Evaluation of Bitmap Index Compression using Data Pump in Oracle Database
|
|
|
- Reynard Perkins
- 10 years ago
- Views:
Transcription
1 IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: , p- ISSN: Volume 16, Issue 3, Ver. III (May-Jun. 2014), PP Evaluation of Bitmap Index Compression using Data Pump in Oracle Database Shivam Dwivedi #1, Dr. Savita Shiwani #2 #1 (Computer Science& Engineering/Suresh Gyan Vihar University, Jaipur , India) #2 (Associate Professor, Suresh Gyan Vihar University, Jaipur) Abstract: Bitmap index is most commonly used technique for efficient query processing and mostly in the Data warehouse environment. We review the existing technologies of Compression and introduce the bitmap index compression through data pump. According to conventional wisdom bitmap index is more efficient for minimum unique value. But through data pump it doesn t require either bitmap index is created on high degree of cardinality or low degree of cardinality. In this paper, we propose data pump utility for release the disk space in database after deletion of records. Bitmap index point the old location even after deletion of records from table, This utility doesn t release disk space. We have implemented data pump for compression, to release the space and change the index pointing location. Data pump which is often used for logical backups in oracle database. Finally we review the bitmap index which commonly used for industrial purpose and discuss open issues for future evolution and development. Keywords: Bitmap Index, Compression, Data Pump, Query Performance. I. Introduction For selection of some records in oracle database. The simplest way evaluating a query is to scan all data records to specify condition. Full table scan sometimes affect the query performance [6,7]. A typical query condition to calculate the number of distinct values in particular column which require full table scan. Indexes accelerate the searching procedure such as variation with Bitmap (Chan &Loannidis, 1998), Bitmap Index for Data Warehouse (Kurt Stockinger and Kesheng Wu, 2003) and B-Trees or kd-trees (Comer, 1979; Gaede & Guenther, 1998). In database as number of column increases, the number of index possible combination also increases. Bitmap index is widely used in the data warehouse environment [5,6,9]. Data pump allows efficient compression [3,4,5] of bitmap index after deletion. In this chapter we discuss bitmap index on large table which contains at least millions of records. When user applies bulk deletion from the database and even after fire commit.the index is still pointing to before location. Data pump is utility which basically import export the database object, in industrial application which supports huge amount of data and allow the DML s very frequently. Large table in database contains the huge amount and occupy the space in Giga bytes. Even the bulk deletion from table Index pointing location doesn t change due to the by default behavior of oracle and table and index object still occupying the same space as before deletion. For industry it s drawback that object is still occupying space after deletion. Our objective behind this study is to release the disk space after deletion of records from table. II. Bitmap Index Bitmap index is most efficient index in oracle database. This index provides benefit in the query performance [6]. The name bitmap index was used by O Neil and colleagues (O Neil, 1987; O Neil & Quass, 1997). Bitmap index introduced as an improvement of B-Tree index. Important feature of bitmap index is it contains key values and bitmaps. Key values and bitmaps are arranged as array in binary files. Bitmap index basically assign key to each distinct values. Degree of cardinality also matters for performance of bitmap index. Normally bitmap index contains small size for low degree of cardinality and maximum size for high degree of cardinality [8]. High degree of cardinality refers as bitmap index on the scientific values column, which contain maximum number of unique values. Low degree cardinality refers as minimum number of unique values like index on salary column. But our research doesn t matter with the cardinality issues. 2.1 Bitmap Index Structure Bitmap index [1,2] has most efficient structure for the single dimensional queries as well as multi dimensional queries[10]. Logical operations are evaluated with queries, where Individual bitmap value assigns to each data value. Computer hardware also supports bitmap logical operation [5]. Normally these operations performed on the bit values which refer data. Here bitmap index with three different values represents the three unique column value 43 Page
2 Fig. 1.bitmap index representation for unique column values Data Pump Data pump utility used for backup of logical entity in the database. Only process in oracle database which performs backup of logical entities. This tool transfer database objects at very high speed from one location to another location. One schema object can transfer to another schema. Data pump also includes the export and import facility, where user can export their data and preserves it as a backup for future aspects. For taking backup through data pump we need to create a directory, where oracle logically writes on that particular location and physical location also required for storage of log file and dump file. Through data pump following entities backup possible- 2.2 Database For this utility data pump export the full database, it will not include the schema in it only the Meta data as a part of object which are usually present in data dictionaries. 2.3 Schemas Export the full schema, if requirement of schemas object then not necessary to export the full database then user can export only their own schema. To export other s schemas object user required privileges. III. Remap Schema Oracle database provides remap schema to designate the user s object where to import either in same schema or the other s schema. Remap schema mostly used for industrial purpose to locate the user s data from one location to other server location. This feature supports by the data pump Import to relocate the object data Step-1.1 To prove the compression of Bitmap index or release disk space after deletion of records we have table test_final which contains five million records. Step-1.2 Now create bitmap index on empno column of table result_final which contains five million records. Step- 2. Check how much space is occupied by the Bitmap index and table result_final. 44 Page
3 Step-3. To show our utilities delete one million Records from the table result_final and commit records for permanent changes applying in database. Step-3.1 Now check the size of Bitmap index result_final_idx and table result_final. The above results completely showing bitmap index and table result_final still occupying same disk space even after deletion of records and applying commit statement. Now for release the disk space we use data pump utility. 45 Page
4 Step- 4. Export Data pump Utility result_final table for compression of objects and release the disk space. Step-4.1 Before applying Import Data pump utility, drop result_final Table to release space. Step-4.2 Now Import the result_final table 46 Page
5 Step-4.4 Table result_final is recovered by Import Utility. Step-5 This is final step which shows the final Compression of Bitmap Index or release occupied disk space by the database objects Bitmap index and Table. IV. Experiment Results From the above results we have percent occupied disk space of Bitmap index RESULT_FINAL_IDX is released by data pump after deletion of one million records percent occupied disk space of table RESULT_FINAL is released by data pump after deletion of one million records. This is due to Data Pump import/ export operation performed on the table RESULT_FINAL. V. Conclusion In this section we present the experiment evaluation of Bitmap Index Compression and release occupied disk space of database objects like table and indexes after deletion of records. Industrial database frequently allows the bulk data insertion and deletion.in database deletion of millions records from the table doesn t release occupied disk space immediately. To utilize this disk space for useful records data rather than wasting it. In our study we used the data pump utility for the compression of Bitmap index and table. Data pump utility performed for the logical backups in database. Limitations of this compression technique through data pump that we need to drop the table for release the disk space. The Experimental results, it is observed that in compression of bitmap index or release the disk space is possible through the data pump utility. Next steps in our research will be to release the disk space along with the deletion of records. Oracle database comprises the behavior to occupy the disk space due segment related issue. Because once segment grow for available records. It will not release the space even after deletion of records. This is of special interest for the case to compress the bitmap index and tablespace along with the DML S (Data Manipulation Language). Reference [1]. E. O Neil, P. O Neil, K. Wu, Bitmap index design choices and their performance implications, Research Report, Lawrence Berkeley National Laboratory, [2]. N. Koudas, Space efficient bitmap indexing, in: Proceedings of ACM Conference on Information and Knowledge Management (CIKM), [3]. G. Navarro, E.S. de Moura, M. Neubert, N. Ziviani, R. Baeza-Yates, Adding compression to block addressing inverted indexes, Information Retrieval 3 (1) (2000) [4]. K. Wu, E.J. Otoo, A. Shoshani, Compressing bitmap indexes for faster search operations, in: Proceedings of International Confer- ence on Scientific and Statistical Database Management (SSDBM), [5]. M. Stabno, R. Wrembel, RLH: Bitmap compression technique based on run-length and Huffman encoding, in: Proceedings of ACM International Workshop on Data Warehousing and OLAP (DOLAP), [6]. T. Apaydin, G. Canahuate, H. Ferhatosmanoglu, A.S. Tosun, Approx- imate encoding for direct access and 47 Page
6 query processing over compressed bitmaps, in: Proceedings of International Conference on Very Large Data Bases (VLDB), [7]. T. Apaydin, G. Canahuate, H. Ferhatosmanoglu, A.S. Tosun, Approx- imate encoding for direct access and query processing over compressed bitmaps, in: Proceedings of International Conference on Very Large Data Bases (VLDB), [8]. K. Wu, P. Yu, Range-based bitmap indexing for high cardinality attributes with skew, in: International Computer Software and Applications Conference (COMPSAC), [ 9 ]. K.C. Davis, A. Gupta,Indexing in data warehouses: bitmaps and beyond, in: R. Wrembel, C. Koncilia (Eds.),Data Warehouses and OLAP: Concepts, Architectures and Solutions, Idea Group Inc., 2007, pp ISBN [10]. D. Rotem, K. Stockinger, K. Wu, Optimizing I/O costs of multi- dimensional queries using bitmap indices, in: Proceedings of International Conference on Database and Expert Systems Applica- tions (DEXA), Lecture Notes in Computer Science, vol. 3588, Springer, Berlin, Page
Efficient Iceberg Query Evaluation for Structured Data using Bitmap Indices
Proc. of Int. Conf. on Advances in Computer Science, AETACS Efficient Iceberg Query Evaluation for Structured Data using Bitmap Indices Ms.Archana G.Narawade a, Mrs.Vaishali Kolhe b a PG student, D.Y.Patil
Bitmap Index as Effective Indexing for Low Cardinality Column in Data Warehouse
Bitmap Index as Effective Indexing for Low Cardinality Column in Data Warehouse Zainab Qays Abdulhadi* * Ministry of Higher Education & Scientific Research Baghdad, Iraq Zhang Zuping Hamed Ibrahim Housien**
Bitmap Index an Efficient Approach to Improve Performance of Data Warehouse Queries
Bitmap Index an Efficient Approach to Improve Performance of Data Warehouse Queries Kale Sarika Prakash 1, P. M. Joe Prathap 2 1 Research Scholar, Department of Computer Science and Engineering, St. Peters
ENHANCEMENTS TO SQL SERVER COLUMN STORES. Anuhya Mallempati #2610771
ENHANCEMENTS TO SQL SERVER COLUMN STORES Anuhya Mallempati #2610771 CONTENTS Abstract Introduction Column store indexes Batch mode processing Other Enhancements Conclusion ABSTRACT SQL server introduced
Indexing Techniques for Data Warehouses Queries. Abstract
Indexing Techniques for Data Warehouses Queries Sirirut Vanichayobon Le Gruenwald The University of Oklahoma School of Computer Science Norman, OK, 739 [email protected] [email protected] Abstract Recently,
Query Optimizer for the ETL Process in Data Warehouses
2015 IJSRSET Volume 1 Issue 3 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Query Optimizer for the ETL Process in Data Warehouses Bhadresh Pandya 1, Dr. Sanjay
INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 2, 2008
1 An Adequate Design for Large Data Warehouse Systems: Bitmap index versus B-tree index Morteza Zaker, Somnuk Phon-Amnuaisuk, Su-Cheng Haw Faculty of Information Technologhy Multimedia University, Malaysia
Investigating the Effects of Spatial Data Redundancy in Query Performance over Geographical Data Warehouses 1
Investigating the Effects of Spatial Data Redundancy in Query Performance over Geographical Data Warehouses 1 Thiago Luís Lopes Siqueira 1, Ricardo Rodrigues Ciferri 1, Valéria Cesário Times 2, Cristina
Morteza Zaker ( Student ID :1061608853 ) [email protected]
Data Warehouse Design Considerations 1. Introduction Data warehouse (DW) is a database containing data from multiple operational systems that has been consolidated, integrated, aggregated and structured
David Dye. Extract, Transform, Load
David Dye Extract, Transform, Load Extract, Transform, Load Overview SQL Tools Load Considerations Introduction David Dye [email protected] HTTP://WWW.SQLSAFETY.COM Overview ETL Overview Extract Define
news from Tom Bacon about Monday's lecture
ECRIC news from Tom Bacon about Monday's lecture I won't be at the lecture on Monday due to the work swamp. The plan is still to try and get into the data centre in two weeks time and do the next migration,
DBMS Questions. 3.) For which two constraints are indexes created when the constraint is added?
DBMS Questions 1.) Which type of file is part of the Oracle database? A.) B.) C.) D.) Control file Password file Parameter files Archived log files 2.) Which statements are use to UNLOCK the user? A.)
The safer, easier way to help you pass any IT exams. Exam : 1Z0-067. Upgrade Oracle9i/10g/11g OCA to Oracle Database 12c OCP.
http://www.51- pass.com Exam : 1Z0-067 Title : Upgrade Oracle9i/10g/11g OCA to Oracle Database 12c OCP Version : DEMO 1 / 7 1.Which two statements are true about scheduling operations in a pluggable database
Optimizing the Performance of the Oracle BI Applications using Oracle Datawarehousing Features and Oracle DAC 10.1.3.4.1
Optimizing the Performance of the Oracle BI Applications using Oracle Datawarehousing Features and Oracle DAC 10.1.3.4.1 Mark Rittman, Director, Rittman Mead Consulting for Collaborate 09, Florida, USA,
Percona Server features for OpenStack and Trove Ops
Percona Server features for OpenStack and Trove Ops George O. Lorch III Software Developer Percona Vipul Sabhaya Lead Software Engineer - HP Overview Discuss Percona Server features that will help operators
Oracle Database Security and Audit
Copyright 2014, Oracle Database Security and Beyond Checklists Learning objectives Understand data flow through an Oracle database instance Copyright 2014, Why is data flow important? Data is not static
Restore and Recovery Tasks. Copyright 2009, Oracle. All rights reserved.
Restore and Recovery Tasks Objectives After completing this lesson, you should be able to: Describe the causes of file loss and determine the appropriate action Describe major recovery operations Back
Oracle EXAM - 1Z0-117. Oracle Database 11g Release 2: SQL Tuning. Buy Full Product. http://www.examskey.com/1z0-117.html
Oracle EXAM - 1Z0-117 Oracle Database 11g Release 2: SQL Tuning Buy Full Product http://www.examskey.com/1z0-117.html Examskey Oracle 1Z0-117 exam demo product is here for you to test the quality of the
low-level storage structures e.g. partitions underpinning the warehouse logical table structures
DATA WAREHOUSE PHYSICAL DESIGN The physical design of a data warehouse specifies the: low-level storage structures e.g. partitions underpinning the warehouse logical table structures low-level structures
AN EFFECTIVE PROPOSAL FOR SHARING OF DATA SERVICES FOR NETWORK APPLICATIONS
INTERNATIONAL JOURNAL OF REVIEWS ON RECENT ELECTRONICS AND COMPUTER SCIENCE AN EFFECTIVE PROPOSAL FOR SHARING OF DATA SERVICES FOR NETWORK APPLICATIONS Koyyala Vijaya Kumar 1, L.Sunitha 2, D.Koteswar Rao
ORACLE DATABASE 11G: COMPLETE
ORACLE DATABASE 11G: COMPLETE 1. ORACLE DATABASE 11G: SQL FUNDAMENTALS I - SELF-STUDY COURSE a) Using SQL to Query Your Database Using SQL in Oracle Database 11g Retrieving, Restricting and Sorting Data
Turkish Journal of Engineering, Science and Technology
Turkish Journal of Engineering, Science and Technology 03 (2014) 106-110 Turkish Journal of Engineering, Science and Technology journal homepage: www.tujest.com Integrating Data Warehouse with OLAP Server
1Z0-117 Oracle Database 11g Release 2: SQL Tuning. Oracle
1Z0-117 Oracle Database 11g Release 2: SQL Tuning Oracle To purchase Full version of Practice exam click below; http://www.certshome.com/1z0-117-practice-test.html FOR Oracle 1Z0-117 Exam Candidates We
Data Warehousing Concepts
Data Warehousing Concepts JB Software and Consulting Inc 1333 McDermott Drive, Suite 200 Allen, TX 75013. [[[[[ DATA WAREHOUSING What is a Data Warehouse? Decision Support Systems (DSS), provides an analysis
æ A collection of interrelated and persistent data èusually referred to as the database èdbèè.
CMPT-354-Han-95.3 Lecture Notes September 10, 1995 Chapter 1 Introduction 1.0 Database Management Systems 1. A database management system èdbmsè, or simply a database system èdbsè, consists of æ A collection
2) What is the structure of an organization? Explain how IT support at different organizational levels.
(PGDIT 01) Paper - I : BASICS OF INFORMATION TECHNOLOGY 1) What is an information technology? Why you need to know about IT. 2) What is the structure of an organization? Explain how IT support at different
Oracle Database 11 g Performance Tuning. Recipes. Sam R. Alapati Darl Kuhn Bill Padfield. Apress*
Oracle Database 11 g Performance Tuning Recipes Sam R. Alapati Darl Kuhn Bill Padfield Apress* Contents About the Authors About the Technical Reviewer Acknowledgments xvi xvii xviii Chapter 1: Optimizing
GUEST OPERATING SYSTEM BASED PERFORMANCE COMPARISON OF VMWARE AND XEN HYPERVISOR
GUEST OPERATING SYSTEM BASED PERFORMANCE COMPARISON OF VMWARE AND XEN HYPERVISOR ANKIT KUMAR, SAVITA SHIWANI 1 M. Tech Scholar, Software Engineering, Suresh Gyan Vihar University, Rajasthan, India, Email:
Oracle Database 11g: Security Release 2. Course Topics. Introduction to Database Security. Choosing Security Solutions
Oracle Database 11g: Security Release 2 In this course, students learn how they can use Oracle Database features to meet the security, privacy and compliance requirements of their organization. The current
ORACLE DATABASE ADMINISTRATION PROGRAM LEARNING OUTCOMES
ASSESSMENT 15-Sep-2006 Activity: Curriculum development Participants: Bil Bergin Action: Added Modified Delete Accepted Not Reviewed Deactivate PROGRAM DEACTIVATED Rational: Evaluated Oracle Database Operations
American Journal of Engineering Research (AJER) 2013 American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-2, Issue-4, pp-39-43 www.ajer.us Research Paper Open Access
An Algorithm to Evaluate Iceberg Queries for Improving The Query Performance
INTERNATIONAL OPEN ACCESS JOURNAL ISSN: 2249-6645 OF MODERN ENGINEERING RESEARCH (IJMER) An Algorithm to Evaluate Iceberg Queries for Improving The Query Performance M.Laxmaiah 1, A.Govardhan 2 1 Department
An Approach for Facilating Knowledge Data Warehouse
International Journal of Soft Computing Applications ISSN: 1453-2277 Issue 4 (2009), pp.35-40 EuroJournals Publishing, Inc. 2009 http://www.eurojournals.com/ijsca.htm An Approach for Facilating Knowledge
Optimization of ETL Work Flow in Data Warehouse
Optimization of ETL Work Flow in Data Warehouse Kommineni Sivaganesh M.Tech Student, CSE Department, Anil Neerukonda Institute of Technology & Science Visakhapatnam, India. [email protected] P Srinivasu
Database as a Service (DaaS) Version 1.02
Database as a Service (DaaS) Version 1.02 Table of Contents Database as a Service (DaaS) Overview... 4 Database as a Service (DaaS) Benefit... 4 Feature Description... 4 Database Types / Supported Versions...
D50323GC20 Oracle Database 11g: Security Release 2
D50323GC20 Oracle Database 11g: Security Release 2 What you will learn In this course, you'll learn how to use Oracle Database features to meet the security, privacy and compliance requirements of their
Programa de Actualización Profesional ACTI Oracle Database 11g: SQL Tuning Workshop
Programa de Actualización Profesional ACTI Oracle Database 11g: SQL Tuning Workshop What you will learn This Oracle Database 11g SQL Tuning Workshop training is a DBA-centric course that teaches you how
Oracle Database 10g: Introduction to SQL
Oracle University Contact Us: 1.800.529.0165 Oracle Database 10g: Introduction to SQL Duration: 5 Days What you will learn This course offers students an introduction to Oracle Database 10g database technology.
Oracle Database 10g: Administration Workshop II Release 2
ORACLE UNIVERSITY CONTACT US: 00 9714 390 9000 Oracle Database 10g: Administration Workshop II Release 2 Duration: 5 Days What you will learn This course advances your success as an Oracle professional
The Curious Case of Database Deduplication. PRESENTATION TITLE GOES HERE Gurmeet Goindi Oracle
The Curious Case of Database Deduplication PRESENTATION TITLE GOES HERE Gurmeet Goindi Oracle Agenda Introduction Deduplication Databases and Deduplication All Flash Arrays and Deduplication 2 Quick Show
Data Warehousing und Data Mining
Data Warehousing und Data Mining Multidimensionale Indexstrukturen Ulf Leser Wissensmanagement in der Bioinformatik Content of this Lecture Multidimensional Indexing Grid-Files Kd-trees Ulf Leser: Data
Oracle Database: SQL and PL/SQL Fundamentals NEW
Oracle University Contact Us: 001-855-844-3881 & 001-800-514-06-97 Oracle Database: SQL and PL/SQL Fundamentals NEW Duration: 5 Days What you will learn This Oracle Database: SQL and PL/SQL Fundamentals
In-memory databases and innovations in Business Intelligence
Database Systems Journal vol. VI, no. 1/2015 59 In-memory databases and innovations in Business Intelligence Ruxandra BĂBEANU, Marian CIOBANU University of Economic Studies, Bucharest, Romania [email protected],
ASSEMBLING METADATA FOR DATABASE FORENSICS
Chapter 7 ASSEMBLING METADATA FOR DATABASE FORENSICS Hector Beyers, Martin Olivier and Gerhard Hancke Abstract Since information is often a primary target in a computer crime, organizations that store
SQL Databases Course. by Applied Technology Research Center. This course provides training for MySQL, Oracle, SQL Server and PostgreSQL databases.
SQL Databases Course by Applied Technology Research Center. 23 September 2015 This course provides training for MySQL, Oracle, SQL Server and PostgreSQL databases. Oracle Topics This Oracle Database: SQL
PartJoin: An Efficient Storage and Query Execution for Data Warehouses
PartJoin: An Efficient Storage and Query Execution for Data Warehouses Ladjel Bellatreche 1, Michel Schneider 2, Mukesh Mohania 3, and Bharat Bhargava 4 1 IMERIR, Perpignan, FRANCE [email protected] 2
B.Sc (Computer Science) Database Management Systems UNIT-V
1 B.Sc (Computer Science) Database Management Systems UNIT-V Business Intelligence? Business intelligence is a term used to describe a comprehensive cohesive and integrated set of tools and process used
Physical DB design and tuning: outline
Physical DB design and tuning: outline Designing the Physical Database Schema Tables, indexes, logical schema Database Tuning Index Tuning Query Tuning Transaction Tuning Logical Schema Tuning DBMS Tuning
Columnstore Indexes for Fast Data Warehouse Query Processing in SQL Server 11.0
SQL Server Technical Article Columnstore Indexes for Fast Data Warehouse Query Processing in SQL Server 11.0 Writer: Eric N. Hanson Technical Reviewer: Susan Price Published: November 2010 Applies to:
www.gr8ambitionz.com
Data Base Management Systems (DBMS) Study Material (Objective Type questions with Answers) Shared by Akhil Arora Powered by www. your A to Z competitive exam guide Database Objective type questions Q.1
Oracle Database 11g: Security Release 2
Oracle University Contact Us: 1.800.529.0165 Oracle Database 11g: Security Release 2 Duration: 5 Days What you will learn In this course, you'll learn how to use Oracle Database features to meet the security,
Sawmill Log Analyzer Best Practices!! Page 1 of 6. Sawmill Log Analyzer Best Practices
Sawmill Log Analyzer Best Practices!! Page 1 of 6 Sawmill Log Analyzer Best Practices! Sawmill Log Analyzer Best Practices!! Page 2 of 6 This document describes best practices for the Sawmill universal
Optional custom API wrapper. C/C++ program. M program
GT.M GT.M includes a robust, high performance, multi-paradigm, open-architecture database. Relational, object-oriented and hierarchical conceptual models can be simultaneously applied to the same data
A Critical Review of Data Warehouse
Global Journal of Business Management and Information Technology. Volume 1, Number 2 (2011), pp. 95-103 Research India Publications http://www.ripublication.com A Critical Review of Data Warehouse Sachin
Query Optimization Approach in SQL to prepare Data Sets for Data Mining Analysis
Query Optimization Approach in SQL to prepare Data Sets for Data Mining Analysis Rajesh Reddy Muley 1, Sravani Achanta 2, Prof.S.V.Achutha Rao 3 1 pursuing M.Tech(CSE), Vikas College of Engineering and
OLTP Meets Bigdata, Challenges, Options, and Future Saibabu Devabhaktuni
OLTP Meets Bigdata, Challenges, Options, and Future Saibabu Devabhaktuni Agenda Database trends for the past 10 years Era of Big Data and Cloud Challenges and Options Upcoming database trends Q&A Scope
AV-004: Administering and Programming with ORACLE
AV-004: Administering and Programming with ORACLE Oracle 11g Duration: 140 hours Introduction: An Oracle database is a collection of data treated as a unit. The purpose of a database is to store and retrieve
Survey On: Nearest Neighbour Search With Keywords In Spatial Databases
Survey On: Nearest Neighbour Search With Keywords In Spatial Databases SayaliBorse 1, Prof. P. M. Chawan 2, Prof. VishwanathChikaraddi 3, Prof. Manish Jansari 4 P.G. Student, Dept. of Computer Engineering&
Bitmap Index Design Choices and Their Performance Implications
Bitmap Index Design Choices and Their Performance Implications Elizabeth O Neil and Patrick O Neil University of Massachusetts at Boston Kesheng Wu Lawrence Berkeley National Laboratory {eoneil, poneil}@cs.umb.edu
Chapter 13 File and Database Systems
Chapter 13 File and Database Systems Outline 13.1 Introduction 13.2 Data Hierarchy 13.3 Files 13.4 File Systems 13.4.1 Directories 13.4. Metadata 13.4. Mounting 13.5 File Organization 13.6 File Allocation
Chapter 13 File and Database Systems
Chapter 13 File and Database Systems Outline 13.1 Introduction 13.2 Data Hierarchy 13.3 Files 13.4 File Systems 13.4.1 Directories 13.4. Metadata 13.4. Mounting 13.5 File Organization 13.6 File Allocation
PREFACE INTRODUCTION MULTI-DIMENSIONAL MODEL. Chris Claterbos, Vlamis Software Solutions, Inc. [email protected]
BUILDING CUBES AND ANALYZING DATA USING ORACLE OLAP 11G Chris Claterbos, Vlamis Software Solutions, Inc. [email protected] PREFACE As of this writing, Oracle Business Intelligence and Oracle OLAP are
Oracle Database 12c: Introduction to SQL Ed 1.1
Oracle University Contact Us: 1.800.529.0165 Oracle Database 12c: Introduction to SQL Ed 1.1 Duration: 5 Days What you will learn This Oracle Database: Introduction to SQL training helps you write subqueries,
A Design and implementation of a data warehouse for research administration universities
A Design and implementation of a data warehouse for research administration universities André Flory 1, Pierre Soupirot 2, and Anne Tchounikine 3 1 CRI : Centre de Ressources Informatiques INSA de Lyon
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines Edward Bortnikov & Ronny Lempel Yahoo Labs, Haifa Indexing in Search Engines Information Retrieval s two main stages: Indexing process
An Oracle White Paper May 2011. Exadata Smart Flash Cache and the Oracle Exadata Database Machine
An Oracle White Paper May 2011 Exadata Smart Flash Cache and the Oracle Exadata Database Machine Exadata Smart Flash Cache... 2 Oracle Database 11g: The First Flash Optimized Database... 2 Exadata Smart
Oracle Database 10g: New Features for Administrators
Oracle Database 10g: New Features for Administrators Course ON10G 5 Day(s) 30:00 Hours Introduction This course introduces students to the new features in Oracle Database 10g Release 2 - the database for
How To Load Data Into An Org Database Cloud Service - Multitenant Edition
An Oracle White Paper June 2014 Data Movement and the Oracle Database Cloud Service Multitenant Edition 1 Table of Contents Introduction to data loading... 3 Data loading options... 4 Application Express...
3. PGCluster. There are two formal PGCluster Web sites. http://pgfoundry.org/projects/pgcluster/ http://pgcluster.projects.postgresql.
3. PGCluster PGCluster is a multi-master replication system designed for PostgreSQL open source database. PostgreSQL has no standard or default replication system. There are various third-party software
Optimize Oracle Business Intelligence Analytics with Oracle 12c In-Memory Database Option
Optimize Oracle Business Intelligence Analytics with Oracle 12c In-Memory Database Option Kai Yu, Senior Principal Architect Dell Oracle Solutions Engineering Dell, Inc. Abstract: By adding the In-Memory
Oracle DBA Course Contents
Oracle DBA Course Contents Overview of Oracle DBA tasks: Oracle as a flexible, complex & robust RDBMS The evolution of hardware and the relation to Oracle Different DBA job roles(vp of DBA, developer DBA,production
Oracle Total Recall with Oracle Database 11g Release 2
An Oracle White Paper September 2009 Oracle Total Recall with Oracle Database 11g Release 2 Introduction: Total Recall = Total History... 1 Managing Historical Data: Current Approaches... 2 Application
Oracle. Brief Course Content This course can be done in modular form as per the detail below. ORA-1 Oracle Database 10g: SQL 4 Weeks 4000/-
Oracle Objective: Oracle has many advantages and features that makes it popular and thereby makes it as the world's largest enterprise software company. Oracle is used for almost all large application
Practical Experience with IPFIX Flow Collectors
Practical Experience with IPFIX Flow Collectors Petr Velan CESNET, z.s.p.o. Zikova 4, 160 00 Praha 6, Czech Republic [email protected] Abstract As the number of Internet applications grows, the number
In-Memory Data Management for Enterprise Applications
In-Memory Data Management for Enterprise Applications Jens Krueger Senior Researcher and Chair Representative Research Group of Prof. Hasso Plattner Hasso Plattner Institute for Software Engineering University
Oracle Architecture, Concepts & Facilities
COURSE CODE: COURSE TITLE: CURRENCY: AUDIENCE: ORAACF Oracle Architecture, Concepts & Facilities 10g & 11g Database administrators, system administrators and developers PREREQUISITES: At least 1 year of
Oracle Database 11g: SQL Tuning Workshop
Oracle University Contact Us: + 38516306373 Oracle Database 11g: SQL Tuning Workshop Duration: 3 Days What you will learn This Oracle Database 11g: SQL Tuning Workshop Release 2 training assists database
Automatic Data Optimization
Automatic Data Optimization Saving Space and Improving Performance! Erik Benner, Enterprise Architect 1 Who am I? Erik Benner @erik_benner TalesFromTheDatacenter.com Enterprise Architect [email protected]
Oracle Warehouse Builder 10g
Oracle Warehouse Builder 10g Architectural White paper February 2004 Table of contents INTRODUCTION... 3 OVERVIEW... 4 THE DESIGN COMPONENT... 4 THE RUNTIME COMPONENT... 5 THE DESIGN ARCHITECTURE... 6
Main Memory Data Warehouses
Main Memory Data Warehouses Robert Wrembel Poznan University of Technology Institute of Computing Science [email protected] www.cs.put.poznan.pl/rwrembel Lecture outline Teradata Data Warehouse
HOW INTERSYSTEMS TECHNOLOGY ENABLES BUSINESS INTELLIGENCE SOLUTIONS
HOW INTERSYSTEMS TECHNOLOGY ENABLES BUSINESS INTELLIGENCE SOLUTIONS A white paper by: Dr. Mark Massias Senior Sales Engineer InterSystems Corporation HOW INTERSYSTEMS TECHNOLOGY ENABLES BUSINESS INTELLIGENCE
Contents at a Glance. Contents... v About the Authors... xiii About the Technical Reviewer... xiv Acknowledgments... xv
For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks and Contents at a Glance links to access them. Contents at a Glance Contents... v About
EMBL-EBI. Database Replication - Distribution
Database Replication - Distribution Relational public databases EBI s mission to provide freely accessible information on the public domain Data formats and technologies, should not contradict to this
Oracle Database 12c: Admin, Install and Upgrade Accelerated
Oracle University Contact Us: + 38516306373 Oracle Database 12c: Admin, Install and Upgrade Accelerated Duration: 5 Days What you will learn This Oracle Database 12c: Admin, Install and Upgrade Accelerated
