Recommended Books Haykin S. and Van Veen B.; Signals and Sysems, John Wiley& Sons Inc. ISBN: 0-7-380-7 Ifeachor
Chapter 1.6 Financial Management
Chaper 1.6 Financial Managemen Par I: Objecive ype quesions and answers 1. Simple pay back period is equal o: a) Raio of Firs cos/ne yearly savings b) Raio of Annual gross cash flow/capial cos n c) = (1
DDoS Attacks Detection Model and its Application
DDoS Aacks Deecion Model and is Applicaion 1, MUHAI LI, 1 MING LI, XIUYING JIANG 1 School of Informaion Science & Technology Eas China Normal Universiy No. 500, Dong-Chuan Road, Shanghai 0041, PR. China
Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach * Ben S. Bernanke, Federal Reserve Board
Measuring he Effecs of Moneary Policy: A acor-augmened Vecor Auoregressive (AVAR) Approach * Ben S. Bernanke, ederal Reserve Board Jean Boivin, Columbia Universiy and NBER Pior Eliasz, Princeon Universiy
Multi-camera scheduling for video production
Muli-camera scheduling for video producion Fahad Daniyal and Andrea Cavallaro Queen Mary Universiy of London Mile End Road, E 4S London, Unied Kingdom Email: {fahad.daniyal, andrea.cavallaro}@eecs.qmul.ac.uk
Chapter 8 Student Lecture Notes 8-1
Chaper Suden Lecure Noes - Chaper Goals QM: Business Saisics Chaper Analyzing and Forecasing -Series Daa Afer compleing his chaper, you should be able o: Idenify he componens presen in a ime series Develop
A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk Jensen, Ninna Reitzel; Schomacker, Kristian Juul
universiy of copenhagen Universiy of Copenhagen A Two-Accoun Life Insurance Model for Scenario-Based Valuaion Including Even Risk Jensen, Ninna Reizel; Schomacker, Krisian Juul Published in: Risks DOI:
A Natural Feature-Based 3D Object Tracking Method for Wearable Augmented Reality
A Naural Feaure-Based 3D Objec Tracking Mehod for Wearable Augmened Realiy Takashi Okuma Columbia Universiy / AIST Email: [email protected] Takeshi Kuraa Universiy of Washingon / AIST Email: [email protected]
Gene Regulatory Network Discovery from Time-Series Gene Expression Data A Computational Intelligence Approach
Gene Regulaory Nework Discovery from Time-Series Gene Expression Daa A Compuaional Inelligence Approach Nikola K. Kasabov 1, Zeke S. H. Chan 1, Vishal Jain 1, Igor Sidorov 2 and Dimier S. Dimirov 2 1 Knowledge
Analysis of Pricing and Efficiency Control Strategy between Internet Retailer and Conventional Retailer
Recen Advances in Business Managemen and Markeing Analysis of Pricing and Efficiency Conrol Sraegy beween Inerne Reailer and Convenional Reailer HYUG RAE CHO 1, SUG MOO BAE and JOG HU PARK 3 Deparmen of
Niche Market or Mass Market?
Niche Marke or Mass Marke? Maxim Ivanov y McMaser Universiy July 2009 Absrac The de niion of a niche or a mass marke is based on he ranking of wo variables: he monopoly price and he produc mean value.
TSG-RAN Working Group 1 (Radio Layer 1) meeting #3 Nynashamn, Sweden 22 nd 26 th March 1999
TSG-RAN Working Group 1 (Radio Layer 1) meeing #3 Nynashamn, Sweden 22 nd 26 h March 1999 RAN TSGW1#3(99)196 Agenda Iem: 9.1 Source: Tile: Documen for: Moorola Macro-diversiy for he PRACH Discussion/Decision
17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides
7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion
Diane K. Michelson, SAS Institute Inc, Cary, NC Annie Dudley Zangi, SAS Institute Inc, Cary, NC
ABSTRACT Paper DK-02 SPC Daa Visualizaion of Seasonal and Financial Daa Using JMP Diane K. Michelson, SAS Insiue Inc, Cary, NC Annie Dudley Zangi, SAS Insiue Inc, Cary, NC JMP Sofware offers many ypes
Predicting Stock Market Index Trading Signals Using Neural Networks
Predicing Sock Marke Index Trading Using Neural Neworks C. D. Tilakarane, S. A. Morris, M. A. Mammadov, C. P. Hurs Cenre for Informaics and Applied Opimizaion School of Informaion Technology and Mahemaical
MTH6121 Introduction to Mathematical Finance Lesson 5
26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random
Segment and combine approach for non-parametric time-series classification
Segmen and combine approach for non-parameric ime-series classificaion Pierre Geurs and Louis Wehenkel Universiy of Liège, Deparmen of Elecrical Engineering and Compuer Science, Sar-Tilman B28, B4000 Liège,
DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR
Invesmen Managemen and Financial Innovaions, Volume 4, Issue 3, 7 33 DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR Ahanasios
Forecasting and Information Sharing in Supply Chains Under Quasi-ARMA Demand
Forecasing and Informaion Sharing in Supply Chains Under Quasi-ARMA Demand Avi Giloni, Clifford Hurvich, Sridhar Seshadri July 9, 2009 Absrac In his paper, we revisi he problem of demand propagaion in
AP Calculus AB 2013 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was
The option pricing framework
Chaper 2 The opion pricing framework The opion markes based on swap raes or he LIBOR have become he larges fixed income markes, and caps (floors) and swapions are he mos imporan derivaives wihin hese markes.
4. International Parity Conditions
4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency
Risk Modelling of Collateralised Lending
Risk Modelling of Collaeralised Lending Dae: 4-11-2008 Number: 8/18 Inroducion This noe explains how i is possible o handle collaeralised lending wihin Risk Conroller. The approach draws on he faciliies
