Model-Based Recursive Partitioning for Detecting Interaction Effects in Subgroups
|
|
|
- Samuel George
- 9 years ago
- Views:
Transcription
1 Model-Based Recursive Partitioning for Detecting Interaction Effects in Subgroups Achim Zeileis, Torsten Hothorn, Kurt Hornik
2 Overview Motivation: Trees, leaves, and branches Model-based recursive partitioning Model estimation Tests for parameter instability Segmentation Pruning Application: Treatment effect for chronic disease Summary
3 Motivation: Trees Breiman (2001, Statistical Science) distinguishes two cultures of statistical modeling. Data models: Stochastic models, typically parametric. Algorithmic models: Flexible models, data-generating process unknown. Example: Recursive partitioning models dependent variable Y by learning a partition w.r.t explanatory variables Z 1,..., Z l. Key features: Predictive power in nonlinear regression relationships with automatic interaction detection. Interpretability (enhanced by visualization), i.e., no black box methods.
4 Motivation: Leaves Typically: Simple models for univariate Y, e.g., mean or proportion. Examples: CART and C4.5 in statistical and machine learning, respectively. Problems: For classical tree algorithms. No concept of significance, possibly biased variable selection. No complex (parametric) models in leaves. Many different tree algorithms for different types of data. Here: Synthesis of parametric data models and algorithmic tree models. Fitting local models by partitioning of the sample space. Based on statistical hypothesis tests for parameter instability.
5 Motivation: Branches Base algorithm: Growth of branches from the roots to the leaves of the tree follows a generic recursive partitioning algorithm. 1 Fit a (possibly very simple) model for the response Y. 2 Assess association of Y and each Z j. 3 Split sample along the Z j with strongest association: Choose breakpoint with highest improvement of the model fit. 4 Repeat steps 1 3 recursively in the subsamples until some stopping criterion is met. Here: Segmentation (3) of parametric models (1) with additive objective function using parameter instability tests (2) and associated statistical significance (4).
6 Model-based recursive partitioning: Estimation Models: M(Y, θ) with (potentially) multivariate observations Y Y and k-dimensional parameter vector θ Θ. Parameter estimation: θ by optimization of objective function Ψ(Y, θ) for n observations Y i (i = 1,..., n): θ = argmin θ Θ n Ψ(Y i, θ). i=1 Special cases: Maximum likelihood (ML), weighted and ordinary least squares (OLS and WLS), quasi-ml, and other M-estimators. Central limit theorem: If there is a true parameter θ 0 and given certain weak regularity conditions, ˆθ is asymptotically normal with mean θ 0 and sandwich-type covariance.
7 Model-based recursive partitioning: Estimation Estimating function: θ can also be defined in terms of n ψ(y i, θ) = 0, i=1 where ψ(y, θ) = Ψ(Y, θ)/ θ. Idea: In many situations, a single global model M(Y, θ) that fits all n observations cannot be found. But it might be possible to find a partition w.r.t. the variables Z = (Z 1,..., Z l ) so that a well-fitting model can be found locally in each cell of the partition. Tool: Assess parameter instability w.r.t to partitioning variables Z j Z j (j = 1,..., l).
8 Model-based recursive partitioning: Tests Generalized M-fluctuation tests capture instabilities in θ for an ordering w.r.t Z j. Basis: Empirical fluctuation process of cumulative deviations w.r.t. to an ordering σ(z ij ). nt W j (t, θ) = V 1/2 n 1/2 ψ(y σ(zij ), θ) (0 t 1) i=1 Functional central limit theorem: Under parameter stability W j (, θ) d W 0 ( ), where W 0 is a k-dimensional Brownian bridge.
9 Model-based recursive partitioning: Tests Test statistics: Scalar functional λ(w j ) that captures deviations from zero. Null distribution: Asymptotic distribution of λ(w 0 ). Special cases: Class of test encompasses many well-known tests for different classes of models. Certain functionals λ are particularly intuitive for numeric and categorical Z j, respectively. Advantage: Model M(Y, θ) just has to be estimated once. Empirical estimating functions ψ(y i, θ) just have to be re-ordered and aggregated for each Z j.
10 Model-based recursive partitioning: Tests Splitting numeric variables: Assess instability using suplm statistics. λ suplm (W j ) = max i=i,...,ı ( i n n i ) 1 ( ) i 2 W j. n n 2 Interpretation: Maximization of single shift LM statistics for all conceivable breakpoints in [i, ı]. Limiting distribution: Supremum of a squared, k-dimensional tied-down Bessel process.
11 Model-based recursive partitioning: Tests Splitting categorical variables: Assess instability using χ 2 statistics. λ χ 2(W j ) = C c=1 n I c ( ) i 2 I c W j n 2 Feature: Invariant for re-ordering of the C categories and the observations within each category. Interpretation: Captures instability for split-up into C categories. Limiting distribution: χ 2 with k (C 1) degrees of freedom.
12 Model-based recursive partitioning: Segmentation Goal: Split model into b = 1,..., B segments along the partitioning variable Z j associated with the highest parameter instability. Local optimization of b i I b Ψ(Y i, θ b ). B = 2: Exhaustive search of order O(n). B > 2: Exhaustive search is of order O(n B 1 ), but can be replaced by dynamic programming of order O(n 2 ). Different methods (e.g., information criteria) can choose B adaptively. Here: Binary partitioning.
13 Model-based recursive partitioning: Pruning Pruning: Avoid overfitting. Pre-pruning: Internal stopping criterion. Stop splitting when there is no significant parameter instability. Post-pruning: Grow large tree and prune splits that do not improve the model fit (e.g., via cross-validation or information criteria). Here: Pre-pruning based on Bonferroni-corrected p values of the fluctuation tests.
14 Application: Treatment effect for chronic disease Task: Identify groups of chronic disease patients with different treatment effects. Source: Anonymized data from consulting project. Model: Logistic regression estimated by maximum likelihood. Response: Improvement (yes/no) of chronic disease for 1354 patients after treatment over several weeks. Regressor: Treatment (active drug/placebo). Partitioning variables: 11 variables that describe disease status of patients. Lower values indicate more severe forms of the disease. Result: Treatment most effective for certain intermediate forms.
15 Application: Treatment effect for chronic disease 1 risk7 p = > 0 3 risk5 p = > Node 2 (n = 689) 1 Node 4 (n = 527) 1 Node 5 (n = 138) yes no yes no yes no placebo drug placebo drug placebo drug
16 Application: Treatment effect for chronic disease Model-based recursive partitioning: Coefficient estimates for regressors. Parameter instability tests for partitioning variables (bold = significant at adjusted 5% level, underlined = smallest p value). Regressors Partitioning variables (const.) treatment risk4 risk5 risk7 risk9 risk
17 Summary Synthesis of parametric data models and algorithmic tree models. Based on modern class of parameter instability tests. Aims to minimize clearly defined objective function by greedy forward search. Can be applied to general class of parametric models: generalized linear models, psychometric models (e.g., Rasch, Bradley-Terry), models for location and scale, etc. Automatic interaction detection of effects in subgroups. Alternative to traditional means of model specification, especially for variables with unknown association. Object-oriented implementation freely available: Extension for new models requires some coding, though.
18 References Zeileis A, Hothorn T, Hornik K (2008). Model-Based Recursive Partitioning. Journal of Computational and Graphical Statistics, 17(2), doi: / x Zeileis A, Hornik K (2007). Generalized M-Fluctuation Tests for Parameter Instability. Statistica Neerlandica, 61(4), doi: /j x Hothorn T, Hornik K, Strobl C, Zeileis A (2013). party: A Laboratory for Recursive Partytioning. R package version
Testing, Monitoring, and Dating Structural Changes in Exchange Rate Regimes
Testing, Monitoring, and Dating Structural Changes in Exchange Rate Regimes Achim Zeileis http://eeecon.uibk.ac.at/~zeileis/ Overview Motivation Exchange rate regimes Exchange rate regression What is the
Implementing a Class of Structural Change Tests: An Econometric Computing Approach
Implementing a Class of Structural Change Tests: An Econometric Computing Approach Achim Zeileis http://www.ci.tuwien.ac.at/~zeileis/ Contents Why should we want to do tests for structural change, econometric
Model-based Recursive Partitioning
Model-based Recursive Partitioning Achim Zeileis Wirtschaftsuniversität Wien Torsten Hothorn Ludwig-Maximilians-Universität München Kurt Hornik Wirtschaftsuniversität Wien Abstract Recursive partitioning
partykit: A Toolkit for Recursive Partytioning
partykit: A Toolkit for Recursive Partytioning Achim Zeileis, Torsten Hothorn http://eeecon.uibk.ac.at/~zeileis/ Overview Status quo: R software for tree models New package: partykit Unified infrastructure
A Unified Approach to Structural Change Tests Based on ML Scores, F Statistics, and OLS Residuals
A Unified Approach to Structural Change Tests Based on ML Scores, F Statistics, and OLS Residuals Achim Zeileis Wirtschaftsuniversität Wien Abstract Three classes of structural change tests (or tests for
Lecture 10: Regression Trees
Lecture 10: Regression Trees 36-350: Data Mining October 11, 2006 Reading: Textbook, sections 5.2 and 10.5. The next three lectures are going to be about a particular kind of nonlinear predictive model,
Statistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
Gerry Hobbs, Department of Statistics, West Virginia University
Decision Trees as a Predictive Modeling Method Gerry Hobbs, Department of Statistics, West Virginia University Abstract Predictive modeling has become an important area of interest in tasks such as credit
Data Mining Classification: Decision Trees
Data Mining Classification: Decision Trees Classification Decision Trees: what they are and how they work Hunt s (TDIDT) algorithm How to select the best split How to handle Inconsistent data Continuous
Monitoring Structural Change in Dynamic Econometric Models
Monitoring Structural Change in Dynamic Econometric Models Achim Zeileis Friedrich Leisch Christian Kleiber Kurt Hornik http://www.ci.tuwien.ac.at/~zeileis/ Contents Model frame Generalized fluctuation
Data Mining Techniques Chapter 6: Decision Trees
Data Mining Techniques Chapter 6: Decision Trees What is a classification decision tree?.......................................... 2 Visualizing decision trees...................................................
Machine Learning Methods for Causal Effects. Susan Athey, Stanford University Guido Imbens, Stanford University
Machine Learning Methods for Causal Effects Susan Athey, Stanford University Guido Imbens, Stanford University Introduction Supervised Machine Learning v. Econometrics/Statistics Lit. on Causality Supervised
EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER. Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d.
EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER ANALYTICS LIFECYCLE Evaluate & Monitor Model Formulate Problem Data Preparation Deploy Model Data Exploration Validate Models
STATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
Data mining techniques: decision trees
Data mining techniques: decision trees 1/39 Agenda Rule systems Building rule systems vs rule systems Quick reference 2/39 1 Agenda Rule systems Building rule systems vs rule systems Quick reference 3/39
[email protected], {ram.gopal, xinxin.li}@business.uconn.edu
Risk and Return of Investments in Online Peer-to-Peer Lending (Extended Abstract) Harpreet Singh a, Ram Gopal b, Xinxin Li b a School of Management, University of Texas at Dallas, Richardson, Texas 75083-0688
Data Mining with R. Decision Trees and Random Forests. Hugh Murrell
Data Mining with R Decision Trees and Random Forests Hugh Murrell reference books These slides are based on a book by Graham Williams: Data Mining with Rattle and R, The Art of Excavating Data for Knowledge
Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal
Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether
Data Mining Methods: Applications for Institutional Research
Data Mining Methods: Applications for Institutional Research Nora Galambos, PhD Office of Institutional Research, Planning & Effectiveness Stony Brook University NEAIR Annual Conference Philadelphia 2014
Generalized M-Fluctuation Tests for Parameter Instability
Generalized M-Fluctuation Tests for Parameter Instability Achim Zeileis Kurt Hornik Department of Statistics and Mathematics, Wirtschaftsuniversität Wien Abstract A general class of fluctuation tests for
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
Exchange Rate Regime Analysis for the Chinese Yuan
Exchange Rate Regime Analysis for the Chinese Yuan Achim Zeileis Ajay Shah Ila Patnaik Abstract We investigate the Chinese exchange rate regime after China gave up on a fixed exchange rate to the US dollar
Benchmarking Open-Source Tree Learners in R/RWeka
Benchmarking Open-Source Tree Learners in R/RWeka Michael Schauerhuber 1, Achim Zeileis 1, David Meyer 2, Kurt Hornik 1 Department of Statistics and Mathematics 1 Institute for Management Information Systems
Applied Data Mining Analysis: A Step-by-Step Introduction Using Real-World Data Sets
Applied Data Mining Analysis: A Step-by-Step Introduction Using Real-World Data Sets http://info.salford-systems.com/jsm-2015-ctw August 2015 Salford Systems Course Outline Demonstration of two classification
Social Media Mining. Data Mining Essentials
Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written
Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model
Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model Xavier Conort [email protected] Motivation Location matters! Observed value at one location is
Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris
Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines
Statistics Graduate Courses
Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
An Overview and Evaluation of Decision Tree Methodology
An Overview and Evaluation of Decision Tree Methodology ASA Quality and Productivity Conference Terri Moore Motorola Austin, TX [email protected] Carole Jesse Cargill, Inc. Wayzata, MN [email protected]
Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4.
Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví Pavel Kříž Seminář z aktuárských věd MFF 4. dubna 2014 Summary 1. Application areas of Insurance Analytics 2. Insurance Analytics
Data Mining - Evaluation of Classifiers
Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010
Introduction to General and Generalized Linear Models
Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby
Data Mining Algorithms Part 1. Dejan Sarka
Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka ([email protected]) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses
Decision-Tree Learning
Decision-Tree Learning Introduction ID3 Attribute selection Entropy, Information, Information Gain Gain Ratio C4.5 Decision Trees TDIDT: Top-Down Induction of Decision Trees Numeric Values Missing Values
How To Find Seasonal Differences Between The Two Programs Of The Labor Market
Using Data Mining to Explore Seasonal Differences Between the U.S. Current Employment Statistics Survey and the Quarterly Census of Employment and Wages October 2009 G. Erkens BLS G. Erkens, Bureau of
Business Analytics and Credit Scoring
Study Unit 5 Business Analytics and Credit Scoring ANL 309 Business Analytics Applications Introduction Process of credit scoring The role of business analytics in credit scoring Methods of logistic regression
COMP3420: Advanced Databases and Data Mining. Classification and prediction: Introduction and Decision Tree Induction
COMP3420: Advanced Databases and Data Mining Classification and prediction: Introduction and Decision Tree Induction Lecture outline Classification versus prediction Classification A two step process Supervised
TACKLING SIMPSON'S PARADOX IN BIG DATA USING CLASSIFICATION & REGRESSION TREES
TACKLING SIMPSON'S PARADOX IN BIG DATA USING CLASSIFICATION & REGRESSION TREES Research in Progress Shmueli, Galit, Indian School of Business, Hyderabad, India, [email protected] Yahav, Inbal, Bar
LOGISTIC REGRESSION. Nitin R Patel. where the dependent variable, y, is binary (for convenience we often code these values as
LOGISTIC REGRESSION Nitin R Patel Logistic regression extends the ideas of multiple linear regression to the situation where the dependent variable, y, is binary (for convenience we often code these values
Principles of Data Mining by Hand&Mannila&Smyth
Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences
Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression
Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction
From the help desk: Bootstrapped standard errors
The Stata Journal (2003) 3, Number 1, pp. 71 80 From the help desk: Bootstrapped standard errors Weihua Guan Stata Corporation Abstract. Bootstrapping is a nonparametric approach for evaluating the distribution
Classification and Prediction
Classification and Prediction Slides for Data Mining: Concepts and Techniques Chapter 7 Jiawei Han and Micheline Kamber Intelligent Database Systems Research Lab School of Computing Science Simon Fraser
Penalized Logistic Regression and Classification of Microarray Data
Penalized Logistic Regression and Classification of Microarray Data Milan, May 2003 Anestis Antoniadis Laboratoire IMAG-LMC University Joseph Fourier Grenoble, France Penalized Logistic Regression andclassification
The Data Mining Process
Sequence for Determining Necessary Data. Wrong: Catalog everything you have, and decide what data is important. Right: Work backward from the solution, define the problem explicitly, and map out the data
Quantitative Methods for Finance
Quantitative Methods for Finance Module 1: The Time Value of Money 1 Learning how to interpret interest rates as required rates of return, discount rates, or opportunity costs. 2 Learning how to explain
Data Mining for Knowledge Management. Classification
1 Data Mining for Knowledge Management Classification Themis Palpanas University of Trento http://disi.unitn.eu/~themis Data Mining for Knowledge Management 1 Thanks for slides to: Jiawei Han Eamonn Keogh
Data Mining: An Overview. David Madigan http://www.stat.columbia.edu/~madigan
Data Mining: An Overview David Madigan http://www.stat.columbia.edu/~madigan Overview Brief Introduction to Data Mining Data Mining Algorithms Specific Eamples Algorithms: Disease Clusters Algorithms:
STATISTICA. Clustering Techniques. Case Study: Defining Clusters of Shopping Center Patrons. and
Clustering Techniques and STATISTICA Case Study: Defining Clusters of Shopping Center Patrons STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table
THE HYBRID CART-LOGIT MODEL IN CLASSIFICATION AND DATA MINING. Dan Steinberg and N. Scott Cardell
THE HYBID CAT-LOGIT MODEL IN CLASSIFICATION AND DATA MINING Introduction Dan Steinberg and N. Scott Cardell Most data-mining projects involve classification problems assigning objects to classes whether
Efficiency in Software Development Projects
Efficiency in Software Development Projects Aneesh Chinubhai Dharmsinh Desai University [email protected] Abstract A number of different factors are thought to influence the efficiency of the software
Supervised Learning (Big Data Analytics)
Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used
!"!!"#$$%&'()*+$(,%!"#$%$&'()*""%(+,'-*&./#-$&'(-&(0*".$#-$1"(2&."3$'45"
!"!!"#$$%&'()*+$(,%!"#$%$&'()*""%(+,'-*&./#-$&'(-&(0*".$#-$1"(2&."3$'45"!"#"$%&#'()*+',$$-.&#',/"-0%.12'32./4'5,5'6/%&)$).2&'7./&)8'5,5'9/2%.%3%&8':")08';:
Detection of changes in variance using binary segmentation and optimal partitioning
Detection of changes in variance using binary segmentation and optimal partitioning Christian Rohrbeck Abstract This work explores the performance of binary segmentation and optimal partitioning in the
Data Mining Practical Machine Learning Tools and Techniques
Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea
Penalized regression: Introduction
Penalized regression: Introduction Patrick Breheny August 30 Patrick Breheny BST 764: Applied Statistical Modeling 1/19 Maximum likelihood Much of 20th-century statistics dealt with maximum likelihood
Decision Trees from large Databases: SLIQ
Decision Trees from large Databases: SLIQ C4.5 often iterates over the training set How often? If the training set does not fit into main memory, swapping makes C4.5 unpractical! SLIQ: Sort the values
The Design and Analysis of Benchmark Experiments
The Design and Analysis of Benchmark Experiments Torsten Hothorn Friedrich-Alexander-Universität Erlangen-Nürnberg Friedrich Leisch Technische Universität Wien Kurt Hornik Wirtschaftsuniversität Wien Achim
1 Teaching notes on GMM 1.
Bent E. Sørensen January 23, 2007 1 Teaching notes on GMM 1. Generalized Method of Moment (GMM) estimation is one of two developments in econometrics in the 80ies that revolutionized empirical work in
R: A Free Software Project in Statistical Computing
R: A Free Software Project in Statistical Computing Achim Zeileis http://statmath.wu-wien.ac.at/ zeileis/ [email protected] Overview A short introduction to some letters of interest R, S, Z Statistics
Multivariate Logistic Regression
1 Multivariate Logistic Regression As in univariate logistic regression, let π(x) represent the probability of an event that depends on p covariates or independent variables. Then, using an inv.logit formulation
D-optimal plans in observational studies
D-optimal plans in observational studies Constanze Pumplün Stefan Rüping Katharina Morik Claus Weihs October 11, 2005 Abstract This paper investigates the use of Design of Experiments in observational
Designing a learning system
Lecture Designing a learning system Milos Hauskrecht [email protected] 539 Sennott Square, x4-8845 http://.cs.pitt.edu/~milos/courses/cs750/ Design of a learning system (first vie) Application or Testing
A teaching experience through the development of hypertexts and object oriented software.
A teaching experience through the development of hypertexts and object oriented software. Marcello Chiodi Istituto di Statistica. Facoltà di Economia-Palermo-Italy 1. Introduction (1) This paper is concerned
Regression Modeling Strategies
Frank E. Harrell, Jr. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis With 141 Figures Springer Contents Preface Typographical Conventions
Maximally Selected Rank Statistics in R
Maximally Selected Rank Statistics in R by Torsten Hothorn and Berthold Lausen This document gives some examples on how to use the maxstat package and is basically an extention to Hothorn and Lausen (2002).
Online Appendices to the Corporate Propensity to Save
Online Appendices to the Corporate Propensity to Save Appendix A: Monte Carlo Experiments In order to allay skepticism of empirical results that have been produced by unusual estimators on fairly small
An Overview of Data Mining: Predictive Modeling for IR in the 21 st Century
An Overview of Data Mining: Predictive Modeling for IR in the 21 st Century Nora Galambos, PhD Senior Data Scientist Office of Institutional Research, Planning & Effectiveness Stony Brook University AIRPO
Model Combination. 24 Novembre 2009
Model Combination 24 Novembre 2009 Datamining 1 2009-2010 Plan 1 Principles of model combination 2 Resampling methods Bagging Random Forests Boosting 3 Hybrid methods Stacking Generic algorithm for mulistrategy
Data mining on the EPIRARE survey data
Deliverable D1.5 Data mining on the EPIRARE survey data A. Coi 1, M. Santoro 2, M. Lipucci 2, A.M. Bianucci 1, F. Bianchi 2 1 Department of Pharmacy, Unit of Research of Bioinformatic and Computational
DATA INTERPRETATION AND STATISTICS
PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE
The Artificial Prediction Market
The Artificial Prediction Market Adrian Barbu Department of Statistics Florida State University Joint work with Nathan Lay, Siemens Corporate Research 1 Overview Main Contributions A mathematical theory
Probabilistic Methods for Time-Series Analysis
Probabilistic Methods for Time-Series Analysis 2 Contents 1 Analysis of Changepoint Models 1 1.1 Introduction................................ 1 1.1.1 Model and Notation....................... 2 1.1.2 Example:
Classification and Prediction
Classification and Prediction 1. Objectives...2 2. Classification vs. Prediction...3 2.1. Definitions...3 2.2. Supervised vs. Unsupervised Learning...3 2.3. Classification and Prediction Related Issues...4
REPORT DOCUMENTATION PAGE
REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
Statistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova
Winning the Kaggle Algorithmic Trading Challenge with the Composition of Many Models and Feature Engineering
IEICE Transactions on Information and Systems, vol.e96-d, no.3, pp.742-745, 2013. 1 Winning the Kaggle Algorithmic Trading Challenge with the Composition of Many Models and Feature Engineering Ildefons
Introduction to Support Vector Machines. Colin Campbell, Bristol University
Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.
A hidden Markov model for criminal behaviour classification
RSS2004 p.1/19 A hidden Markov model for criminal behaviour classification Francesco Bartolucci, Institute of economic sciences, Urbino University, Italy. Fulvia Pennoni, Department of Statistics, University
Linear Models and Conjoint Analysis with Nonlinear Spline Transformations
Linear Models and Conjoint Analysis with Nonlinear Spline Transformations Warren F. Kuhfeld Mark Garratt Abstract Many common data analysis models are based on the general linear univariate model, including
THE RISE OF THE BIG DATA: WHY SHOULD STATISTICIANS EMBRACE COLLABORATIONS WITH COMPUTER SCIENTISTS XIAO CHENG. (Under the Direction of Jeongyoun Ahn)
THE RISE OF THE BIG DATA: WHY SHOULD STATISTICIANS EMBRACE COLLABORATIONS WITH COMPUTER SCIENTISTS by XIAO CHENG (Under the Direction of Jeongyoun Ahn) ABSTRACT Big Data has been the new trend in businesses.
CREDIT SCORING MODEL APPLICATIONS:
Örebro University Örebro University School of Business Master in Applied Statistics Thomas Laitila Sune Karlsson May, 2014 CREDIT SCORING MODEL APPLICATIONS: TESTING MULTINOMIAL TARGETS Gabriela De Rossi
ECLT5810 E-Commerce Data Mining Technique SAS Enterprise Miner -- Regression Model I. Regression Node
Enterprise Miner - Regression 1 ECLT5810 E-Commerce Data Mining Technique SAS Enterprise Miner -- Regression Model I. Regression Node 1. Some background: Linear attempts to predict the value of a continuous
Machine Learning and Data Mining. Regression Problem. (adapted from) Prof. Alexander Ihler
Machine Learning and Data Mining Regression Problem (adapted from) Prof. Alexander Ihler Overview Regression Problem Definition and define parameters ϴ. Prediction using ϴ as parameters Measure the error
SYSTEMS OF REGRESSION EQUATIONS
SYSTEMS OF REGRESSION EQUATIONS 1. MULTIPLE EQUATIONS y nt = x nt n + u nt, n = 1,...,N, t = 1,...,T, x nt is 1 k, and n is k 1. This is a version of the standard regression model where the observations
The Operational Value of Social Media Information. Social Media and Customer Interaction
The Operational Value of Social Media Information Dennis J. Zhang (Kellogg School of Management) Ruomeng Cui (Kelley School of Business) Santiago Gallino (Tuck School of Business) Antonio Moreno-Garcia
Chapter 12 Discovering New Knowledge Data Mining
Chapter 12 Discovering New Knowledge Data Mining Becerra-Fernandez, et al. -- Knowledge Management 1/e -- 2004 Prentice Hall Additional material 2007 Dekai Wu Chapter Objectives Introduce the student to
Department of Economics
Department of Economics On Testing for Diagonality of Large Dimensional Covariance Matrices George Kapetanios Working Paper No. 526 October 2004 ISSN 1473-0278 On Testing for Diagonality of Large Dimensional
Machine Learning Methods for Demand Estimation
Machine Learning Methods for Demand Estimation By Patrick Bajari, Denis Nekipelov, Stephen P. Ryan, and Miaoyu Yang Over the past decade, there has been a high level of interest in modeling consumer behavior
Bootstrapping Big Data
Bootstrapping Big Data Ariel Kleiner Ameet Talwalkar Purnamrita Sarkar Michael I. Jordan Computer Science Division University of California, Berkeley {akleiner, ameet, psarkar, jordan}@eecs.berkeley.edu
Big Data: Big N. V.C. 14.387 Note. December 2, 2014
Big Data: Big N V.C. 14.387 Note December 2, 2014 Examples of Very Big Data Congressional record text, in 100 GBs Nielsen s scanner data, 5TBs Medicare claims data are in 100 TBs Facebook 200,000 TBs See
Open-Source Machine Learning: R Meets Weka
Open-Source Machine Learning: R Meets Weka Kurt Hornik, Christian Buchta, Michael Schauerhuber, David Meyer, Achim Zeileis http://statmath.wu-wien.ac.at/ zeileis/ Weka? Weka is not only a flightless endemic
