ALTERNATIVE FUEL SOURCES A PERSPECTIVE WAY OF ENERGY-SAVING
|
|
|
- Donna Nash
- 10 years ago
- Views:
Transcription
1 ALTERNATIVE FUEL SOURCES A PERSPECTIVE WAY OF ENERGY-SAVING Nasyrova L.A., Jagafarova G.G., Shaimova A.M., Faskhutdinov R.R. The Ufa State Petroleum Technological University The review of technologies of extraction and use of an alternative source of "blue" fuel landfill gas on dumping sites and sanitary landfills has been carried. The data of working plants is resulted. The perspectives of landfill gas extraction and utilization in Russia are observed. The method of mathematical modelling of the processes proceeding in a body of sanitary landfills is described, allowing theoretically determining of methane potential at each stage of its life cycle. INTRODUCTION The mankind needs energy, and needs for it is increasing every year. At the same time, resources of traditional natural fuels (oil, coal, gas and etc.) аre nonrenewable. Total consumption of thermal energy in the world today is 200 billion kwh per year, (it is 36 billion tons of equivalent fuel). The general consumption of fuel in modern Russia averages about 5 % of a world power balance [6]. Over 80 % of all geological resources of organic fuel in the world falls to the share of coal which becomes less popular due to its harmful influence on environment. Besides under forecasts of some experts the coal resources will be exhausted by 2100 year. Already now the oil and gas extraction is appreciably reduced, but not due to modernization of technologies of oil and gas refining, but due to an exhaustion of natural resources. Thus, by 2020 year the share of oil and gas recovery in the world fuel and energy balance will decrease from 66,6 % to 20 %. Hydro- and wind energy makes only 2,3 % of energy generation in the world and can play only an auxiliary role because of essential disadvantages: needs for equal platforms of significant sizes, necessity of their withdrawal from economic circulation and changing of a habitual natural landscape, also acoustic noise and vibration of ground. Thus, neither organic fuel nor hydro- and wind energy can solve problems of power engineering in long-range outlook. Nuclear fuel resources uranium and thorium from which it is possible to receive in reactors plutonium are also reduced. The basic disadvantages of the given way of producing of energy are the problems of high reliability of nuclear power-generating units and atomic power stations price rising. Stocks of thermonuclear fuel the hydrogen are practically
2 2 inexhaustible. However, controlled thermonuclear reactions are not mastered yet and it is not known, when they will be used for industrial reception of energy. Thus, the considered ways of production of energy cannot solve the problem of power supply of the future generations. There are two ways left: severe economic power resources consumption and use of renewable power sources. Renewable power sources represent today real alternative to traditional technologies and are the most perspective from the point of view of preservation of natural environment and primary natural resources. To such sources we can relate the introduction of technologies of biodecomposition of waste products of an organic origin (waste products of cattlebreeding and poultry-farm complexes and etc.), burning of municipal solid waste (MSW) with the use of heat of smoke fumes, and also use of landfill gas (LG) formed on sanitary landfills. The greatest interest represents the reception of LG since a number of problems of economical and ecological character are solved. Macrocomponents of LG are methane (СН 4 ) and carbon dioxide (СО 2 ), their parity can vary from % up to % accordingly. An accompanied components of LG are nitrogen (N 2 ), oxygen (О 2 ), hydrogen (Н 2 ) and various organic compounds[5]. Emissions of LG in natural environment form negative effects both local and global character. So, for example, in the USA the law of the necessity of the equipment of all, without exception, sanitary landfills of the country by systems of extraction and neutralization of LG has come into force after the American researchers had shown that dumps are the basic anthropogenic source of methane in the USA. It is interesting to note, that the essential contribution to global emission of LG is made by Russia. According to the Intergovernmental Panel on Climate Change (IPCC) estimation dumps of Russia annually throw out 1,5 million tons of LG in an atmosphere, that makes approximately 3 % from a planetary stream [1]. The organic substance, being the basic component of MSW, decays on dumps approximately within 20 years. An active formation of gas in a thickness of storage of wastes begins approximately to the third year from the beginning of warehousing, gradually accumulates, and proceeds for years, and then process is gradually slowed down. Therefore at an average landfill gas output of 100 m 3 /t of MSW average speed of its output is accepted, usually, 5 m 3 /t of MSW per year. This figure proves to be true by the field data of 86 systems of landfill gas gathering in different countries [4].
3 3 LG formed on dumping sites, without preliminary clearing we can use as fuel for boilers and furnaces, i.e. it can be delivered directly to the industrial consumer for reception of heat or for use in any technological process (roasting, technological pair reception and etc.). This way of use of gas is the most effective on the assumption of its continuous consumption [7]. LG is also used after preliminary clearing for reception of the electric power with the help of combined heat and electric power manufacturing plants. The produced electricity can be used directly on a platform of a dump or moved to power circuit. In the long term we can use LG after its enrichment to a natural gas quality. At the process of gas enrichment it is dried up, carbon dioxide and other impurities are moved away. However, systems of improvement of LG quality are very expensive and do not find wide application nowadays [2]. Leaders of annual extraction of gas from MSW in the world are: the USA 500 million m 3 per year, Germany 400 million m 3 per year, the Great Britain 200 million m 3 per year. On the whole, global extraction of LG is approximately 1,2 billion m 3 per year, that is equivalent to 429 thousand tons of methane or 1 % of its global emission [3]. Special technical and economic calculations of possible typical objects of extraction and utilization of gas from dumping sites were carried out in Russia. Two variants of technological circuits of gas utilization were considered: manufacture of electric power and gas delivery to consumer. In result, they have established, that objects of electric power manufacture demand big investments and are more profitable on absolute parameters; all technical and economic parameters of the objects proportionally grow with the growth of weight of landfill bodies; all considered variants are economically effective. On the basis of the received data the project "The sanitary landfill with energy regeneration in territory of the Moscow area" has been developed and introduced. The basic purpose of the project was demonstration of opportunities of biogas technology in Russia. Two typical sanitary landfills of the Moscow area have been chosen as objects: sanitary landfill "Dashkovka" in the Serpukhov area and sanitary landfill "Kargashino" in the Mytishchinsk area.
4 4 The variant of recycling of biogas in a mode of production of electric power has been chosen. Systems of gas extraction, including holes, gas-mains and compressor stations, providing gas rendering to motor-generators, situated near to sanitary landfills, have been constructed for this purpose in these territories. The experimental-industrial mode of tests has shown the manufacture up to 80 kwh of electric power on each sanitary landfill. Thus, in the Russian conditions from 1 m 3 of LG we can produce 1,3-1,5 kw of the electric power. It means, that with the full use of LG resources on dumping sites it can be made about 500 megawatt of electric power per year [2]. The conducted analysis of existing situation of LG use in the world has shown, that the tendency of expansion of gathering and utilization of LG, formed on dumping sites, is observed in many countries, but the volume of extractive gas is insignificant in comparison with the volume of its formation. This fact opens large-scale opportunities for LG use as an alternative source of "blue" fuel. MATERIALS AND METHODS The developed method of mathematical modelling of the processes proceeding in a body of a dump, has allowed defining theoretically methane potential of a sanitary landfill at each stage of its life cycle. The methane potential is the quantity of methane allocated by a mass unit of waste products of the given morphological structure. The following parameters are accepted as the initial data for forecasting emissions of methane from sanitary landfills: morphological and chemical composition of biodecomposing part of MSW; ash content of waste products, A; moisture, W; factor of biodecomposition of waste products at the stage of complete formation of methane Bf (depends on morphological structure of biodecomposing part of MSW). Full potential of generation of methane L о (normal м 3 per ton (nm 3 /t) of dry waste products) can be expressed as: ( L i x ) L = 0 i 0, (1)
5 5 where x i mass share of biodecomposed fraction; L oi the methane potential (nм 3 /t of dry waste products) for each fraction of waste products with the account of the factor of biodecomposition B f and ash content of waste products A. L oi can be expressed as: L n c 0i = µ i ( A) B f, (2) where n c kilomole number of carbon, contained in one ton of the fraction; μ i molar weight of the fraction, kg/kilomole. The quantity of methane Q (nм 3 ), allocated under the time τ, is defined as follows: dq dτ ( L M Q) k = 0 c, (3) where L o methane potential of waste products, nм 3 /t; k=1/ τ a speed constant of decomposition; М c weight of dry waste products, t. М c can be expressed as: М = ( 1 w), (4) с M вл where М вл weight of moist waste products, t. RESULTS Having carried out corresponding mathematical operations, the formulas for definition of allocated methane volume and speed of its formation are deduced. The incorporated theory was the base for experimental researches in the laboratory. The morphological structure of waste products loaded to the bioreactor is submitted in table 1. Experiments were carried out for 30 days. The gas phase formed during biodecomposition contains (in mg/m 3 ): methane 6,74; ammonia 9,0; hydrogen sulphide 0,0245; phenol 0,035; mercaptan 0,067.
6 6 figure 1. Discussion Calculated and experimental values of volumes of allocated gas are submitted on Regression analysis of the received results has shown the coincidence of calculated and experimental data with the correlation coefficient r=0,996. Calculation of methane potential Table 1 The name of waste products The contents of components in a mix of waste products, % mass. Methane potential, liter per kilogram (l/kg) Food 17,2 0,062 Paper 53,0 0,1279 Landscape-gardening 27,8 0,0889 0,35 0,3 Volume of gas, l/kg 0,25 0,2 0,15 0,1 0,05 0 Volume of allocated gas, l/kg Calculated quanty of gas,l/kg Tim e of decom pos ition, days Figure 1. Dynamics of methane formation during laboratory experiments Thus, reliability of the offered method of an estimation of gas-bearing abilities of sanitary landfills proves to be true by conducted experimental researches. Calculation is made on weight of stored waste products that allows disregarding of density changes of waste products at pilling and during decomposition. The burned part of waste products is also taken into account, which raises accuracy of the forecast.
7 7 The model is simple enough. It can be used for the solution of various types of engineering-ecological problems with various landscape conditions of MSW burial and at any stage of their life cycle. Conclusions: 1. The detailed analysis of existing data of LG formation has shown, that gas use is a perspective alternative to natural energy resources from the point of view of preservation of natural environment and primary natural resources. 2. The method of mathematical modelling of the processes proceeding in a dump body has been worked out, which allows defining theoretically methane potential of a sanitary landfill at each stage of gas life cycle. 3. The experimental data received on the basis of the developed laboratory model of LG reception confirm reliability of the theoretically established mathematical dependences. REFERENCES 1. Gendedien A. and others. Landfill gas. - Commission of the European Communities. - Brussels, Kirillov N.G. Liquefy natural gas - universal energy carrier of the XXI century: new manufacture technologies. // "The Industry", 3 (29), P Willumsen H.C. Decentralized Energy Production from Landfill Gas Plant. // Biomass for Energy and the Environment: Proc. of the 9th Europ. Bioenergy Conf., Copenhagen, June, Pergamon, P Microorganisms and an environment. Jagafarova G.G., Safarov A.H. Schoolbook. - Ufa: UGNTU, P Nozhevnikova А.N. Circulation of methane in ecosystems. //"The Nature" P Geadedien A. The Global Concept of Landfill Gas Exploitation. - Brussels: ECSC-EEC-EAEC, p. 7. Municipal solid waste (gathering, transport, neutralization). Hand-book. Sister V.G., Mirnyi A.N., Skvortsov L.S., etc. - М., 2001.
10 Nuclear Power Reactors Figure 10.1
10 Nuclear Power Reactors Figure 10.1 89 10.1 What is a Nuclear Power Station? The purpose of a power station is to generate electricity safely reliably and economically. Figure 10.1 is the schematic of
12.5: Generating Current Electricity pg. 518
12.5: Generating Current Electricity pg. 518 Key Concepts: 1. Electrical energy is produced by energy transformations. 2. Electrical energy is produced from renewable and non-renewable resources. 4. Electrical
MCQ - ENERGY and CLIMATE
1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated
5-Minute Refresher: RENEWABLE ENERGY
5-Minute Refresher: RENEWABLE ENERGY Renewable Energy Key Ideas Renewable energy is a source of energy that can be used and replenished naturally in a relatively short period of time. Non renewable energy
310 Exam Questions. 1) Discuss the energy efficiency, and why increasing efficiency does not lower the amount of total energy consumed.
310 Exam Questions 1) Discuss the energy efficiency, and why increasing efficiency does not lower the amount of total energy consumed. 2) What are the three main aspects that make an energy source sustainable?
Study Plan. MASTER IN (Energy Management) (Thesis Track)
Plan 2005 T Study Plan MASTER IN (Energy Management) (Thesis Track) A. General Rules and Conditions: 1. This plan conforms to the regulations of the general frame of the programs of graduate studies. 2.
Renewable vs. non-renewable energy sources, forms and technologies prepared by. A.Gritsevskyi, IAEA
Renewable vs. non-renewable energy sources, forms and technologies prepared by. A.Gritsevskyi, IAEA Objective of this paper is to provide International Recommendations for Energy Statistics (IRES) with
2. Place of renewable energy in the context of developing global energy at present stage
Renewable Energy Strategy to promote an enhanced investment climate for renewable energy technologies for submission to national and regional authorities in participating CIS countries 1. Introduction
Assignment 8: Comparison of gasification, pyrolysis and combustion
AALTO UNIVERSITY SCHOOL OF CHEMICAL TECHNOLOGY KE-40.4120 Introduction to biorefineries and biofuels Assignment 8: Comparison of gasification, pyrolysis and combustion Aino Siirala 309141 Assignment submitted
Renewable Fuels. 2008 24 minutes
2008 24 minutes Teacher Notes: Jodie Ashby B.Sc.B.Ed. Program Synopsis This program begins by looking at why we cannot sustain our current use of non-renewable resources and their environmental effects.
Electric Power Monthly with Data for October 2015
Electric Power Monthly with Data for October 2015 December 2015 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department
Measuring Electricity Class Activity
Measuring Electricity Class Activity Objective: To understand what energy is, how it impacts our daily lives, and how one can become an energy steward. Learning Outcomes: Students will: 1. Understand where
WINGAS PRODUCTS GREEN NATURAL GAS. Climate neutral by carbon offsetting
WIGAS PRDUCTS GREE ATURAL GAS. Climate neutral by carbon offsetting Carbon offsets with vision ur green natural gas is characterized by our global approach: It doesn t matter whether you cut greenhouse
5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal.
413 POWER PLANT ENGINEERING PART-A 1. Define Power. Power is the rate at which energy is used (or) Energy/time. 2. What are the types of fuels? Solid fuel Liquid fuel Gaseous fuel (Any one among the above
Comparison of Recent Trends in Sustainable Energy Development in Japan, U.K., Germany and France
Comparison of Recent Trends in Sustainable Energy Development in Japan, U.K., Germany and France Japan - U.S. Workshop on Sustainable Energy Future June 26, 2012 Naoya Kaneko, Fellow Center for Research
Groupwork CCS. Bio-Energy with CCS (BECCS) Platzhalter Logo/Schriftzug (Anpassung im Folienmaster: Menü «Ansicht» «Folienmaster»)
Groupwork CCS Bio-Energy with CCS (BECCS) group 5 02.05.2015 1 Content What is BECCS? Stakeholder Analysis Resources on Global scale SWOT analysis Climate BECCS Technology Conclusions Outlook group 5 02.05.2015
ADVANTAGES AND DISADVANTAGES OF ENERGY SOURCES. Prepared by Sandra Vasa-Sideris, PhD, Southern Polytechnic State University, for use by students
ADVANTAGES AND DISADVANTAGES OF ENERGY SOURCES Prepared by Sandra Vasa-Sideris, PhD, Southern Polytechnic State University, for use by students Questions to consider Where are the nonrenewable sources
Nonrenewable Natural Gas. Natural Gas Basics. How Was Natural Gas Formed?
Did You Know? Because natural gas is colorless, odorless, and tasteless, mercaptan (a chemical that smells like sulfur) is added before distribution, to give it a distinct unpleasant odor (it smells like
How to Earn the LEED Green Power Credit
3D EG REES WH ITE PAPER How to Earn the LEED Green Power Credit Using on-site and off-site renewable energy to mitigate the impact of greenhouse gas emissions associated with a LEED project s energy use
Jenbacher gas engines. Barbara Marschik
Jenbacher gas engines Barbara Marschik Separator sheet Jenbacher gas engines Use this range of background colors to introduce new sections 2 Jenbacher gas engines Jenbach- Austria GE Energy s Jenbacher
Ecological Aspects of Oil Shale Processing
Abstract Ecological Aspects of Oil Shale Processing Y. Zhirjakov, Institute of Oil Shale Research Tallinn Technical University Tallinn, Estonia 26 th Oil Shale Symposium Oil shale belongs to lean and environmentally
Nuclear power is part of the solution for fighting climate change
Nuclear power is part of the solution for fighting climate change "Nuclear for Climate" is an initiative undertaken by the members of the French Nuclear Energy Society (SFEN), the American Nuclear Society
Electric Power Annual 2013
Electric Power Annual 2013 March 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration
Half the cost Half the carbon
Half the cost Half the carbon the world s most efficient micro-chp What is BlueGEN? The most efficient small-scale electricity generator BlueGEN uses natural gas from the grid to generate electricity within
Electric Power Annual 2014
Electric Power Annual 2014 February 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration
Introduction to Waste Treatment Technologies. Contents. Household waste
Contents Introduction to waste treatment technologies 3 Section 1: The treatment of recyclable waste 4 Bulking facilities 5 Materials Reclamation Facility (MRF) 6 Reuse and recycling centres 8 Composting
LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS
LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS Dr Petri Kouvo Helsinki Region Environmental Services Authority THIRD INTERNATIONAL SYMPOSIUM ON ENERGY FROM BIOMASS AND WASTE Venice, Italy 8-11
Energy efficiency is a priority for the Russian Federation in its energy policy
Energy efficiency is a priority for the Russian Federation in its energy policy Mikhail Soloviev Geneva, 7-9 October 2009 Purpose and Principles of Government Energy Policy Purpose: most efficient use
Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems
Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct
COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK
COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK PURPOSE The purpose of this document is to present the assumptions and calculations used to prepare Minergy Drawing 100-0204-PP00 (attached).
Continuous flow direct water heating for potable hot water
Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial
Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros:
P a g e 1 Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Generating Electrical Energy Using Moving Water: Hydro-Electric Generation
1.3 Properties of Coal
1.3 Properties of Classification is classified into three major types namely anthracite, bituminous, and lignite. However there is no clear demarcation between them and coal is also further classified
Understanding and Measuring School Electronics
Understanding and Measuring School Electronics MATERIALS NEEDED: 1. 6 energy monitoring devices (note: these can be obtained from a variety of sources, i.e., local hardware stores, internet [average cost
TGE TECH. Waste and Green Energy Management For a best future TEL HAY JUNE 2008
TGE TECH Waste and Green Energy Management For a best future TEL HAY JUNE 2008 TGE - INTRODUCTION TGE is developper of new Environmental Gasification Technology, focused on the treatment and energy recovery
Module 7 Forms of energy generation
INTRODUCTION In rich countries like Australia, our standard of living is dependent on easily available energy. Every time you catch a bus, turn on a light or watch television energy is being used up. Over
Short Communication Energy Recovery from Waste of Printed Circuit Boards in Plasmatron Plasma Reactor
Pol. J. Environ. Stud. Vol. 23, No. 1 (2014), 277-281 Short Communication Energy Recovery from Waste of Printed Circuit Boards in Plasmatron Plasma Reactor Jakub Szałatkiewicz* Industrial Research Institute
L-ENZ The dryer for bulk solids
L-ENZ The dryer for bulk solids Utilisation of water heat Biogas plants Biomass CHP plants Cogeneration of heat and power Lauber-EnergieNutzZentrale: Lauber dryer L-ENZ for bulk solids The Lauber dryer
Issue paper: Definition of primary and secondary energy
Issue paper: Definition of primary and secondary energy Prepared as input to Chapter 3: Standard International Energy Classification (SIEC) in the International Recommendation on Energy Statistics (IRES)
Energy Projections 2006 2030 Price and Policy Considerations. Dr. Randy Hudson Oak Ridge National Laboratory
Energy Projections 2006 2030 Price and Policy Considerations Dr. Randy Hudson Oak Ridge National Laboratory There is perhaps no single current topic so potentially impacting to all life on this planet
Alternative Energy. Terms and Concepts: Relative quantities of potential energy resources, Solar constant, Economies of scale
Objectives Key Terms and Concepts Introduction Solar Wind Hydroelectric Power Geothermal Sources Biofuels Summary: Economies of Scale Questions for the video if time permits Alternative Energy Objectives:
Physical flow accounts: principles and general concepts
Physical flow accounts: principles and general concepts Julian Chow United Nations Statistics Division 1 st Sub-Regional Course on SEEA 23-27 September 2013 Malaysia SEEA Conceptual Framework Outside territory
Making Coal Use Compatible with Measures to Counter Global Warming
Making Use Compatible with Measures to Counter Global Warming The J-POWER Group is one of the biggest coal users in Japan, consuming approximately 2 million tons of coal per year at eight coal-fired power
A Green Idea. Reclaiming Urban Wood Waste And Urban Forest Debris. For Fuel/Combustion & Renewable Energy
A Green Idea Reclaiming Urban Wood Waste And Urban Forest Debris For Fuel/Combustion & Renewable Energy Presentation Edward Kalebich Chief Operating Officer Robbins Community Power Facility located Chicago
Finland Biogas Update of the Global Methane Initiative (GMI) Tri-Subcommittee Meeting, Florianópolis Brazil
Finland Biogas Update of the Global Methane Initiative (GMI) Tri-Subcommittee Meeting, Florianópolis Brazil 14 March 2014 Ministry of Agriculture and Forestry, Finland 1 Finland Finland Surface area 338
This fact sheet provides an overview of options for managing solid
What Is Integrated Solid Waste Management? This fact sheet provides an overview of options for managing solid waste, identifies the important issues you should consider when planning for solid waste management,
Calculate Available Heat for Natural Gas Fuel For Industrial Heating Equipment and Boilers
For Industrial Heating Equipment and Boilers Prepared for California Energy Commission (CEC) Prepared By: Southern California Gas Company (A Sempra Energy Utility) E3M Inc. May 2012 i Disclaimer The CEC
Smart Energy Systems Energy Efficient Buildings and the Design of future Sustainable Energy Systems
Smart Energy Systems Energy Efficient Buildings and the Design of future Sustainable Energy Systems Henrik Lund Professor in Energy Planning Aalborg University Renewable Energy Systems A Smart Energy Systems
Heating technology mix in a future German energy system dominated by renewables
Heating technology mix in a future German energy system dominated by renewables Prof. Dr. Hans-Martin Henning Fraunhofer Institute for Solar Energy Systems ISE 4 th Congress of Polish Organization of Heat
MHI s Energy Efficient Flue Gas CO 2 Capture Technology and Large Scale CCS Demonstration Test at Coal-fired Power Plants in USA
MHI s Energy Efficient Flue Gas CO 2 Capture Technology and Large Scale CCS Demonstration Test at Coal-fired Power Plants in USA 26 MASAKI IIJIMA *1 TATSUTO NAGAYASU *2 TAKASHI KAMIJYO *3 SHINSUKE NAKATANI
Technologies for small scale Biomass CHP-Plants an actual survey
Technologies for small scale Biomass CHP-Plants an actual survey Risoe, May, 20th 2003 Dr.-Ing. J. Fischer Institute for Energy Economics and Rational Use of Energy, IER, University of Stuttgart Hessbrühlstr.
A sustainable energy and climate policy for the environment, competitiveness and long-term stability
2009-02-05 A sustainable energy and climate policy for the environment, competitiveness and long-term stability The party leaders of Alliance for Sweden entered into an agreement today on a long-term,
Sewage sludge treatment with oxygen enrichement and oxyfuel combustion in CFBC - new pilot plant results
Sewage sludge treatment with oxygen enrichement and oxyfuel combustion in CFBC - new pilot plant results 64 TH IEA FLUIDIZED BED CONVERSION MEETING Naples 3 rd of June, 2012 Authors: David Wöß, Gregor
Electricity Use and Production Patterns
This publication explains issues relevant to the production of electricity for the state of Wisconsin. It addresses basic power plant technologies and fuels, how the state s demand for reliable electricity
Biogas as transportation fuel
Biogas as transportation fuel Summary Biogas is used as transportation fuel in a number of countries, but in Europe it has only reached a major breakthrough in Sweden. All of the biogas plants in Sweden
2015 -- S 0417 S T A T E O F R H O D E I S L A N D
LC001 01 -- S 01 S T A T E O F R H O D E I S L A N D IN GENERAL ASSEMBLY JANUARY SESSION, A.D. 01 A N A C T RELATING TO TAXATION -- CARBON PRICING AND ECONOMIC DEVELOPMENT INVESTMENT ACT OF 01 Introduced
BIOMASS: BIOGAS GENERATOR. Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations)
BIOMASS: BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Middle School (6-8) Small groups (3 to 4) Time: 90
Progressive Performance Audi on the way to the leading premium brand
Progressive Performance Audi on the way to the leading premium brand Axel Strotbek, Member of the Board of Management for Finance and Organization, AUDI AG Deutsche Bank Field Trip, June 3,2013 World car
LEGAL FRAMEWORK, POTENTIAL AND OUTLOOK FOR BIOENERGY SECTOR IN VIETNAM
Conference on Bioenergy in Viet Nam October 6 th, 2014, HCM City LEGAL FRAMEWORK, POTENTIAL AND OUTLOOK FOR BIOENERGY SECTOR IN VIETNAM By Nguyen Duc Cuong Director of Center for Renewable Energy & CDM,
Module 5: Combustion Technology. Lecture 33: Combustion air calculation
1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The
Comparison of Different Methods for Determining Methane Emission from Waste Disposal Sites in Thailand
Asian J. Energy Environ., Vol. 6, Issue 1, (2005), pp. 1-16 Comparison of Different Methods for Determining Methane Emission from Waste Disposal Sites in Thailand C. Chiemchaisri 1,*, W. Chiemchaisri 1,
Delivering Clean Energy
Delivering Clean Energy Meeting Energy Needs Homes and businesses across the country depend on energy to support the economy and sustain a high quality of life. Yet there s also a responsibility to provide
Our financing of the energy sector in 2013
Our financing of the energy sector in 213 rbs.com/sustainable About this document This report is the fourth Our financing of the energy sector briefing that we have produced since 21. The aim remains the
Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.
.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations
From solid fuels to substitute natural gas (SNG) using TREMP
From solid fuels to substitute natural gas (SNG) using TREMP Topsøe Recycle Energy-efficient Methanation Process Introduction Natural gas is a clean, environmentally friendly energy source and is expected
Nuclear Power s Role in Enhancing Energy Security in a Dangerous World Al Shpyth, B.A., M.E.S. Director, Government Relations Cameco Corporation
Nuclear Power s Role in Enhancing Energy Security in a Dangerous World Al Shpyth, B.A., M.E.S. Director, Government Relations Cameco Corporation Introduction: Should we be concerned about energy security?
Renewable Energy Development in Uzbekistan
Conference Integration of Central Asia into the World economy: Role of Energy and Infrastructure 22 October 2007, Washington D.C. Renewable Energy Development in Uzbekistan Technology Transfer Agency is
ANALYZING ENERGY. Time and Student Grouping Energy Source Analysis and Consequence Wheel: One class period. Grade Levels: 6-12
ANALYZING ENERGY Lesson Concepts: Students will analyze the advantages and disadvantages of nine different energy sources. They will use their knowledge to predict what would happen if the world did not
Technical Note: Conversion of fuel data to MWh
Technical Note: Conversion of fuel data to MWh Questions 12.2 and 12.3 of the information request ask for energy and fuel inputs to be reported according to standardized units commonly used for measuring
Innovadidattica, Leggere e scrivere l'ambiente
Attenzione: l'allievo ha risposto usando il colore rosso. Allievo: Francesco B. 1. Read 1. Energy basics Energy is in everything. We use energy for everything we do, from making a jump shot to baking cookies
GENERATION TECHNOLOGY ASSESSMENT
SPO PLANNING ANALYSIS GENERATION TECHNOLOGY ASSESSMENT Technology Cost & Performance Milestone 2 Public Technical Conference OCTOBER 30, 2014 NOTE: ALL IRP MATERIALS ARE PRELIMINARY & SUBJECT TO CHANGE
Bio-CNG plant. Spectrum Renewable Energy Limited, Kodoli, Kolhapur
Bio-CNG plant Spectrum Renewable Energy Limited, Kodoli, Kolhapur Spectrum Renewable Energy Private Limited (SREL) developed a large scale biogas generation and bottling project at Kodoli near Kolhapur
WNA Report. Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources
WNA Report Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources Contents 1. Introduction 2 2. Scope and Objectives 2-4 3. Methodology 5 4. Summary of Assessment Findings
Thermal & Biogas Production In Egypt. By Prof. Dr. Ahmed Abd El-Ati Ahmed Egypt - GBEP Focal Point
Thermal & Biogas Production In Egypt By Prof. Dr. Ahmed Abd El-Ati Ahmed Egypt - GBEP Focal Point Some Related Socioeconomic indicators : The total land area is 1 Million Km 2. 97 % of the total area is
Balancing chemical reaction equations (stoichiometry)
Balancing chemical reaction equations (stoichiometry) This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit
SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES
SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES Filippo Turra Product Manager Cooling Technology INTRODUCTION
First to US Market with trucked compressed natural gas delivered to companies beyond the pipeline. Bennington presentation by NG Advantage LLC
First to US Market with trucked compressed natural gas delivered to companies beyond the pipeline 1 Natural gas is methane same stuff that comes from cow manure CNG is compressed natural gas LNG is liquefied
LONG-TERM OUTLOOK FOR GAS TO 2 35
LONG-TERM OUTLOOK FOR GAS TO 2 35 Eurogas is the association representing the European gas wholesale, retail and distribution sectors. Founded in 1990, its members are some 50 companies and associations
Use of Substitute Fuels in Large Combustion Plants (LCPs)
Use of Substitute Fuels in Large Combustion Plants (LCPs) By Pat Swords Content of the Presentation What are substitute fuels What is the experience to date with these fuels What are the regulatory implications
Section 15.1 Energy and Its Forms (pages 446 452)
Section 15.1 and Its Forms (pages 446 452) This section describes how energy and work are related. It defines kinetic energy and potential energy, and gives examples for calculating these forms of energy.
Energy Metrics and Measurements
nergy Metrics and Measurements Introduction The energy demand for a production process affects the environmental impact substantially. Reasons for this are the emissions and wastes generated during the
CRS Report Summaries WORKING DRAFT
CRS Report Summaries R40147 Green Buildings This is a definition and analysis of the cost and benefits of green buildings. It also cites agencies and laws that encourage the building of environmentally
STOICHIOMETRY OF COMBUSTION
STOICHIOMETRY OF COMBUSTION FUNDAMENTALS: moles and kilomoles Atomic unit mass: 1/12 126 C ~ 1.66 10-27 kg Atoms and molecules mass is defined in atomic unit mass: which is defined in relation to the 1/12
Waste a source of energy. Regional Solid Waste Management Plan Review: Engaging solutions for tomorrow. Incineration. Incineration
Waste a source of energy Regional Solid Waste Management Plan Review: Engaging solutions for tomorrow Garbage School 301: Waste to Energy All organic materials contains energy Plant or animal based Plastics
Analysis of the EU Renewable Directive by a TIMES-Norway
Analysis of the EU Renewable Directive by a TIMES-Norway NorRen Summer School Arne Lind Institute for Energy Technology 07.08.2012 Outline The EU Renewable Directive (RES) Definition Targets Implications
Energy Efficiency and Renewable Energy Sources in Sweden
Energy Efficiency and Renewable Energy Sources in Sweden Swedish Energy Agency www.stem.se Yelena Varasteh [email protected] Slovakia, 24-25 April 2006 Total energy supply in Sweden in 2004 Total
Development of large-scale H 2 storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC)
Development of large-scale storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC) Yoshimi Okada 1, Mitsunori Shimura 2 Principal researcher, Technology Development Unit, Chiyoda
Putting a chill on global warming
Carbon capture and storage Putting a chill on global warming SABINE SULZER SULZER PUMPS MARKUS DUSS SULZER CHEMTECH Whenever fuel is burned, carbon dioxide (CO ) is emitted into the atmosphere. The subsequent
Communicating Your Commitment: Your Guide to Clean Energy Messaging
Communicating Your Commitment: Your Guide to Clean Energy Messaging Congratulations on your recent purchase of clean energy from Renewable Choice! Whether you ve purchased green power in the form of renewable
climate change is happening. This April produced the record for the first month in human history
Tsering Lama Occidental College 15 Climate Change, Renewable Energy, and the Hong Kong Connection In a literature review, 97% of climate scientists have concluded that anthropogenic climate change is happening.
Exergy: the quality of energy N. Woudstra
Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if
Role of Natural Gas in a Sustainable Energy Future
Role of Natural Gas in a Sustainable Energy Future Alexander Medvedev, Deputy Chairman of Gazprom Management Committee, Director General of Gazprom Export 2 nd Ministerial Gas Forum Doha, 30 November 2010
MONITORING SCHOOL ENERGY CONSUMPTION
MONITORING SCHOOL ENERGY CONSUMPTION Goal(s): The mains goal of the energy monitoring activity are: To make the pupils and all school staff aware of school energy consumption; and To show how changes in
The Role of Natural Gas in a Sustainable Energy Market
The Role of Natural Gas in a Sustainable Energy Market INTERNATIONAL GAS UNION 5 THE ROLE OF NATURAL GAS IN A SUSTAINABLE ENERGY MARKET 4 1 FOREWORD The concentration of CO 2 in the atmosphere is soon
SaskPower CCS Global Consortium Bringing Boundary Dam to the World. Mike Monea, President Carbon Capture and Storage Initiatives
SaskPower CCS Global Consortium Bringing Boundary Dam to the World Mike Monea, President Carbon Capture and Storage Initiatives 1 Purpose of Today A. CCS around the world B. What SaskPower is doing C.
Tutkimuksen merkitys menestyvässä liiketoiminnassa- Innovaatiosta tuotteeksi
Tutkimuksen merkitys menestyvässä liiketoiminnassa- Innovaatiosta tuotteeksi Matti Rautanen Manager, External Networks, Power-wide R&D Tutkimuksella tulevaisuuteen- seminaari Kaukolämpöpäivät, Kuopio 29.8.2013
Physics and Economy of Energy Storage
International Conference Energy Autonomy through Storage of Renewable Energies by EUROSOLAR and WCRE October 30 and 31, 2006 Gelsenkirchen / Germany Physics and Economy of Energy Storage Ulf Bossel European
Renewable Gas Vision for a Sustainable Gas Network. A paper by National Grid
Renewable Gas Vision for a Sustainable Gas Network A paper by National Grid Executive Summary Renewable Gas also known as biomethane, is pipeline quality gas derived from biomass that is fully interchangeable
