Analysis and Synthesis of Hypo and Hyperarticulated Speech
|
|
|
- Florence Fleming
- 9 years ago
- Views:
Transcription
1 Analysis and Synthesis of and articulated Speech Benjamin Picart, Thomas Drugman, Thierry Dutoit TCTS Lab, Faculté Polytechnique (FPMs), University of Mons (UMons), Belgium Abstract This paper focuses on the analysis and synthesis of hypo and hyperarticulated speech in the framework of HMM-based speech synthesis. First of all, a new French database matching our needs was created, which contains three identical sets, pronounced with three different degrees of articulation: neutral, hypo and hyperarticulated speech. On that basis, acoustic and phonetic analyses were performed. It is shown that the degrees of articulation significantly influence, on one hand, both vocal tract and glottal characteristics, and on the other hand, speech rate, phone durations, phone variations and the presence of glottal stops. Finally, neutral, hypo and hyperarticulated speech are synthesized using HMM-based speech synthesis and both objective and subjective tests aiming at assessing the generated speech quality are performed. These tests show that synthesized hypoarticulated speech seems to be less naturally rendered than neutral and hyperarticulated speech. Index Terms: Speech Synthesis, HTS, Speech Analysis, Expressive Speech, Voice Quality 1. Introduction In this paper, we focus on the study of different speech styles, based on the degree of articulation: neutral speech, hypoarticulated (or casual) and hyperarticulated speech (or clear speech). It is worth noting that these three modes of expressivity are neutral on the emotional point of view, but can vary amongst speakers, as reported in [1]. The influence of emotion on the articulation degree has been studied in [2], [3] and is out of the scope of this work. The H and H theory [4] proposes two degrees of articulation of speech: hyperarticulated speech, for which speech clarity tends to be maximized, and hypoarticulated speech, where the speech signal is produced with minimal efforts. Therefore the degree of articulation provides information on the motivation/personality of the speaker vs the listeners [1]. Speakers can adopt a speaking style that allows them to be understood more easily in difficult communication situations. The degree of articulation is influenced by the phonetic context, the speech rate and the spectral dynamics (vocal tract rate of change). The common measure of the degree of articulation consists in defining formant targets for each phone, taking coarticulation into account, and studying the differences between the real observations and the targets versus the speech rate. Because defining formant targets is not an easy task, Beller proposed in [1] a statistical measure of the degree of articulation by studying the joint evolution of the vocalic triangle area and the speech rate. The goal of this study is to have a better understanding of the specific characteristics (acoustic and phonetic) governing hypo and hyperarticulated speech and to apply it to HMM synthesis. In order to achieve this goal, the paper is divided into two main parts: the analysis (Section 3) and synthesis (Section 4) of hypo and hyperarticulated speech. In the first part, the acoustic (Section 3.1) and phonetic (Section 3.2) modifications are studied as a function of the degree of articulation. The acoustic analysis highlights evidence of both vocal tract and glottal characteristics changes, while the phonetic analysis focuses on showing evidence of glottal stops presence, phone variations, phone durations and speech rate changes. In the second part, the integration within a HMMbased speech synthesizer in order to generate the two degrees of articulation is discussed (Section 4.1). Both an objective and subjective evaluation are carried out with the aim of assessing how the synthetic speech quality is affected for both degrees of articulation. Finally Section 5 concludes the paper and some of our future works are given in Section Creation of a Database with various Degrees of Articulation For the purpose of our research, a new French database was recorded by a professional male speaker, aged 25 and native French (Belgium) speaking. The database contains three separate sets, each set corresponding to one degree of articulation (neutral, hypo and hyperarticulated). For each set, the speaker was asked to pronounce the same 1359 phonetically balanced sentences, as neutral as possible from the emotional point of view. A headset was provided to the speaker for both hypo and hyperarticulated recordings, in order to induce him to speak naturally while modifying his articulation degree. While recording hyperarticulated speech, the speaker was listening to a version of his voice modified by a Cathedral effect. This effect produces a lot of reverberations (as in a real cathedral), forcing the speaker to talk slower and as clearly as possible (more efforts to produce speech). On the other hand, while recording hypoarticulated speech, the speaker was listening to an amplified version of his own voice. This effect produces the impression of talking very close to someone in a narrow environment, allowing the speaker to talk faster and less clearly (less efforts to produce speech). Proceeding that way allows us to create a standard recording protocol to obtain repeatable conditions if required in the future. 3. Analysis of and articulated Speech 3.1. Acoustic Analysis Acoustic modifications in expressive speech have been extensively studied in the literature [7], [8], [9]. In the frame of this study, one can expect important changes related to the vocal tract function. Indeed, during the production of hypo and hyperarticulated speech, the articulatory strategy adopted by the speaker may dramatically vary. Although it is still not clear
2 whether these modifications consist of a reorganization of the articulatory movements, or of a reduction/amplification of the normal ones, speakers generally tend to consistently change their way of articulating. According to the H and H theory [4], speakers minimize their articulatory trajectories in hypoarticulated speech, resulting in a low intelligibility, while an opposite strategy is adopted in hyperarticulated speech. As a consequence, the vocal tract configurations may be strongly affected. The resulting changes are studied in Section In addition, the produced voice quality is also altered. Since voice quality variations are mainly considered to be controlled by the glottal source [9], Section focuses on the modifications of glottal characteristics with regard to the degree of articulation Vocal Tract-based Modifications In order to study the variations of the vocal tract resonances, the evolution of the vocalic triangle [1] with the degree of articulation was analyzed. This triangle consists of the three vowels /a/, /i/ and /u/ represented in the space of the two first formant frequencies F1 and F2 (here estimated via Wavesurfer [1]). For the three degrees of articulation, the vocalic triangle is displayed in Figure 1 for the original sentences. For information, ellipses of dispersion are also indicated on these plots. The first main conclusion is the significant reduction of the vocalic space as speech becomes less articulated. Indeed, as the articulatory trajectories are less marked, the resulting acoustic targets are less separated in the vocalic space. This may partially explain the lowest intelligibility in hypoarticulated speech. On the contrary, the enhanced acoustic contrast is the result of the efforts of the speaker under hyperarticulation. These changes of vocalic space are summarized in Table 1, which presents the area defined by the average vocalic triangles Glottal-based Modifications As the most important perceptual glottal feature, pitch histograms are displayed in Figure 2. It is clearly noted that the more speech is articulated, the higher the fundamental frequency. Besides these prosodic modifications, we investigate how characteristics of the glottal flow are affected. In a first part, the glottal source is estimated by the Complex Cepstrum-based Decomposition algorithm (CCD, [12]). This method relies on the mixed-phase model of speech [13]. According to this model, speech is composed of both minimum-phase and maximumphase components, where the latter contribution is only due to the glottal flow. By isolating the maximum-phase component of speech, the CCD method has shown its ability to efficiently estimate the glottal source. Using this technique, Figure 3 shows the averaged magnitude spectrum of the glottal source for the three degrees of articulation. First of all, a strong similarity of these spectra with models of the glottal source (such as the LF model [14]) can be noticed. Secondly it turns out that a high degree of articulation is reflected by a glottal flow containing a greater amount of high frequencies. Finally, it is also observed that the glottal formant frequency increases with the degree of articulation (see the zoom in the top right corner of Figure 3). In other words, the time response of the glottis open phase turns to be faster in hyperarticulated speech. Probability Fundamental Frequency (Hz) 8 7 / a / Figure 2: Pitch histograms for the three degrees of articulation. 6 F1 [Hz] / u / / i / F2 [Hz] Figure 1: Vocalic triangle, for the three degrees of articulation, estimated on the original recordings. Dispersion ellipses are also indicated. Dataset Original Table 1: Vocalic space (in khz 2 ) for the three degrees of articulation for the original sentences. Inspecting the ellipses, it is observed that dispersion can be high for the vowel /u/, while data is relatively well concentrated for /a/ and /i/. Figure 3: Averaged magnitude spectrum of the glottal source for the three degrees of articulation. In a second part, the maximum voiced frequency is analyzed. In some approaches, such as the Harmonic plus Noise Model (HNM, [15]) or the Deterministic plus Stochastic Model of residual signal (DSM, [16]) which will be used for synthesis in Section 4, the speech signal is considered to be modeled by a non-periodic component beyond a given frequency. This maximum voiced frequency (F m) demarcates the boundary between two distinct spectral bands, where respectively an harmonic and
3 a stochastic modeling (related to the turbulences of the glottal airflow) are supposed to hold. In this paper, F m was estimated using the algorithm described in [15]. The corresponding histograms are illustrated in Figure 4 for the three degrees of articulation. It can be noticed from this figure that the more speech is articulated, the higher the F m, the stronger the harmonicity, and consequently the weaker the presence of noise in speech. Note that the average values of F m are respectively of 4215 Hz, 395 Hz (confirming our choice of 4 khz in [16]) and 381 Hz for the three degrees of articulation. Number of Glottal Stops i e E a O o u y 2 e~ a~ o~ 9~ Vowels.15 Figure 5: Number of glottal stops for each phone (vowel) and each degree of articulation. Probability Maximum Voiced Frequency (Hz) Figure 4: Histograms of the maximum voiced frequency for the three degrees of articulation Phonetic Analysis Phonetic modifications in hypo and hyperarticulated speech are also very important characteristics to investigate. In the next paragraphs, glottal stops (Section 3.2.1), phone variations (Section 3.2.2), phone durations (Section 3.2.3) and speech rates (Section 3.2.4) are analyzed. In order to obtain reliable results, the entire database for each degree of articulation is used in this section. Moreover, the 36 standard French phones are considered ([25] from which /â/ and /ng/ are not used because they can be made from other phonemes, and / / is added). Note that results can vary from one speaker to another as pointed out in [1]. Eventually, the database was segmented using HMM forced alignment [26] Glottal Stops According to [17], a glottal stop is a cough-like explosive sound released just after the silence produced by the complete glottal closure. In French, such a phenomenon happens when the glottis closes completely before a vowel. A method for detecting glottal stops in continuous speech was proposed in [18]. However, this technique was not used here. Instead we detected glottal stops manually. Figure 5 shows, for each vowel, the number of glottal stops for each degree of articulation. It turns out from this figure that the number of glottal stops is much higher (almost always double) in hyperarticulated speech than in neutral and hypoarticulated speech (between which no sensible modification is noticed) Phone Variations Phone variations refer to phonetic insertions, deletions and substitutions that the speaker makes during hypo and hyperarticulation, compared to the neutral speech. This study has been performed at the phone level, considering the phone position in the word, and at the phone group level (groups of phones that were inserted, deleted or substituted). For the sake of conciseness, only the most relevant differences will be given in this section. Table 2 shows, for each phone, the total proportion of phone deletions in hypoarticulated speech and phone insertions in hyperarticulated speech (first line). The position of these deleted/inserted phones inside the words are also shown: at the beginning (second line), in the middle (third line) and at the end (fourth line). Note that since there is no significant deletion process in hyperarticulation, no significant insertion process in hypoarticulation and no significant substitution process in both cases, they do not appear in Table 2. In hyperarticulated speech, the only important insertions are breaks / / and Schwa /@/ (mostly at the end of the words). In hypoarticulated speech, breaks and Schwa (mostly at the end of the words) are often deleted, as /R/, /l/, /Z/ and /z/. Schwa, also called mute e or unstable e, is very important in French. It is the only vowel that can or cannot be pronounced (all other vowels should be clearly pronounced), and several authors have focused on Schwa insertions and deletions in French. The analysis performed at the phone group level is still under development but we observed frequent phone group deletions in hypoarticulated speech (e.g. /R@/, /l@/ at the end of the words, /je suis/ (which means /I am/) becoming /j suis/ or even /chui/,...) and no significant group insertions in hyperarticulated speech. In both cases, no significant phone groups substitutions were observed Phone Durations Intuitively, it is expected that the degree of articulation has an effect on phone durations, as well as on the speech rate (Section 3.2.4). Some studies are confirming that thought. In the approach exposed in [23], it is found evidence for the Probabilistic Reduction thesis: word forms are reduced when they have a higher probability, and this should be interpreted as evidence that probabilistic relations between words are represented in the mind of the speaker. Similarly, [19] examines how that probability (lexical frequency and previous occurrence), speaking style, and prosody affect word duration, and how these factors interact. In this work, we have investigated the phone duration variations between neutral, hypoarticulated and hyperarticulated speech. Vowels and consonants were grouped according to broad phonetic classes [25]. Figure 6 shows the histograms of (a) front, central, back and nasal vowels, (b) plosive and fricative consonants, and (c) breaks. Figure 7 shows the histograms of (a) semi-vowels and (b) trill consonants. As expected, one can see that, generally, phone durations are shorter in hypoar-
4 Phone /j/ /H/ /t/ /k/ /z/ /Z/ /l/ /R/ /E/ / / Tot Deletions Beg (articulation) Mid End Tot Insertions Beg (articulation) Mid End Table 2: Total percentage (first line) of deleted and inserted phones in hypo and hyperarticulated speech respectively, and their repartition inside the words: beginning (second line), middle (third line), end (fourth line). ticulation and longer in hyperarticulation. Breaks are shorter (and more rare) in hypoarticulation, but are as long as the ones in neutral speech and more present in hyperarticulation. An interesting characteristic of hypoarticulated speech is the concentration (high peaks) of semi-vowels and trill consonants in the short durations Duration [ms] Figure 6: Phone durations histograms. (a) front, central, back & nasal vowels. (b) plosive & fricative consonants. (c) breaks Duration [ms] Figure 7: Phone durations histograms. (a) semi-vowels. (b) trill consonants Speech Rate Speaking rate has been found to be related to many factors [2]. It is often defined as the average number of syllables uttered per second (pauses excluded) in a whole sentence [21], [22]. Based on that definition, Table 3 compares the three speaking styles. As expected, hyperarticulated speech is characterized by a lower speech rate, a higher number of breaks (thus a longer pausing time), more syllables (final Schwa insertions), resulting in an increase of the total speech time. (a) (b) (c) (a) (b) Results Total speech time [s] Total syllable time [s] Total pausing time [s] Total number of syllables Total number of breaks Speech rate [syllable/s] Pausing time [%] Table 3: Results for hypo, neutral & hyperarticulated speech. On the other side, hypoarticulated speech is characterized by a higher speech rate, a lower number of breaks (thus a shorter pausing time), less syllables (final Schwa and other phone groups deletions), resulting in a decrease of the total speech time. An interesting property can be noted: because of the increase (decrease) in the total pausing time and the total speech time in hyper (hypo) articulated speech, the pausing time (thus the speaking time) expressed in percents of the total speech time is almost independent of the speech style. 4. Synthesis of and articulated Speech Synthesis of the articulation degree in concatenative speech synthesis has been performed in [5], by modifying the spectral shape of acoustic units according to a predictive model of the acoustic-prosodic variations related to the articulation degree. In this paper, we report our first attempts in synthesizing the two degrees of articulation of speech using HMM-based speech synthesis (via HTS [6]) Integration within HMM-based Speech Synthesis For each degree of articulation, a HMM-based speech synthesizer [24] was built, relying for the implementation on the HTS toolkit (version 2.1) publicly available in [6]. In each case, 122 sentences sampled at 16kHz were used for the training, leaving around 1% of the database for synthesis. For the filter, we extracted the traditional Mel Generalized Cepstral coefficients (with frequency warping factor =.42, gamma = and order of MGC analysis = 24). For the excitation, we used the Deterministic plus Stochastic Model (DSM) of the residual signal proposed in [16], since it was shown to significantly improve the naturalness of the delivered speech. More precisely, both deterministic and stochastic components of the DSM model were estimated from the training dataset for each degree of articulation. The spectral boundary between these two components was
5 chosen as the averaged value of the maximum voiced frequency described in Section The objective of this preliminary work was to assess the quality of the synthesized speech based only on phonetic transcription modifications. Therefore, hypo and hyperarticulated speech were obtained by manually modifying the phonetic transcriptions at the input of the synthesizer, according to Section (our future natural language processor should do it automatically). In the following evaluations, original pitch and phone durations were imposed at the input of the synthesizers Acoustic Analysis The same acoustic analysis as in Section was performed on the sentences generated by the HMM-based synthesizer. Results are summarized in Figure 8 and in Table 4. Note the good agreement between vocalic spaces in original (see Section 3.1.1) and synthesized sentences. F1 [Hz] / a / / u / / i / F2 [Hz] Figure 8: Vocalic triangle, for the three degrees of articulation, estimated on the sentences generated by the HMM-based synthesizer. Dispersion ellipses are also indicated. Dataset Synthesis Table 4: Vocalic space (in khz 2 ) for the three degrees of articulation for the synthesized sentences. The same conclusions as in Section hold for the synthetic examples. In other words, the essential vocalic characteristics are preserved despite the HMM-based modeling and generation process. It can be however noticed that the dispersion of the formant frequencies is lower after generation, especially for F1. This is mainly due to an over-smoothing of the generated spectra (albeit the Global Variance method [11] was used) Objective Evaluation The goal of the objective evaluation is to assess whether HTS is capable of producing natural hypo and hyperarticulated speech and to which extent. The distance measure considered here is the mel-cepstral distortion between the target and the estimated mel-cepstra coefficients, expressed as: v Mel CD = 1 u 24X t 2 ln(1) (mc (t) d d=1 mc(e) d )2 (1) This mel-cepstral distortion is computed for all the vowels of the database. Table 5 shows the mean with its 95% confidence interval for each degree of articulation. This objective evaluation shows that the mel-cepstral distortion increases from hyper to hypoarticulated speech. Results Mean ± CI 5.9 ± ± ±.1 Table 5: Objective evaluation results (in [db]): mean score with its 95% confidence interval (CI) for each degree of articulation Subjective Evaluation In order to confirm the objective evaluation conclusion, we performed a subjective evaluation. For this evaluation, the listener was asked to compare three sentences: A, the original; B, the sentence vocoded by DSM; C, the sentence synthesized by HTS using DSM as vocoder. He was asked to score, on a 9-point scale, the overall speech quality of B in comparison with A and C. B was allowed to vary from (= same quality as A) to 9 (= same quality as C). Therefore this score should be interpreted in terms of a distance between B and A and C: the lower the score, the more B sounds like A and thus the better the quality, and conversely. The test consists of 15 triplets (5 sentences per degree of articulation), giving a total of 45 sentences. Before starting the test, the listener was provided with some reference sentences covering most of the variations to help him familiarize with the scale. During the test, he was allowed to listen to the triplet of sentences as many times as he wanted, in the order he preferred (he was advised to listen to A and C before listening to B, in order to know the boundaries). However he was not allowed to come back to previous sentences after validating his decision. The hypothesis made in this subjective evaluation is that the distance between A and B is constant, whatever the degree of articulation is. This hypothesis has been verified by informal listening. By proceeding this way, speech quality of C vs A can be assessed indirectly. 26 people, mainly naive listeners, participated to this evaluation. The mean score, corresponding to the distance between A and C, together with its 95% confidence interval for each articulation degree, on the 9-point scale, is shown in Figure 9. The lower the score, the more C sounds like A and thus the better the quality, and conversely. One can see that hypoarticulated speech is the worst, followed by neutral and hyperarticulated speech, therefore confirming the objective evaluation result. Distance score between A and C 8, 7,5 7, 6,5 6, 5,5 5, 4,5 4, 3,5 3, Figure 9: Subjective evaluation results: overall speech quality of the HMM-based speech synthesizer (mean score with its 95% confidence interval for each degree of articulation).
6 5. Conclusion This work is a first approach towards HMM-based hyper and hypoarticulated speech synthesis. A new French database matching our needs was created: three identical sets, pronounced with three different degrees of articulation (neutral, hypo and hyperarticulated speech). In a first step, acoustic and phonetic analyses were performed on these databases, and the influence of the articulation degree on various factors was studied. It was shown that hyperarticulated speech is characterized by a larger vocalic space (more efforts to produce speech, with maximum clarity), higher fundamental frequency, a glottal flow containing a greater amount of high frequencies and an increased glottal formant frequency, the presence of a higher number of glottal stops, breaks and syllables, significant phone variations (especially insertions), longer phone durations and lower speech rate. The opposite tendency was observed in hypoarticulated speech, except that the number of glottal stops was equivalent to the one in neutral speech and the significant phone variations were deletions. In a second step, synthesizing hypo and hyperarticulated speech was performed using HTS, based on modifications of the phonetic transcriptions at the input of the synthesizer, and of the characteristics of the excitation modeling. Objective and subjective evaluations were proposed in order to assess the quality of the synthesized speech. These tests show that the worst speech quality was obtained for hypoarticulated speech. Audio examples for each degree of articulation are available online via picart/andarticulatedspeech Demo.html. 6. Discussion and Future Works The ultimate goal of our research is to be able to synthesize hypo and hyperarticulation, directly from an existing neutral voice (using voice conversion), without requiring recordings of new hypo and hyperarticulated databases (as done in this work). Right now, as the objective and subjective evaluations showed, the HMM-based speech synthesizers are not able to synthesize hypo and hyperarticulated speech with the same quality, even using the real hypo and hyperarticulated databases. It is therefore worth focusing on improving the current synthesis method before starting the next step: speaking style conversion. We will first investigate the simple methods for improving speakersimilarity in HMM-based speech synthesis proposed by [27]. 7. Acknowledgments Benjamin Picart is supported by the Fonds pour la formation à la Recherche dans l Industrie et dans l Agriculture (FRIA). Thomas Drugman is supported by the Fonds National de la Recherche Scientifique (FNRS). Authors would like to thank Y. Stylianou for providing the algorithm for extracting F m, and also Acapela Group SA for providing useful advices on database recordings and helping us in segmenting the database. 8. References [1] G. Beller, Analyse et Modèle Génératif de l Expressivité - Application à la Parole et à l Interprétation Musicale, PhD Thesis (in French), Universit Paris VI - Pierre et Marie Curie, IRCAM, 29. [2] G. Beller, Influence de l expressivité sur le degré d articulation, RJCP, France, 27. [3] G. Beller, N. Obin, X. Rodet, Articulation Degree as a Prosodic Dimension of Expressive Speech, Fourth International Conference on Speech Prosody, Campinas, Brazil, 28. [4] B. Lindblom, Economy of Speech Gestures, vol. The Production of Speech, Spinger-Verlag, New-York, [5] J. Wouters, Analysis and Synthesis of Degree of Articulation, PhD Thesis, Katholieke Universiteit Leuven (KUL), Belgium, [6] [Online] HMM-based Speech Synthesis System (HTS) website : [7] D. Klatt, L. Klatt, Analysis, Synthesis, and Perception of Voice Quality Variations among Female and Male Talkers, JASA, vol. 87, pp , 199. [8] D. Childers, C. Lee, Vocal Quality Factors: Analysis, Synthesis, and Perception, JASA, vol. 9, pp , [9] E. Keller, The analysis of voice quality in speech processing, Lecture Notes in Computer Science, pp , 25. [1] K. Sjolander, J. Beskow, Wavesurfer - an open source speech tool, ICSLP, vol.4, pp , 2. [11] T. Toda, K. Tokuda, A Speech Parameter Generation Algorithm Considering Global Variance for HMM-Based Speech Synthesis, IEICE Trans. on Information and Systems, vol. E9-D, pp , 27. [12] T. Drugman, B. Bozkurt, T. Dutoit, Complex Cepstrum-based Decomposition of Speech for Glottal Source Estimation, Interspeech Conference, 29. [13] B. Bozkurt, T. Dutoit, Mixed-phase speech modeling and formant estimation, using differential phase spectrums, VOQUAL 3, pp , 23. [14] G. Fant, J. Liljencrants, Q. Lin, A four parameter model of glottal flow, STL-QPSR4, pp. 1-13, [15] Y. Stylianou, Applying the Harmonic plus Noise Model in Concatenative Speech Synthesis, IEEE Trans. Speech and Audio Processing, vol. 9(1), pp , 21. [16] T. Drugman, G. Wilfart, T. Dutoit, A Deterministic plus Stochastic Model of the Residual Signal for Improved Parametric Speech Synthesis, Proc. Interspeech, 29. [17] [Online] Glottal Stop: [18] B. Yegnanarayana, S. Rajendran, Hussien Seid Worku, Dhananjaya N., Analysis of Glottal Stops in Speech Signals, Proc. Interspeech, 29. [19] R. E. Baker, A. R. Bradlow, Variability in Word Duration as a Function of Probability, Speech Style, and Prosody, Language and Speech, Vol. 52, No. 4, , 29. [2] J. Yuan, M. Liberman, C. Cieri, Towards an Integrated Understanding of Speaking Rate in Conversation, Interspeech 26, , Pittsburgh, PA, 26. [21] G. Beller, T. Hueber, D. Schwarz, X. Rodet, Speech Rates in French Expressive Speech, Third International Conference on Speech Prosody, Dresden, Germany, 26. [22] S. Roekhaut, J-P. Goldman, A. C. Simon, A Model for Varying Speaking Style in TTS systems, Fifth International Conference on Speech Prosody, Chicago, IL, 21. [23] D. Jurafsky, A. Bell, M. Gregory, W. D. Raymond, Probabilistic Relations between Words: Evidence from Reduction in Lexical Production, in Bybee, Joan and Paul Hopper (eds.). Frequency and the emergence of linguistic structure. Amsterdam: John Benjamins [24] H. Zen, K. Tokuda, A. W. Black, Statistical parametric speech synthesis, Speech Communication, Volume 51, Issue 11, November 29, Pages , 29. [25] [Online] Phonetic: [26] F. Malfrere, O. Deroo, T. Dutoit, C. Ris, Phonetic alignement : speech-synthesis-based versus Viterbi-based, Speech Communication, vol. 4, n4, pp , 23. [27] J. Yamagishi, S. King, Simple Methods for Improving Speaker- Similarity of HMM-based Speech Synthesis, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dallas, Texas, 21.
Thirukkural - A Text-to-Speech Synthesis System
Thirukkural - A Text-to-Speech Synthesis System G. L. Jayavardhana Rama, A. G. Ramakrishnan, M Vijay Venkatesh, R. Murali Shankar Department of Electrical Engg, Indian Institute of Science, Bangalore 560012,
A Sound Analysis and Synthesis System for Generating an Instrumental Piri Song
, pp.347-354 http://dx.doi.org/10.14257/ijmue.2014.9.8.32 A Sound Analysis and Synthesis System for Generating an Instrumental Piri Song Myeongsu Kang and Jong-Myon Kim School of Electrical Engineering,
Establishing the Uniqueness of the Human Voice for Security Applications
Proceedings of Student/Faculty Research Day, CSIS, Pace University, May 7th, 2004 Establishing the Uniqueness of the Human Voice for Security Applications Naresh P. Trilok, Sung-Hyuk Cha, and Charles C.
Lecture 1-10: Spectrograms
Lecture 1-10: Spectrograms Overview 1. Spectra of dynamic signals: like many real world signals, speech changes in quality with time. But so far the only spectral analysis we have performed has assumed
Experiments with Signal-Driven Symbolic Prosody for Statistical Parametric Speech Synthesis
Experiments with Signal-Driven Symbolic Prosody for Statistical Parametric Speech Synthesis Fabio Tesser, Giacomo Sommavilla, Giulio Paci, Piero Cosi Institute of Cognitive Sciences and Technologies, National
Emotion Detection from Speech
Emotion Detection from Speech 1. Introduction Although emotion detection from speech is a relatively new field of research, it has many potential applications. In human-computer or human-human interaction
AUTOMATIC PHONEME SEGMENTATION WITH RELAXED TEXTUAL CONSTRAINTS
AUTOMATIC PHONEME SEGMENTATION WITH RELAXED TEXTUAL CONSTRAINTS PIERRE LANCHANTIN, ANDREW C. MORRIS, XAVIER RODET, CHRISTOPHE VEAUX Very high quality text-to-speech synthesis can be achieved by unit selection
P H D T H E S I S. Statistical Parametric Speech Synthesis Based on the Degree of Articulation
University of Mons Doctoral School MUSICS Signal Processing P H D T H E S I S to obtain the title of PhD in Applied Sciences of University of Mons Specialty : Speech Processing Defended by Benjamin Picart
Text-To-Speech Technologies for Mobile Telephony Services
Text-To-Speech Technologies for Mobile Telephony Services Paulseph-John Farrugia Department of Computer Science and AI, University of Malta Abstract. Text-To-Speech (TTS) systems aim to transform arbitrary
Workshop Perceptual Effects of Filtering and Masking Introduction to Filtering and Masking
Workshop Perceptual Effects of Filtering and Masking Introduction to Filtering and Masking The perception and correct identification of speech sounds as phonemes depends on the listener extracting various
Speech Signal Processing: An Overview
Speech Signal Processing: An Overview S. R. M. Prasanna Department of Electronics and Electrical Engineering Indian Institute of Technology Guwahati December, 2012 Prasanna (EMST Lab, EEE, IITG) Speech
PERCENTAGE ARTICULATION LOSS OF CONSONANTS IN THE ELEMENTARY SCHOOL CLASSROOMS
The 21 st International Congress on Sound and Vibration 13-17 July, 2014, Beijing/China PERCENTAGE ARTICULATION LOSS OF CONSONANTS IN THE ELEMENTARY SCHOOL CLASSROOMS Dan Wang, Nanjie Yan and Jianxin Peng*
The Effect of Long-Term Use of Drugs on Speaker s Fundamental Frequency
The Effect of Long-Term Use of Drugs on Speaker s Fundamental Frequency Andrey Raev 1, Yuri Matveev 1, Tatiana Goloshchapova 2 1 Speech Technology Center, St. Petersburg, RUSSIA {raev, matveev}@speechpro.com
Carla Simões, [email protected]. Speech Analysis and Transcription Software
Carla Simões, [email protected] Speech Analysis and Transcription Software 1 Overview Methods for Speech Acoustic Analysis Why Speech Acoustic Analysis? Annotation Segmentation Alignment Speech Analysis
Formant Bandwidth and Resilience of Speech to Noise
Formant Bandwidth and Resilience of Speech to Noise Master Thesis Leny Vinceslas August 5, 211 Internship for the ATIAM Master s degree ENS - Laboratoire Psychologie de la Perception - Hearing Group Supervised
Proceedings of Meetings on Acoustics
Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Speech Communication Session 2aSC: Linking Perception and Production
SPEAKER IDENTIFICATION FROM YOUTUBE OBTAINED DATA
SPEAKER IDENTIFICATION FROM YOUTUBE OBTAINED DATA Nitesh Kumar Chaudhary 1 and Shraddha Srivastav 2 1 Department of Electronics & Communication Engineering, LNMIIT, Jaipur, India 2 Bharti School Of Telecommunication,
Lecture 1-6: Noise and Filters
Lecture 1-6: Noise and Filters Overview 1. Periodic and Aperiodic Signals Review: by periodic signals, we mean signals that have a waveform shape that repeats. The time taken for the waveform to repeat
WinPitch LTL II, a Multimodal Pronunciation Software
WinPitch LTL II, a Multimodal Pronunciation Software Philippe MARTIN UFRL Université Paris 7 92, Ave. de France 75013 Paris, France [email protected] Abstract We introduce a new version
Tutorial about the VQR (Voice Quality Restoration) technology
Tutorial about the VQR (Voice Quality Restoration) technology Ing Oscar Bonello, Solidyne Fellow Audio Engineering Society, USA INTRODUCTION Telephone communications are the most widespread form of transport
SPEECH INTELLIGIBILITY and Fire Alarm Voice Communication Systems
SPEECH INTELLIGIBILITY and Fire Alarm Voice Communication Systems WILLIAM KUFFNER, M.A. Sc., P.Eng, PMP Senior Fire Protection Engineer Director Fire Protection Engineering October 30, 2013 Code Reference
DeNoiser Plug-In. for USER S MANUAL
DeNoiser Plug-In for USER S MANUAL 2001 Algorithmix All rights reserved Algorithmix DeNoiser User s Manual MT Version 1.1 7/2001 De-NOISER MANUAL CONTENTS INTRODUCTION TO NOISE REMOVAL...2 Encode/Decode
Speech Production 2. Paper 9: Foundations of Speech Communication Lent Term: Week 4. Katharine Barden
Speech Production 2 Paper 9: Foundations of Speech Communication Lent Term: Week 4 Katharine Barden Today s lecture Prosodic-segmental interdependencies Models of speech production Articulatory phonology
L9: Cepstral analysis
L9: Cepstral analysis The cepstrum Homomorphic filtering The cepstrum and voicing/pitch detection Linear prediction cepstral coefficients Mel frequency cepstral coefficients This lecture is based on [Taylor,
An Arabic Text-To-Speech System Based on Artificial Neural Networks
Journal of Computer Science 5 (3): 207-213, 2009 ISSN 1549-3636 2009 Science Publications An Arabic Text-To-Speech System Based on Artificial Neural Networks Ghadeer Al-Said and Moussa Abdallah Department
THE VOICE OF LOVE. Trisha Belanger, Caroline Menezes, Claire Barboa, Mofida Helo, Kimia Shirazifard
THE VOICE OF LOVE Trisha Belanger, Caroline Menezes, Claire Barboa, Mofida Helo, Kimia Shirazifard University of Toledo, United States [email protected], [email protected], [email protected],
Robust Methods for Automatic Transcription and Alignment of Speech Signals
Robust Methods for Automatic Transcription and Alignment of Speech Signals Leif Grönqvist ([email protected]) Course in Speech Recognition January 2. 2004 Contents Contents 1 1 Introduction 2 2 Background
Audio Engineering Society. Convention Paper. Presented at the 129th Convention 2010 November 4 7 San Francisco, CA, USA
Audio Engineering Society Convention Paper Presented at the 129th Convention 2010 November 4 7 San Francisco, CA, USA The papers at this Convention have been selected on the basis of a submitted abstract
L2 EXPERIENCE MODULATES LEARNERS USE OF CUES IN THE PERCEPTION OF L3 TONES
L2 EXPERIENCE MODULATES LEARNERS USE OF CUES IN THE PERCEPTION OF L3 TONES Zhen Qin, Allard Jongman Department of Linguistics, University of Kansas, United States [email protected], [email protected]
A TOOL FOR TEACHING LINEAR PREDICTIVE CODING
A TOOL FOR TEACHING LINEAR PREDICTIVE CODING Branislav Gerazov 1, Venceslav Kafedziski 2, Goce Shutinoski 1 1) Department of Electronics, 2) Department of Telecommunications Faculty of Electrical Engineering
Advanced Speech-Audio Processing in Mobile Phones and Hearing Aids
Advanced Speech-Audio Processing in Mobile Phones and Hearing Aids Synergies and Distinctions Peter Vary RWTH Aachen University Institute of Communication Systems WASPAA, October 23, 2013 Mohonk Mountain
Automatic Phonetic Transcription of Laughter and its Application to Laughter Synthesis
2013 Humaine Association Conference on Affective Computing and Intelligent Interaction Automatic Phonetic Transcription of Laughter and its Application to Laughter Synthesis Jérôme Urbain Hüseyin Çakmak
MUSICAL INSTRUMENT FAMILY CLASSIFICATION
MUSICAL INSTRUMENT FAMILY CLASSIFICATION Ricardo A. Garcia Media Lab, Massachusetts Institute of Technology 0 Ames Street Room E5-40, Cambridge, MA 039 USA PH: 67-53-0 FAX: 67-58-664 e-mail: rago @ media.
ACOUSTICAL CONSIDERATIONS FOR EFFECTIVE EMERGENCY ALARM SYSTEMS IN AN INDUSTRIAL SETTING
ACOUSTICAL CONSIDERATIONS FOR EFFECTIVE EMERGENCY ALARM SYSTEMS IN AN INDUSTRIAL SETTING Dennis P. Driscoll, P.E. and David C. Byrne, CCC-A Associates in Acoustics, Inc. Evergreen, Colorado Telephone (303)
BLIND SOURCE SEPARATION OF SPEECH AND BACKGROUND MUSIC FOR IMPROVED SPEECH RECOGNITION
BLIND SOURCE SEPARATION OF SPEECH AND BACKGROUND MUSIC FOR IMPROVED SPEECH RECOGNITION P. Vanroose Katholieke Universiteit Leuven, div. ESAT/PSI Kasteelpark Arenberg 10, B 3001 Heverlee, Belgium [email protected]
A Comparison of Speech Coding Algorithms ADPCM vs CELP. Shannon Wichman
A Comparison of Speech Coding Algorithms ADPCM vs CELP Shannon Wichman Department of Electrical Engineering The University of Texas at Dallas Fall 1999 December 8, 1999 1 Abstract Factors serving as constraints
APPLYING MFCC-BASED AUTOMATIC SPEAKER RECOGNITION TO GSM AND FORENSIC DATA
APPLYING MFCC-BASED AUTOMATIC SPEAKER RECOGNITION TO GSM AND FORENSIC DATA Tuija Niemi-Laitinen*, Juhani Saastamoinen**, Tomi Kinnunen**, Pasi Fränti** *Crime Laboratory, NBI, Finland **Dept. of Computer
Automatic Evaluation Software for Contact Centre Agents voice Handling Performance
International Journal of Scientific and Research Publications, Volume 5, Issue 1, January 2015 1 Automatic Evaluation Software for Contact Centre Agents voice Handling Performance K.K.A. Nipuni N. Perera,
Portions have been extracted from this report to protect the identity of the student. RIT/NTID AURAL REHABILITATION REPORT Academic Year 2003 2004
Portions have been extracted from this report to protect the identity of the student. Sessions: 9/03 5/04 Device: N24 cochlear implant Speech processors: 3G & Sprint RIT/NTID AURAL REHABILITATION REPORT
Turkish Radiology Dictation System
Turkish Radiology Dictation System Ebru Arısoy, Levent M. Arslan Boaziçi University, Electrical and Electronic Engineering Department, 34342, Bebek, stanbul, Turkey [email protected], [email protected]
SASSC: A Standard Arabic Single Speaker Corpus
SASSC: A Standard Arabic Single Speaker Corpus Ibrahim Almosallam, Atheer AlKhalifa, Mansour Alghamdi, Mohamed Alkanhal, Ashraf Alkhairy The Computer Research Institute King Abdulaziz City for Science
Quarterly Progress and Status Report. Measuring inharmonicity through pitch extraction
Dept. for Speech, Music and Hearing Quarterly Progress and Status Report Measuring inharmonicity through pitch extraction Galembo, A. and Askenfelt, A. journal: STL-QPSR volume: 35 number: 1 year: 1994
Mathematical modeling of speech acoustics D. Sc. Daniel Aalto
Mathematical modeling of speech acoustics D. Sc. Daniel Aalto Inst. Behavioural Sciences / D. Aalto / ORONet, Turku, 17 September 2013 1 Ultimate goal Predict the speech outcome of oral and maxillofacial
Creating voices for the Festival speech synthesis system.
M. Hood Supervised by A. Lobb and S. Bangay G01H0708 Creating voices for the Festival speech synthesis system. Abstract This project focuses primarily on the process of creating a voice for a concatenative
Measuring and synthesising expressivity: Some tools to analyse and simulate phonostyle
Measuring and synthesising expressivity: Some tools to analyse and simulate phonostyle J.-Ph. Goldman - University of Geneva EMUS Workshop 05.05.2008 Outline 1. Expressivity What is, how to characterize
Corpus Driven Malayalam Text-to-Speech Synthesis for Interactive Voice Response System
Corpus Driven Malayalam Text-to-Speech Synthesis for Interactive Voice Response System Arun Soman, Sachin Kumar S., Hemanth V. K., M. Sabarimalai Manikandan, K. P. Soman Centre for Excellence in Computational
School Class Monitoring System Based on Audio Signal Processing
C. R. Rashmi 1,,C.P.Shantala 2 andt.r.yashavanth 3 1 Department of CSE, PG Student, CIT, Gubbi, Tumkur, Karnataka, India. 2 Department of CSE, Vice Principal & HOD, CIT, Gubbi, Tumkur, Karnataka, India.
Efficient diphone database creation for MBROLA, a multilingual speech synthesiser
Efficient diphone database creation for, a multilingual speech synthesiser Institute of Linguistics Adam Mickiewicz University Poznań OWD 2010 Wisła-Kopydło, Poland Why? useful for testing speech models
Open-Source, Cross-Platform Java Tools Working Together on a Dialogue System
Open-Source, Cross-Platform Java Tools Working Together on a Dialogue System Oana NICOLAE Faculty of Mathematics and Computer Science, Department of Computer Science, University of Craiova, Romania [email protected]
Lecture 12: An Overview of Speech Recognition
Lecture : An Overview of peech Recognition. Introduction We can classify speech recognition tasks and systems along a set of dimensions that produce various tradeoffs in applicability and robustness. Isolated
Manual Analysis Software AFD 1201
AFD 1200 - AcoustiTube Manual Analysis Software AFD 1201 Measurement of Transmission loss acc. to Song and Bolton 1 Table of Contents Introduction - Analysis Software AFD 1201... 3 AFD 1200 - AcoustiTube
Automatic Transcription: An Enabling Technology for Music Analysis
Automatic Transcription: An Enabling Technology for Music Analysis Simon Dixon [email protected] Centre for Digital Music School of Electronic Engineering and Computer Science Queen Mary University
The Computer Music Tutorial
Curtis Roads with John Strawn, Curtis Abbott, John Gordon, and Philip Greenspun The Computer Music Tutorial Corrections and Revisions The MIT Press Cambridge, Massachusetts London, England 2 Corrections
Objective Intelligibility Assessment of Text-to-Speech Systems Through Utterance Verification
Objective Intelligibility Assessment of Text-to-Speech Systems Through Utterance Verification Raphael Ullmann 1,2, Ramya Rasipuram 1, Mathew Magimai.-Doss 1, and Hervé Bourlard 1,2 1 Idiap Research Institute,
From Concept to Production in Secure Voice Communications
From Concept to Production in Secure Voice Communications Earl E. Swartzlander, Jr. Electrical and Computer Engineering Department University of Texas at Austin Austin, TX 78712 Abstract In the 1970s secure
Aircraft cabin noise synthesis for noise subjective analysis
Aircraft cabin noise synthesis for noise subjective analysis Bruno Arantes Caldeira da Silva Instituto Tecnológico de Aeronáutica São José dos Campos - SP [email protected] Cristiane Aparecida Martins
Ericsson T18s Voice Dialing Simulator
Ericsson T18s Voice Dialing Simulator Mauricio Aracena Kovacevic, Anna Dehlbom, Jakob Ekeberg, Guillaume Gariazzo, Eric Lästh and Vanessa Troncoso Dept. of Signals Sensors and Systems Royal Institute of
Separation and Classification of Harmonic Sounds for Singing Voice Detection
Separation and Classification of Harmonic Sounds for Singing Voice Detection Martín Rocamora and Alvaro Pardo Institute of Electrical Engineering - School of Engineering Universidad de la República, Uruguay
engin erzin the use of speech processing applications is expected to surge in multimedia-rich scenarios
engin erzin Associate Professor Department of Computer Engineering Ph.D. Bilkent University http://home.ku.edu.tr/ eerzin [email protected] Engin Erzin s research interests include speech processing, multimodal
Program curriculum for graduate studies in Speech and Music Communication
Program curriculum for graduate studies in Speech and Music Communication School of Computer Science and Communication, KTH (Translated version, November 2009) Common guidelines for graduate-level studies
Voice Communication Package v7.0 of front-end voice processing software technologies General description and technical specification
Voice Communication Package v7.0 of front-end voice processing software technologies General description and technical specification (Revision 1.0, May 2012) General VCP information Voice Communication
Recent advances in Digital Music Processing and Indexing
Recent advances in Digital Music Processing and Indexing Acoustics 08 warm-up TELECOM ParisTech Gaël RICHARD Telecom ParisTech (ENST) www.enst.fr/~grichard/ Content Introduction and Applications Components
Hardware Implementation of Probabilistic State Machine for Word Recognition
IJECT Vo l. 4, Is s u e Sp l - 5, Ju l y - Se p t 2013 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) Hardware Implementation of Probabilistic State Machine for Word Recognition 1 Soorya Asokan, 2
Quarterly Progress and Status Report. An ontogenetic study of infant speech perception
Dept. for Speech, Music and Hearing Quarterly Progress and Status Report An ontogenetic study of infant speech perception Lacerda, F. and Aurelius, G. and Landberg,. and Roug-Hellichius, L-L. journal:
Convention Paper Presented at the 118th Convention 2005 May 28 31 Barcelona, Spain
Audio Engineering Society Convention Paper Presented at the 118th Convention 25 May 28 31 Barcelona, Spain 6431 This convention paper has been reproduced from the author s advance manuscript, without editing,
Common Phonological processes - There are several kinds of familiar processes that are found in many many languages.
Common Phonological processes - There are several kinds of familiar processes that are found in many many languages. 1. Uncommon processes DO exist. Of course, through the vagaries of history languages
Speech: A Challenge to Digital Signal Processing Technology for Human-to-Computer Interaction
: A Challenge to Digital Signal Processing Technology for Human-to-Computer Interaction Urmila Shrawankar Dept. of Information Technology Govt. Polytechnic, Nagpur Institute Sadar, Nagpur 440001 (INDIA)
MATTHEW K. GORDON (University of California, Los Angeles) THE NEUTRAL VOWELS OF FINNISH: HOW NEUTRAL ARE THEY? *
Linguistica Uralica 35:1 (1999), pp. 17-21 MATTHEW K. GORDON (University of California, Los Angeles) THE NEUTRAL VOWELS OF FINNISH: HOW NEUTRAL ARE THEY? * Finnish is well known for possessing a front-back
TEXT TO SPEECH SYSTEM FOR KONKANI ( GOAN ) LANGUAGE
TEXT TO SPEECH SYSTEM FOR KONKANI ( GOAN ) LANGUAGE Sangam P. Borkar M.E. (Electronics)Dissertation Guided by Prof. S. P. Patil Head of Electronics Department Rajarambapu Institute of Technology Sakharale,
L3: Organization of speech sounds
L3: Organization of speech sounds Phonemes, phones, and allophones Taxonomies of phoneme classes Articulatory phonetics Acoustic phonetics Speech perception Prosody Introduction to Speech Processing Ricardo
Myanmar Continuous Speech Recognition System Based on DTW and HMM
Myanmar Continuous Speech Recognition System Based on DTW and HMM Ingyin Khaing Department of Information and Technology University of Technology (Yatanarpon Cyber City),near Pyin Oo Lwin, Myanmar Abstract-
Speech Recognition System for Cerebral Palsy
Speech Recognition System for Cerebral Palsy M. Hafidz M. J., S.A.R. Al-Haddad, Chee Kyun Ng Department of Computer & Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia,
NATURAL SOUNDING TEXT-TO-SPEECH SYNTHESIS BASED ON SYLLABLE-LIKE UNITS SAMUEL THOMAS MASTER OF SCIENCE
NATURAL SOUNDING TEXT-TO-SPEECH SYNTHESIS BASED ON SYLLABLE-LIKE UNITS A THESIS submitted by SAMUEL THOMAS for the award of the degree of MASTER OF SCIENCE (by Research) DEPARTMENT OF COMPUTER SCIENCE
The AV-LASYN Database : A synchronous corpus of audio and 3D facial marker data for audio-visual laughter synthesis
The AV-LASYN Database : A synchronous corpus of audio and 3D facial marker data for audio-visual laughter synthesis Hüseyin Çakmak, Jérôme Urbain, Joëlle Tilmanne and Thierry Dutoit University of Mons,
Using the Amazon Mechanical Turk for Transcription of Spoken Language
Research Showcase @ CMU Computer Science Department School of Computer Science 2010 Using the Amazon Mechanical Turk for Transcription of Spoken Language Matthew R. Marge Satanjeev Banerjee Alexander I.
Testing Voice Service for Next Generation Packet Voice Networks
Testing Voice Service for Next Generation Packet Voice Networks Next Generation voice networks combine voice and data on the same transmission path. The advantages are many, but because of the technology
Bernice E. Rogowitz and Holly E. Rushmeier IBM TJ Watson Research Center, P.O. Box 704, Yorktown Heights, NY USA
Are Image Quality Metrics Adequate to Evaluate the Quality of Geometric Objects? Bernice E. Rogowitz and Holly E. Rushmeier IBM TJ Watson Research Center, P.O. Box 704, Yorktown Heights, NY USA ABSTRACT
5th Congress of Alps-Adria Acoustics Association NOISE-INDUCED HEARING LOSS
5th Congress of Alps-Adria Acoustics Association 12-14 September 2012, Petrčane, Croatia NOISE-INDUCED HEARING LOSS Davor Šušković, mag. ing. el. techn. inf. [email protected] Abstract: One of
CHARTES D'ANGLAIS SOMMAIRE. CHARTE NIVEAU A1 Pages 2-4. CHARTE NIVEAU A2 Pages 5-7. CHARTE NIVEAU B1 Pages 8-10. CHARTE NIVEAU B2 Pages 11-14
CHARTES D'ANGLAIS SOMMAIRE CHARTE NIVEAU A1 Pages 2-4 CHARTE NIVEAU A2 Pages 5-7 CHARTE NIVEAU B1 Pages 8-10 CHARTE NIVEAU B2 Pages 11-14 CHARTE NIVEAU C1 Pages 15-17 MAJ, le 11 juin 2014 A1 Skills-based
Functional Communication for Soft or Inaudible Voices: A New Paradigm
The following technical paper has been accepted for presentation at the 2005 annual conference of the Rehabilitation Engineering and Assistive Technology Society of North America. RESNA is an interdisciplinary
Articulatory Phonetics. and the International Phonetic Alphabet. Readings and Other Materials. Review. IPA: The Vowels. Practice
Supplementary Readings Supplementary Readings Handouts Online Tutorials The following readings have been posted to the Moodle course site: Contemporary Linguistics: Chapter 2 (pp. 34-40) Handouts for This
Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.
Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet
Secure-Access System via Fixed and Mobile Telephone Networks using Voice Biometrics
Secure-Access System via Fixed and Mobile Telephone Networks using Voice Biometrics Anastasis Kounoudes 1, Anixi Antonakoudi 1, Vasilis Kekatos 2 1 The Philips College, Computing and Information Systems
Bachelors of Science Program in Communication Disorders and Sciences:
Bachelors of Science Program in Communication Disorders and Sciences: Mission: The SIUC CDS program is committed to multiple complimentary missions. We provide support for, and align with, the university,
A causal algorithm for beat-tracking
A causal algorithm for beat-tracking Benoit Meudic Ircam - Centre Pompidou 1, place Igor Stravinsky, 75004 Paris, France [email protected] ABSTRACT This paper presents a system which can perform automatic
Things to remember when transcribing speech
Notes and discussion Things to remember when transcribing speech David Crystal University of Reading Until the day comes when this journal is available in an audio or video format, we shall have to rely
SPEECH AUDIOMETRY. @ Biswajeet Sarangi, B.Sc.(Audiology & speech Language pathology)
1 SPEECH AUDIOMETRY Pure tone Audiometry provides only a partial picture of the patient s auditory sensitivity. Because it doesn t give any information about it s ability to hear and understand speech.
TECHNICAL LISTENING TRAINING: IMPROVEMENT OF SOUND SENSITIVITY FOR ACOUSTIC ENGINEERS AND SOUND DESIGNERS
TECHNICAL LISTENING TRAINING: IMPROVEMENT OF SOUND SENSITIVITY FOR ACOUSTIC ENGINEERS AND SOUND DESIGNERS PACS: 43.10.Sv Shin-ichiro Iwamiya, Yoshitaka Nakajima, Kazuo Ueda, Kazuhiko Kawahara and Masayuki
