Using Promethee Methods for Multicriteria Pull-based scheduling in DCIs

Size: px
Start display at page:

Download "Using Promethee Methods for Multicriteria Pull-based scheduling in DCIs"

Transcription

1 Using Promethee Methods for Multicriteria Pull-based scheduling in DCIs Mircea MOCA Babeş-Bolyai University Cluj-Napoca România Gilles FEDAK LIP, INRIA Universite de Lyon France

2 Agenda Scheduling context, pull mechanism Key concepts, challenge Background: the Promethee model Simulator Scenarios Results Current work Conclusions & future work 2 escience 2012, Chicago

3 Why pull? Scalability Host config. intimacy, abstraction Deal with different types of DCI Job/task scheduling Scheduler key component Use Promethee to make scheduling decisions Concepts: Host, resource: CP, Price, ErrorRate Specific to a DCI type Pulling host H pull Work unit ex., task/job 3 escience 2012, Chicago Scheduling - context (1) List of tasks (2) Ranking

4 Promethee II Context: - the scheduler = the decision maker - choose the task (from the set of alternatives) that best fits to the characteristics of the pulling host (Pow, Price, ) - what task to choose for this particular pulling host? 4 escience 2012, Chicago

5 Promethee II Promethee: A multi-criteria decision aid based on pair-wise comparisons of the alternatives (Promethee I and II, J.P. Brans, 1982) Prerequisites: - List of criteria that characterize tasks host (resource) independent: NOI host dependent: ECT, Cost, Error Rate - Weights of importance for the criteria - (allows a degree of subjectivity), -Target per criterion: min/max (final ranking), - Preference function (allows a degree of subjectivity) 5 escience 2012, Chicago

6 Promethee II how it works 1 Example: Host: Pow(H pull ) = 5, Price(H pull ) = 0.2 Algorithm:? 1. Set of alternatives -> build the evaluation matrix - N c x N t T 1 NOI=100 T 2 NOI=200 T 3 NOI=400 ECT Cost escience 2012, Chicago

7 Jean-Pierre Brans, Bertrand Mareschal, Multiple Criteria Decision Analysis State of the Art Surveys 7 T 1 T 2 T 3 Promethee II how it works 2 2. For each criterion, calculate preference relations for all pairs of tasks T 1 NOI=100 T 2 NOI=200 T 3 NOI=400 ECT Cost T 1 T 2 T 3 0 P( d(t 1,T 2 ) ) P( d(t 2,T 1 ) ) 0 0 escience 2012, Chicago

8 Promethee II how it works 3 3. For each task & criterion, calculate positive and negative outranking flows 4. Calculate net flow T 0 T 1 T 2 T 0 T 1 T 2 T 0 0 P( d(t 0,T 1 ) ) ECT T 1 P( d(t 1,T 0 ) ) 0 Cost T 0 T 1 T 2 T escience 2012, Chicago

9 Promethee II how it works 4 4. Calculate the net (and aggregated) flow T 0 T 1 T 2 ECT + ECT (ECT) Aggregated net flow + T 0 T 1 T 2 (Cost) Cost 9 escience 2012, Chicago Cost Compute final ranking, select the top-most one

10 Promethee II - main strenghts Yields a complete ranking of the alternatives the top-most ranked task is the best Employs pair-wise comparisons among the evaluations of the tasks within a criterion The decision maker can assign weights of importance for each criterion allows building user-aware scheduling policies Choose (define) a preference function The user can define prioritizing policies in the scheduler 10 escience 2012, Chicago

11 Research approach Hypothesis: -The Promethee MCD model can be used to efficiently schedule jobs in DCIs. - Using the MCD model, the scheduler can adapt its scheduling strategies in order to better respond to user s aims (within a bag of work units execution). Methodology: - Develop the pull-based & Promethee-inspired scheduler method - Develop an event and trace based simulator - Experiment with specific, relevant scenarios: compare the Promethee-based approach with FCFS and ideal (sufferage heuristic) methods. 11 escience 2012, Chicago

12 Event-based simulator running on real traces. Failure trace archive. Available: Pull-based, MCD scheduler simulator (FTA) Simulated DCI environment 12 escience 2012, Chicago Priority queue Reading traces: -configurable: no. of hosts, time period/trace Events: -type: HJ, HLE, WKUA, SCH, RES - attributes: -Timestamp -Host -Task Experiment: -The run of the simulator for one wk.-load Execution: - Run the simulator -> complete a wk.load.

13 Experimentation setup DCIs: Idg: BOINC, 691 hosts, 18 months, from 2010 cloud: Amazon EC2 si, 1754 hosts, 6 months, 2011 beg: Grid5000, 2256 hosts, Bordeaux, Grenoble, Lille and Lyon, 12 months, 2011 Criteria: ECT, Price Metrics: makespan, cost 13 escience 2012, Chicago

14 Results 14 escience 2012, Chicago

15 Performance - makespan Scenarios: in time: all hosts return results exactly at ECT delay: a fraction of the hosts return results with certain delays (effect: reschedule, repl., cost) fail: a fraction of the tasks never yield results (effect: reschedule, repl., cost) 15 Makespan escience 2012, for 3 Chicago scenarios scenarios.

16 2 Criteria ECT & Price Makespan and cost for 2 criteria scenario, variate the importance weights of criteria. 16 escience 2012, Chicago

17 Failure scenario Makespan for various tasks failure degrees. 17 escience 2012, Chicago Makespan difference between Promethee and FCFS.

18 Current work -Passing to hybrid DCIs -Choosing the preference function -2 criteria -> 3 criteria: ECT, Cost, Error rate -user-based scenarios 18 escience 2012, Chicago

19 Choosing a preference function Challenge: Finding an efficient preference function 19 escience 2012, Chicago

20 Real execution times for different preference functions Scheduling improvement mechanisms bound task queue 20 escience 2012, Chicago

21 Setting p and q 21 escience 2012, Chicago

22 Tuning the Level preference function Makespan for different values of p and q. 22 escience 2012, Chicago

23 Conclusions and future work The proposed approach can be successfully used in scheduling tasks in DCIs Allows true multi-criteria scheduling decisions that can lead to a customized execution -> user oriented, allows prioritization policies Proves to decrease makespan up to 32% for IDG in fail scenario Finding optimal weights for the criteria can be hard Hard to analyze behavior for more criteria Validation process for Hybrid DCIs ECT, Cost, Error Rate Parallelization of the scheduling method Larger wk. loads Integrate the proposed scheduling mechanism in XtremeWeb 23 escience 2012, Chicago

Volunteer Computing, Grid Computing and Cloud Computing: Opportunities for Synergy. Derrick Kondo INRIA, France

Volunteer Computing, Grid Computing and Cloud Computing: Opportunities for Synergy. Derrick Kondo INRIA, France Volunteer Computing, Grid Computing and Cloud Computing: Opportunities for Synergy Derrick Kondo INRIA, France Outline Cloud Grid Volunteer Computing Cloud Background Vision Hide complexity of hardware

More information

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems

More information

Leveraging BlobSeer to boost up the deployment and execution of Hadoop applications in Nimbus cloud environments on Grid 5000

Leveraging BlobSeer to boost up the deployment and execution of Hadoop applications in Nimbus cloud environments on Grid 5000 Leveraging BlobSeer to boost up the deployment and execution of Hadoop applications in Nimbus cloud environments on Grid 5000 Alexandra Carpen-Amarie Diana Moise Bogdan Nicolae KerData Team, INRIA Outline

More information

A science-gateway workload archive application to the self-healing of workflow incidents

A science-gateway workload archive application to the self-healing of workflow incidents A science-gateway workload archive application to the self-healing of workflow incidents Rafael FERREIRA DA SILVA, Tristan GLATARD University of Lyon, CNRS, INSERM, CREATIS Villeurbanne, France Frédéric

More information

CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS

CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS 133 CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS The proposed scheduling algorithms along with the heuristic intensive weightage factors, parameters and ß and their impact on the performance of the algorithms

More information

1 st year / 2014-2015/ Principles of Industrial Eng. Chapter -3 -/ Dr. May G. Kassir. Chapter Three

1 st year / 2014-2015/ Principles of Industrial Eng. Chapter -3 -/ Dr. May G. Kassir. Chapter Three Chapter Three Scheduling, Sequencing and Dispatching 3-1- SCHEDULING Scheduling can be defined as prescribing of when and where each operation necessary to manufacture the product is to be performed. It

More information

Workflow Allocations and Scheduling on IaaS Platforms, from Theory to Practice

Workflow Allocations and Scheduling on IaaS Platforms, from Theory to Practice Workflow Allocations and Scheduling on IaaS Platforms, from Theory to Practice Eddy Caron 1, Frédéric Desprez 2, Adrian Mureșan 1, Frédéric Suter 3, Kate Keahey 4 1 Ecole Normale Supérieure de Lyon, France

More information

Evaluation of educational open-source software using multicriteria decision analysis methods

Evaluation of educational open-source software using multicriteria decision analysis methods 1 Evaluation of educational open-source software using multicriteria decision analysis methods Georgia Paschalidou 1, Nikolaos Vesyropoulos 1, Vassilis Kostoglou 2, Emmanouil Stiakakis 1 and Christos K.

More information

Final Project Proposal. CSCI.6500 Distributed Computing over the Internet

Final Project Proposal. CSCI.6500 Distributed Computing over the Internet Final Project Proposal CSCI.6500 Distributed Computing over the Internet Qingling Wang 660795696 1. Purpose Implement an application layer on Hybrid Grid Cloud Infrastructure to automatically or at least

More information

HCOC: A Cost Optimization Algorithm for Workflow Scheduling in Hybrid Clouds

HCOC: A Cost Optimization Algorithm for Workflow Scheduling in Hybrid Clouds Noname manuscript No. (will be inserted by the editor) : A Cost Optimization Algorithm for Workflow Scheduling in Hybrid Clouds Luiz Fernando Bittencourt Edmundo Roberto Mauro Madeira Received: date /

More information

Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems

Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems Danilo Ardagna 1, Sara Casolari 2, Barbara Panicucci 1 1 Politecnico di Milano,, Italy 2 Universita` di Modena e

More information

A hierarchical multicriteria routing model with traffic splitting for MPLS networks

A hierarchical multicriteria routing model with traffic splitting for MPLS networks A hierarchical multicriteria routing model with traffic splitting for MPLS networks João Clímaco, José Craveirinha, Marta Pascoal jclimaco@inesccpt, jcrav@deecucpt, marta@matucpt University of Coimbra

More information

Automating Big Data Benchmarking for Different Architectures with ALOJA

Automating Big Data Benchmarking for Different Architectures with ALOJA www.bsc.es Jan 2016 Automating Big Data Benchmarking for Different Architectures with ALOJA Nicolas Poggi, Postdoc Researcher Agenda 1. Intro on Hadoop performance 1. Current scenario and problematic 2.

More information

Adaptive Tolerance Algorithm for Distributed Top-K Monitoring with Bandwidth Constraints

Adaptive Tolerance Algorithm for Distributed Top-K Monitoring with Bandwidth Constraints Adaptive Tolerance Algorithm for Distributed Top-K Monitoring with Bandwidth Constraints Michael Bauer, Srinivasan Ravichandran University of Wisconsin-Madison Department of Computer Sciences {bauer, srini}@cs.wisc.edu

More information

Putting IBM Watson to Work In Healthcare

Putting IBM Watson to Work In Healthcare Martin S. Kohn, MD, MS, FACEP, FACPE Chief Medical Scientist, Care Delivery Systems IBM Research [email protected] Putting IBM Watson to Work In Healthcare 2 SB 1275 Medical data in an electronic or

More information

A SURVEY ON WORKFLOW SCHEDULING IN CLOUD USING ANT COLONY OPTIMIZATION

A SURVEY ON WORKFLOW SCHEDULING IN CLOUD USING ANT COLONY OPTIMIZATION Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 2, February 2014,

More information

Cost-effective Resource Provisioning for MapReduce in a Cloud

Cost-effective Resource Provisioning for MapReduce in a Cloud 1 -effective Resource Provisioning for MapReduce in a Cloud Balaji Palanisamy, Member, IEEE, Aameek Singh, Member, IEEE Ling Liu, Senior Member, IEEE Abstract This paper presents a new MapReduce cloud

More information

Alternative Job-Shop Scheduling For Proton Therapy

Alternative Job-Shop Scheduling For Proton Therapy Alternative Job-Shop Scheduling For Proton Therapy Cyrille Dejemeppe ICTEAM, Université Catholique de Louvain (UCLouvain), Belgium, [email protected] Director: Yves Deville (ICTEAM, UCLouvain)

More information

Scheduling Algorithms for Dynamic Workload

Scheduling Algorithms for Dynamic Workload Managed by Scheduling Algorithms for Dynamic Workload Dalibor Klusáček (MU) Hana Rudová (MU) Ranieri Baraglia (CNR - ISTI) Gabriele Capannini (CNR - ISTI) Marco Pasquali (CNR ISTI) Outline Motivation &

More information

Optimal Dynamic Resource Allocation in Multi-Class Queueing Networks

Optimal Dynamic Resource Allocation in Multi-Class Queueing Networks Imperial College London Department of Computing Optimal Dynamic Resource Allocation in Multi-Class Queueing Networks MEng Individual Project Report Diagoras Nicolaides Supervisor: Dr William Knottenbelt

More information

Objective Criteria of Job Scheduling Problems. Uwe Schwiegelshohn, Robotics Research Lab, TU Dortmund University

Objective Criteria of Job Scheduling Problems. Uwe Schwiegelshohn, Robotics Research Lab, TU Dortmund University Objective Criteria of Job Scheduling Problems Uwe Schwiegelshohn, Robotics Research Lab, TU Dortmund University 1 Jobs and Users in Job Scheduling Problems Independent users No or unknown precedence constraints

More information

Project management in mine actions using Multi-Criteria- Analysis-based decision support system

Project management in mine actions using Multi-Criteria- Analysis-based decision support system Croatian Operational Research Review 415 CRORR 5(2014), 415 425 Project management in mine actions using Multi-Criteria- Analysis-based decision support system Marko Mladineo 1,, Nenad Mladineo 2 and Nikša

More information

A CP Scheduler for High-Performance Computers

A CP Scheduler for High-Performance Computers A CP Scheduler for High-Performance Computers Thomas Bridi, Michele Lombardi, Andrea Bartolini, Luca Benini, and Michela Milano {thomas.bridi,michele.lombardi2,a.bartolini,luca.benini,michela.milano}@

More information

Green Cloud Computing 班 級 : 資 管 碩 一 組 員 :710029011 黃 宗 緯 710029021 朱 雅 甜

Green Cloud Computing 班 級 : 資 管 碩 一 組 員 :710029011 黃 宗 緯 710029021 朱 雅 甜 Green Cloud Computing 班 級 : 資 管 碩 一 組 員 :710029011 黃 宗 緯 710029021 朱 雅 甜 Outline Introduction Proposed Schemes VM configuration VM Live Migration Comparison 2 Introduction (1/2) In 2006, the power consumption

More information

Fair Scheduling Algorithm with Dynamic Load Balancing Using In Grid Computing

Fair Scheduling Algorithm with Dynamic Load Balancing Using In Grid Computing Research Inventy: International Journal Of Engineering And Science Vol.2, Issue 10 (April 2013), Pp 53-57 Issn(e): 2278-4721, Issn(p):2319-6483, Www.Researchinventy.Com Fair Scheduling Algorithm with Dynamic

More information

NEW VERSION OF DECISION SUPPORT SYSTEM FOR EVALUATING TAKEOVER BIDS IN PRIVATIZATION OF THE PUBLIC ENTERPRISES AND SERVICES

NEW VERSION OF DECISION SUPPORT SYSTEM FOR EVALUATING TAKEOVER BIDS IN PRIVATIZATION OF THE PUBLIC ENTERPRISES AND SERVICES NEW VERSION OF DECISION SUPPORT SYSTEM FOR EVALUATING TAKEOVER BIDS IN PRIVATIZATION OF THE PUBLIC ENTERPRISES AND SERVICES Silvija Vlah Kristina Soric Visnja Vojvodic Rosenzweig Department of Mathematics

More information

Optimized Scheduling in Real-Time Environments with Column Generation

Optimized Scheduling in Real-Time Environments with Column Generation JG U JOHANNES GUTENBERG UNIVERSITAT 1^2 Optimized Scheduling in Real-Time Environments with Column Generation Dissertation zur Erlangung des Grades,.Doktor der Naturwissenschaften" am Fachbereich Physik,

More information

A Hybrid Model of the Akamai Adaptive Streaming Control System

A Hybrid Model of the Akamai Adaptive Streaming Control System A Hybrid Model of the Akamai Adaptive Streaming Control System Cape Town, South Africa 26 August 2014 L. De Cicco, G. Cofano and S. Mascolo Politecnico di Bari, Dipartimento di Ingegneria Elettrica e dell'informazione

More information

6 Analytic Hierarchy Process (AHP)

6 Analytic Hierarchy Process (AHP) 6 Analytic Hierarchy Process (AHP) 6.1 Introduction to Analytic Hierarchy Process The AHP (Analytic Hierarchy Process) was developed by Thomas L. Saaty (1980) and is the well-known and useful method to

More information

Characterizing Task Usage Shapes in Google s Compute Clusters

Characterizing Task Usage Shapes in Google s Compute Clusters Characterizing Task Usage Shapes in Google s Compute Clusters Qi Zhang 1, Joseph L. Hellerstein 2, Raouf Boutaba 1 1 University of Waterloo, 2 Google Inc. Introduction Cloud computing is becoming a key

More information

Cloud Computing Simulation Using CloudSim

Cloud Computing Simulation Using CloudSim Cloud Computing Simulation Using CloudSim Ranjan Kumar #1, G.Sahoo *2 # Assistant Professor, Computer Science & Engineering, Ranchi University, India Professor & Head, Information Technology, Birla Institute

More information

An improved task assignment scheme for Hadoop running in the clouds

An improved task assignment scheme for Hadoop running in the clouds Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 RESEARCH An improved task assignment scheme for Hadoop running in the clouds Wei Dai * and Mostafa Bassiouni

More information

Comparative Analysis of FAHP and FTOPSIS Method for Evaluation of Different Domains

Comparative Analysis of FAHP and FTOPSIS Method for Evaluation of Different Domains International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) August 2015, PP 58-62 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org Comparative Analysis of

More information

Resource Scheduling in Cloud using Bacterial Foraging Optimization Algorithm

Resource Scheduling in Cloud using Bacterial Foraging Optimization Algorithm Resource Scheduling in Cloud using Bacterial Foraging Optimization Algorithm Liji Jacob Department of computer science Karunya University Coimbatore V.Jeyakrishanan Department of computer science Karunya

More information

What is a life cycle model?

What is a life cycle model? What is a life cycle model? Framework under which a software product is going to be developed. Defines the phases that the product under development will go through. Identifies activities involved in each

More information

Code and Process Migration! Motivation!

Code and Process Migration! Motivation! Code and Process Migration! Motivation How does migration occur? Resource migration Agent-based system Details of process migration Lecture 6, page 1 Motivation! Key reasons: performance and flexibility

More information

C3: Cutting Tail Latency in Cloud Data Stores via Adaptive Replica Selection

C3: Cutting Tail Latency in Cloud Data Stores via Adaptive Replica Selection C3: Cutting Tail Latency in Cloud Data Stores via Adaptive Replica Selection Lalith Suresh (TU Berlin) with Marco Canini (UCL), Stefan Schmid, Anja Feldmann (TU Berlin) Tail-latency matters One User Request

More information

Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar

Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples

More information

Volunteer Computing and Cloud Computing: Opportunities for Synergy

Volunteer Computing and Cloud Computing: Opportunities for Synergy Volunteer Computing and Cloud Computing: Opportunities for Synergy Derrick Kondo INRIA, France Performance vs. Reliability vs. Costs high Cost Reliability high low low low Performance high Performance

More information

PERFORMANCE ANALYSIS OF PaaS CLOUD COMPUTING SYSTEM

PERFORMANCE ANALYSIS OF PaaS CLOUD COMPUTING SYSTEM PERFORMANCE ANALYSIS OF PaaS CLOUD COMPUTING SYSTEM Akmal Basha 1 Krishna Sagar 2 1 PG Student,Department of Computer Science and Engineering, Madanapalle Institute of Technology & Science, India. 2 Associate

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY Karthi M,, 2013; Volume 1(8):1062-1072 INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK EFFICIENT MANAGEMENT OF RESOURCES PROVISIONING

More information

Network traffic engineering

Network traffic engineering Toolbox, hybrid IP/MPLS optimisation method and fairness Research Unit in Networking EECS Department University of Liège 13 September 005 Outline 1 3 4 5 Outline MPLS principles 1 MPLS principles 3 4 5

More information

Task Scheduling for Efficient Resource Utilization in Cloud

Task Scheduling for Efficient Resource Utilization in Cloud Summer 2014 Task Scheduling for Efficient Resource Utilization in Cloud A Project Report for course COEN 241 Under the guidance of, Dr.Ming Hwa Wang Submitted by : Najuka Sankhe Nikitha Karkala Nimisha

More information

Ron Shaham. Expert Witness in Islamic Courts : Medicine and Crafts in the Service of Law. : University of Chicago Press,. p 38

Ron Shaham. Expert Witness in Islamic Courts : Medicine and Crafts in the Service of Law. : University of Chicago Press,. p 38 : University of Chicago Press,. p 38 http://site.ebrary.com/id/10381149?ppg=38 : University of Chicago Press,. p 39 http://site.ebrary.com/id/10381149?ppg=39 : University of Chicago Press,. p 40 http://site.ebrary.com/id/10381149?ppg=40

More information

May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable copyright law.

May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable copyright law. : University of Chicago Press,. p 24 http://site.ebrary.com/id/10292358?ppg=24 : University of Chicago Press,. p 25 http://site.ebrary.com/id/10292358?ppg=25 : University of Chicago Press,. p 26 http://site.ebrary.com/id/10292358?ppg=26

More information

. Perspectives on the Economics of Aging. : University of Chicago Press,. p 3 http://site.ebrary.com/id/10209979?ppg=3 Copyright University of

. Perspectives on the Economics of Aging. : University of Chicago Press,. p 3 http://site.ebrary.com/id/10209979?ppg=3 Copyright University of : University of Chicago Press,. p 3 http://site.ebrary.com/id/10209979?ppg=3 : University of Chicago Press,. p 4 http://site.ebrary.com/id/10209979?ppg=4 : University of Chicago Press,. p 297 http://site.ebrary.com/id/10209979?ppg=297

More information

In Cloud, Do MTC or HTC Service Providers Benefit from the Economies of Scale?

In Cloud, Do MTC or HTC Service Providers Benefit from the Economies of Scale? In Cloud, Do MTC or HTC Service Providers Benefit from the Economies of Scale? Lei Wang, Jianfeng Zhan, Weisong Shi, Yi Liang, Lin Yuan Institute of Computing Technology, Chinese Academy of Sciences Department

More information

Distributed Load Balancing for FREEDM system

Distributed Load Balancing for FREEDM system Distributed Load Balancing for FREEDM system Ravi Akella, Fanjun Meng, Derek Ditch, Bruce McMillin, and Mariesa Crow Department of Electrical Engineering Department of Computer Science Missouri University

More information

Supply Chain Analytics - OR in Action

Supply Chain Analytics - OR in Action Supply Chain Analytics - OR in Action Jan van Doremalen January 14th, 2016 Lunteren from x to u A Practitioners View on Supply Chain Analytics This talk is about applying existing operations research techniques

More information

Using Simulation to Understand and Optimize a Lean Service Process

Using Simulation to Understand and Optimize a Lean Service Process Using Simulation to Understand and Optimize a Lean Service Process Kumar Venkat Surya Technologies, Inc. 4888 NW Bethany Blvd., Suite K5, #191 Portland, OR 97229 [email protected] Wayne W. Wakeland

More information

International Journal of Engineering Research & Management Technology

International Journal of Engineering Research & Management Technology International Journal of Engineering Research & Management Technology March- 2015 Volume 2, Issue-2 Survey paper on cloud computing with load balancing policy Anant Gaur, Kush Garg Department of CSE SRM

More information

Keywords Distributed Computing, On Demand Resources, Cloud Computing, Virtualization, Server Consolidation, Load Balancing

Keywords Distributed Computing, On Demand Resources, Cloud Computing, Virtualization, Server Consolidation, Load Balancing Volume 5, Issue 1, January 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Survey on Load

More information

CPU Scheduling. Core Definitions

CPU Scheduling. Core Definitions CPU Scheduling General rule keep the CPU busy; an idle CPU is a wasted CPU Major source of CPU idleness: I/O (or waiting for it) Many programs have a characteristic CPU I/O burst cycle alternating phases

More information

Permanent Link: http://espace.library.curtin.edu.au/r?func=dbin-jump-full&local_base=gen01-era02&object_id=154091

Permanent Link: http://espace.library.curtin.edu.au/r?func=dbin-jump-full&local_base=gen01-era02&object_id=154091 Citation: Alhamad, Mohammed and Dillon, Tharam S. and Wu, Chen and Chang, Elizabeth. 2010. Response time for cloud computing providers, in Kotsis, G. and Taniar, D. and Pardede, E. and Saleh, I. and Khalil,

More information

Assignment #3 Routing and Network Analysis. CIS3210 Computer Networks. University of Guelph

Assignment #3 Routing and Network Analysis. CIS3210 Computer Networks. University of Guelph Assignment #3 Routing and Network Analysis CIS3210 Computer Networks University of Guelph Part I Written (50%): 1. Given the network graph diagram above where the nodes represent routers and the weights

More information

ADAPTIVE LOAD BALANCING ALGORITHM USING MODIFIED RESOURCE ALLOCATION STRATEGIES ON INFRASTRUCTURE AS A SERVICE CLOUD SYSTEMS

ADAPTIVE LOAD BALANCING ALGORITHM USING MODIFIED RESOURCE ALLOCATION STRATEGIES ON INFRASTRUCTURE AS A SERVICE CLOUD SYSTEMS ADAPTIVE LOAD BALANCING ALGORITHM USING MODIFIED RESOURCE ALLOCATION STRATEGIES ON INFRASTRUCTURE AS A SERVICE CLOUD SYSTEMS Lavanya M., Sahana V., Swathi Rekha K. and Vaithiyanathan V. School of Computing,

More information

Hadoop in the Hybrid Cloud

Hadoop in the Hybrid Cloud Presented by Hortonworks and Microsoft Introduction An increasing number of enterprises are either currently using or are planning to use cloud deployment models to expand their IT infrastructure. Big

More information

Clustering and scheduling maintenance tasks over time

Clustering and scheduling maintenance tasks over time Clustering and scheduling maintenance tasks over time Per Kreuger 2008-04-29 SICS Technical Report T2008:09 Abstract We report results on a maintenance scheduling problem. The problem consists of allocating

More information

A new binary floating-point division algorithm and its software implementation on the ST231 processor

A new binary floating-point division algorithm and its software implementation on the ST231 processor 19th IEEE Symposium on Computer Arithmetic (ARITH 19) Portland, Oregon, USA, June 8-10, 2009 A new binary floating-point division algorithm and its software implementation on the ST231 processor Claude-Pierre

More information

Directions for VMware Ready Testing for Application Software

Directions for VMware Ready Testing for Application Software Directions for VMware Ready Testing for Application Software Introduction To be awarded the VMware ready logo for your product requires a modest amount of engineering work, assuming that the pre-requisites

More information

QoS EVALUATION OF CLOUD SERVICE ARCHITECTURE BASED ON ANP

QoS EVALUATION OF CLOUD SERVICE ARCHITECTURE BASED ON ANP QoS EVALUATION OF CLOUD SERVICE ARCHITECTURE BASED ON ANP Mingzhe Wang School of Automation Huazhong University of Science and Technology Wuhan 430074, P.R.China E-mail: [email protected] Yu Liu School

More information

Enabling Large-Scale Testing of IaaS Cloud Platforms on the Grid 5000 Testbed

Enabling Large-Scale Testing of IaaS Cloud Platforms on the Grid 5000 Testbed Enabling Large-Scale Testing of IaaS Cloud Platforms on the Grid 5000 Testbed Sébastien Badia, Alexandra Carpen-Amarie, Adrien Lèbre, Lucas Nussbaum Grid 5000 S. Badia, A. Carpen-Amarie, A. Lèbre, L. Nussbaum

More information

CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms

CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms Rodrigo N. Calheiros 1, 3, Rajiv Ranjan 2, Anton Beloglazov 1, César A.

More information

High-Mix Low-Volume Flow Shop Manufacturing System Scheduling

High-Mix Low-Volume Flow Shop Manufacturing System Scheduling Proceedings of the 14th IAC Symposium on Information Control Problems in Manufacturing, May 23-25, 2012 High-Mix Low-Volume low Shop Manufacturing System Scheduling Juraj Svancara, Zdenka Kralova Institute

More information

Joint Optimization of Overlapping Phases in MapReduce

Joint Optimization of Overlapping Phases in MapReduce Joint Optimization of Overlapping Phases in MapReduce Minghong Lin, Li Zhang, Adam Wierman, Jian Tan Abstract MapReduce is a scalable parallel computing framework for big data processing. It exhibits multiple

More information

A Stock Trading Algorithm Model Proposal, based on Technical Indicators Signals

A Stock Trading Algorithm Model Proposal, based on Technical Indicators Signals Informatica Economică vol. 15, no. 1/2011 183 A Stock Trading Algorithm Model Proposal, based on Technical Indicators Signals Darie MOLDOVAN, Mircea MOCA, Ştefan NIŢCHI Business Information Systems Dept.

More information

Cost-Benefit Analysis of Cloud Computing versus Desktop Grids

Cost-Benefit Analysis of Cloud Computing versus Desktop Grids Cost-Benefit Analysis of Cloud Computing versus Desktop Grids Derrick Kondo, Bahman Javadi, Paul Malécot, Franck Cappello INRIA, France David P. Anderson UC Berkeley, USA Cloud Background Vision Hide complexity

More information

Load Balancing. Load Balancing 1 / 24

Load Balancing. Load Balancing 1 / 24 Load Balancing Backtracking, branch & bound and alpha-beta pruning: how to assign work to idle processes without much communication? Additionally for alpha-beta pruning: implementing the young-brothers-wait

More information

SCALING USER-SESSIONS FOR LOAD TESTING OF INTERNET APPLICATIONS

SCALING USER-SESSIONS FOR LOAD TESTING OF INTERNET APPLICATIONS SCALING USER-SESSIONS FOR LOAD TESTING OF INTERNET APPLICATIONS Benjamin Houdeshell IS809 5/14/2014 Background/Motivation Performance/load testing research concerned with the simulation of users behavior

More information

Job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures

Job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures HPC-Cetraro 2012 1/29 Job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures Carlos García Garino Cristian Mateos Elina Pacini HPC 2012 High Perfomance Computing,

More information

Recommendations for Performance Benchmarking

Recommendations for Performance Benchmarking Recommendations for Performance Benchmarking Shikhar Puri Abstract Performance benchmarking of applications is increasingly becoming essential before deployment. This paper covers recommendations and best

More information

Participatory Cloud Computing and the Privacy and Security of Medical Information Applied to A Wireless Smart Board Network

Participatory Cloud Computing and the Privacy and Security of Medical Information Applied to A Wireless Smart Board Network Participatory Cloud Computing and the Privacy and Security of Medical Information Applied to A Wireless Smart Board Network Lutando Ngqakaza [email protected] UCT Department of Computer Science Abstract:

More information