Speed of different cellular networks. E- Business Prof. Eduard Heindel
|
|
|
- Simon Marsh
- 10 years ago
- Views:
Transcription
1 Speed of different cellular networks E- Business Prof. Eduard Heindel By: Ahmed Hefny
2 Hereby I declare that I have prepared this term paper by myself without anyoneʼs help and all the sources I used has been citied as footnotes and bibliography. Ahmed Hefny 2
3 Table of Contents 1. WHAT IS CELLULAR NETWORKS? CONCEPT FREQUENCY REUSE MOVEMENT FROM CELL TO CELL AND HANDOVER EXAMPLE OF A CELLULAR NETWORK: THE MOBILE PHONE NETWORK SPEED OF DIFFERENT CELLULAR NETWORKS G G... 7 COMPETING 2G TECHNOLOGIES / 3G... 8 "TRUE" 3G G FUTURE OF CELLULAR NETWORKS CONCLUSION BIBLIOGRAPHY
4 1. What is Cellular Networks? A cellular network is a radio network distributed over land areas called cells, each served by at least one fixed-location transceiver known as a cell site or base station. When joined together these cells provide radio coverage over a wide geographic area. This enables a large number of portable transceivers (e.g., mobile phones, pagers, etc.) to communicate with each other and with fixed transceivers and telephones anywhere in the network, via base stations, even if some of the transceivers are moving through more than one cell during transmission. Cellular networks offer a number of advantages over alternative solutions: Increased capacity Reduced power use Larger coverage area Reduced interference from other signals An example of a simple non-telephone cellular system is an old taxi driver's radio system where the taxi company has several transmitters based around a city that can communicate directly with each taxi. 1.1 Concept In a Cellular radio system, a land area to be supplied with radio service is divided into regular shaped cells, which can be hexagonal, square, circular or some other irregular shapes, although hexagonal cells are conventional. Each of these cells is assigned multiple frequencies (f 1 - f 6 ) that have corresponding radio base stations. The group of frequencies can be reused in other cells, provided that the same frequencies are not reused in adjacent neighboring cells, as that would cause co-channel interference. The increased capacity in a cellular network, compared with a network with a single transmitter, comes from the fact that the same radio frequency can be reused in a different area for a completely different transmission. If there is a single plain transmitter, only one transmission can be used on any given frequency. Unfortunately, there is inevitably some level of interference from the signal from the other cells which use the same frequency. This means that, in a standard FDMA system, there must be at least a one cell gap between cells which reuse the same frequency. In the simple case of the taxi company, each radio had a manually operated channel selector knob to tune to different frequencies. As the drivers moved around, they would change from channel to channel. The drivers knew which frequency covered approximately what area. When they did not receive a signal from the transmitter, they would try other channels until they found one that worked. The taxi drivers would 4
5 only speak one at a time, when invited by the base station operator (in a sense TDMA). 1.2 Frequency Reuse The key characteristic of a cellular network is the ability to re-use frequencies to increase both coverage and capacity. As described above, adjacent cells must use different frequencies, however there is no problem with two cells sufficiently far apart operating on the same frequency. The elements that determine frequency reuse are the reuse distance and the reuse factor. The reuse distance, D is calculated as Where R is the cell radius and N is the number of cells per cluster. Cells may vary in radius in the ranges (1 km to 30 km). The boundaries of the cells can also overlap between adjacent cells and large cells can be divided into smaller cells. 1 Depending on the size of the city, a taxi system may not have any frequencyreuse in its own city, but certainly in other nearby cities, the same frequency can be used. In a big city, on the other hand, frequency-reuse could certainly be in use. Recently also OFDMA based systems such as LTE are being deployed with a frequency reuse of 1. Since such systems do not spread the signal across the frequency band, inter-cell radio resource management is important to coordinates resource allocation between different cell sites and to limit the inter-cell interference. There are various means of Inter-cell Interference Coordination (ICIC) already defined in the standard 2. Coordinated scheduling, multi-site MIMO or multi-site beam forming are other examples for inter-cell radio resource management that might be standardized in the future. 1.3 Movement from cell to cell and handover In a primitive taxi system, when the taxi moved away from a first tower and closer to a second tower, the taxi driver manually switched from one frequency to another as needed. If a communication was interrupted due to a loss of a signal, the taxi driver asked the base station operator to repeat the message on a different frequency. In a cellular system, as the distributed mobile transceivers move from cell to 1 J. E. Flood. Telecommunication Networks. Institution of Electrical Engineers, London, UK, chapter V. Pauli, J. D. Naranjo, E. Seidel, Heterogeneous LTE Networks and Inter-Cell Interference Coordination, White Paper, Nomor Research, December
6 cell during an ongoing continuous communication, switching from one cell frequency to a different cell frequency is done electronically without interruption and without a base station operator or manual switching. This is called the handover or handoff. Typically, a new channel is automatically selected for the mobile unit on the new base station which will serve it. The mobile unit then automatically switches from the current channel to the new channel and communication continues. The exact detail of the mobile systemʼs move from one base station to the other varies considerably from system to system (see the example below for how a mobile phone network manages handover). 1.4 Example of a cellular network: the mobile phone network The most common example of a cellular network is a mobile phone (cell phone) network. A mobile phone is a portable telephone which receives or makes calls through a cell site (base station), or transmitting tower. Radio waves are used to transfer signals to and from the cell phone. Modern mobile phone networks use cells because radio frequencies are a limited, shared resource. Cell-sites and handsets change frequency under computer control and use low power transmitters so that a limited number of radio frequencies can be simultaneously used by many callers with less interference. A cellular network is used by the mobile phone operator to achieve both coverage and capacity for their subscribers. Large geographic areas are split into smaller cells to avoid line-of-sight signal loss and to support a large number of active phones in that area. All of the cell sites are connected to telephone exchanges (or switches), which in turn connect to the public telephone network. In cities, each cell site may have a range of up to approximately ½ mile, while in rural areas, the range could be as much as 5 miles. It is possible that in clear open areas, a user may receive signals from a cell site 25 miles away. Since almost all mobile phones use cellular technology, including GSM, CDMA, and AMPS (analog), the term "cell phone" is in some regions, notably the US, used interchangeably with "mobile phone". However, satellite phones are mobile phones that do not communicate directly with a ground-based cellular tower, but may do so indirectly by way of a satellite. 3 3 Bernhard H. Walke. Mobile Radio Networks: Networking, protocols and traffic performance. John Wiley and Sons, LTD West Sussex England, Chapter 2. 6
7 2. Speed of Different Cellular Networks 1G First generation services were analogue services for cell phones. These were (and are) for voice only; the technology didn't provide for SMS or other data services. 1G is circuit switched. This means that when you place a call, a connection is established for you, and is maintained until you hang up. You are billed for the duration of the call, regardless of how much talking occurred. This is appropriate for voice communication where one person or the other is talking at any point in time. 2G Moving from 1G to 2G saw the transition from analogue to digital. As in other areas, the impact of going digital was revolutionary. The transition provided the ability to store, copy, encrypt and compress data, and allowed data transmission without loss and with error-correction. It provided wireless cellular data services such as internet access, with speeds of 14.4.kbps (theoretical), 9.6 kbps kbps (real). In addition, voice quality improved. 2G was also circuit-switched; you still paid for total connection time. This is less appropriate for data than voice, as data is often "bursty", with periods of transmission activity and then periods of silence. This is not a good deal for the consumer or the carrier. The consumer has to pay for dead time, and the carrier has to reserve a slice of spectrum which could be sold to someone else. 4 Competing 2G Technologies The generic term for 2G services is PCS (Personal Communications services). There are two 2G technologies in Canada, GSM and CDMA, that are incompatible with each other in every respect. This incompatibility explains some things about the evolution of the market and carrier relationships. GSM stands for Global System for Mobility. It is based on a time-sharing process in which a slice of spectrum is shared between multiple users, by dividing creating small time-slices and allocating a slice to each user in turn. One of the big benefits of GSM is its coverage. It is the standard 2G technology in Europe, with the potential for roaming 90+ countries with same 4 Greyfriars Consulting Group 7
8 phone. Globally, 70% of the world's digital subscribers are on GSM. Both Rogers Wireless and Microcell use GSM. CDMA stands for Code Division Multiple Access. It is an elegant technology, but also a complicated one that cannot be described in a few words. Both Bell Mobility and Telus Mobility use CDMA. 2.5 / 3G Moving from 2G to 2.5G / 3G introduced another revolutionary change, the introduction of packet switching for data rather than circuit switching. Packet switching is an unlikely seeming technology that breaks a message into pieces and sends each piece individually across the network, together with control information on whether it is the first, second, etc packet in the set. The packets travel through the network to their destination, possibly taking different paths depending on network conditions, where they are reassembled in the correct order. For the consumer, packet switching provides two benefits. First, the commodity being sold is packets, not network time connected, so the pricing model becomes more data oriented. The consumer does not have to pay for dead time. Carriers provide a large variety of data oriented plans, just as they do with basic cell phone plans. For example, 1MB of data sent might cost up to $6-7. Each packet requires a significant amount of control information to route and sequence the packet, so your actual data may be less than 1MB. The second benefit to the consumer is that the internet is "always-connected" or "always-on". There is no need to make a connection or hang up; users experience constant connection to the internet, just like home subscribers of ADSL or cable internet connection. There is another benefit to consumers of 2.5 / 3G services, and that is speed. They have a theoretical maximum speed of 115 kbps, with real speeds around 56 kbps (a common speed for dial-up connections to the internet). The two 2G technologies in Canada extend to two 2.5G technologies, GSM/GPRS and 1XRTT, likewise incompatible in every respect. GPRS stands for General Packet Radio Service, and is a data-oriented technology extending the GSM voice services. Rogers and Microcell use GSM/GPRS. Microcell was the first player out of the gate in June 2001, but is now wondering if it can stay in business. Rogers AT&T Wireless provides GPRS coverage to more than 93% of the Canadian population. This does not mean coverage of 93% of the Canadian geography, due to the concentrations of population, and there are many places where coverage would be desirable but is unavailable, such as in the oil patch and rural areas. 1XRTT is an abbreviation for CDMA2000 1XRTT and is usually abbreviated further to 1X. It is the current generation system used by Bell and Telus. Bell launched their service early in 2002 in the greater Toronto Area early Bell claimed cruising speeds of 86 kbps, compared to 56 kbps for dialup modems. 5 5 Greyfriars Consulting Group 8
9 "True" 3G Third-generation specifications call for even higher speeds 144 kbps in vehicles, 384 Kbps for pedestrians outdoors, and 2.48 Mbps in indoor offices. Some carriers are calling their current deployments 3G. This is contested by others as being the lowest rung of the 3G specification, and hence prefer to use the term 2.5G. As expected, each of the 2.5G technologies has a forward path to the 3rd generation. EDGE (Enhanced Data Rates for Global [or GSM] Evolution) is the true 3G offering along the GSM path. It provides data rates three times greater than GSM/GPRS, with speeds in the range kbps (up to 200 kbps in bursts). EDGE was rolled out across Canada in Being an extension of GSM/GPRS, EDGE will be widely available internationally, and supported by network operators in many countries, and over 60 network operators in over 40 countries have committed to EDGE for their next generation services. There are a couple of forward paths from CDMA2000 offering substantially higher data rates. Neither of the CDMA based carriers (Telus Mobility, Bell Mobility) had announced offerings or pilots at the time or writing. 4G In telecommunications, 4G is the fourth generation of cellular wireless standards. It is a successor to the 3G and 2G families of standards. In 2009, the ITU-R organization specified the IMT-Advanced (International Mobile Telecommunications Advanced) requirements for 4G standards, setting peak speed requirements for 4G service at 100 Mbit/s for high mobility communication (such as from trains and cars) and 1 Gbit/s for low mobility communication (such as pedestrians and stationary users). One of the key technologies for 4G and beyond is called Open Wireless Architecture (OWA), supporting multiple wireless air interfaces in an open architecture platform. A 4G system is expected to provide a comprehensive and secure all-ip based mobile broadband solution to laptop computer wireless modem, smartphones, and other mobile devices. Facilities such as ultra-broadband Internet access, IP telephony, gaming services, and streamed multimedia may be provided to users. 6 IMT-Advanced compliant versions of LTE and WiMAX are under development and called "LTE Advanced" and "WirelessMAN-Advanced" respectively. ITU has decided that LTE Advanced and WirelessMAN-Advanced should be accorded the official designation of IMT-Advanced. On December 6, 2010, ITU recognized that current versions of LTE, WiMax and other evolved 3G technologies that do not fulfill "IMT-Advanced" requirements could nevertheless be considered "4G", provided they represent forerunners to IMT- 6 Greyfriars Consulting Group 9
10 Advanced and "a substantial level of improvement in performance and capabilities with respect to the initial third generation systems now deployed." 3. Future of Cellular Networks 5G (5th generation mobile networks or 5th generation wireless systems) is a name used in some research papers and projects to denote the next major phase of mobile telecommunications standards beyond the 4G/IMT-Advanced standards effective since At present, 5G is not a term officially used for any particular specification or in any official document yet made public by telecommunication companies or standardization bodies such as 3GPP, WiMAX Forum, or ITU-R. New standard releases beyond 4G are in progress by standardization bodies, but are at this time not considered as new mobile generations but under the 4G umbrella. With multiple air-interface support capabilities and higher cell densities, future cellular networks will offer a diverse spectrum of user services. The resulting dynamics in traffic load and resource demand will challenge present control loop algorithms. In addition, frequent upgrades in the network infrastructure will substantially increase the network operation costs if done using current optimization methodology. This motivates the development of dynamic control algorithms that can automatically adjust the network to changes in both traffic and network conditions and autonomously adapt when new cells are added to the system. 7 7 Borst, Buvaneswari, Drabeck,
11 4. Conclusion Wireless communications is, by any measure, the fastest growing segment of the communications industry. As such, it has captured the attention of the media and the imagination of the public. Cellular systems have experienced exponential growth over the last decade and there are currently around two billion users worldwide. Indeed, cellular phones have become a critical business tool and part of everyday life in most developed countries, and are rapidly supplanting antiquated wireline systems in many developing countries. In addition, wireless local area networks currently supplement or replace wired networks in many homes, businesses, and campuses. Many new applications, including wireless sensor networks, automated highways and factories, smart homes and appliances, and remote telemedicine, are emerging from research ideas to concrete systems. The explosive growth of wireless systems coupled with the proliferation of laptop and palmtop computers indicate a bright future for wireless networks, both as stand-alone systems and as part of the larger networking infrastructure. 11
12 Bibliography J. E. Flood: Telecommunication Networks. Institution of Electrical Engineers, London, UK, chapter 12 V. Pauli, J. D. Naranjo, E. Seidel: Heterogeneous LTE Networks and Inter-Cell Interference Coordination, White Paper, Nomor Research, December 2010 Bernhard H. Walke. Mobile Radio Networks: Networking, protocols and traffic performance. John Wiley and Sons, LTD West Sussex England, Chapter 2 Greyfriars Consulting Group, Simon C. Borst, Arumugam Buvaneswari, Lawrence M. Drabeck, Michael J. Flanagan, John M. Graybeal, Georg K. Hampel, Mark Haner, William M. MacDonald, Paul A. Polakos, George Rittenhouse, Iraj Saniee, Alan Weiss, and Philip A. Whiting: Dynamic Optimizationin Future Cellular Networks
Indian Journal of Advances in Computer & Information Engineering Volume.1 Number.1 January-June 2013, pp.1-5 @ Academic Research Journals.
Cellular System Rajat Chugh, Parag Jasoria, Tushar Arora, Nitin Ginotra and Vivek Anand V Semester, Department of Computer Science and Engineering, Dronacharya College of Engineering, Khentawas, Farukhnagar,
Narrowband and Broadband Access Technologies
Computer Networks and Internets, 5e Chapters 12 and 16 Access and Interconnection Technologies (slidesets abridged/combined) By Douglas Comer Modified from the lecture slides of Lami Kaya ([email protected])
Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur
Module 5 Broadcast Communication Networks Lesson 9 Cellular Telephone Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain the operation of Cellular
communication over wireless link handling mobile user who changes point of attachment to network
Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet
Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1
Computer Networks Wireless and Mobile Networks László Böszörményi Computer Networks Mobile - 1 Background Number of wireless (mobile) phone subscribers now exceeds number of wired phone subscribers! Computer
Chapters 1-21 Introduction to Wireless Communication Systems
Chapters 1-21 Introduction to Wireless Communication Systems Yimin Zhang, Ph.D. Department of Electrical & Computer Engineering Villanova University http://yiminzhang.com/ece8708 Yimin Zhang, Villanova
Hello viewers, welcome to today s lecture on cellular telephone systems.
Data Communications Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture minus 31 Cellular Telephone Systems Hello viewers, welcome to today s lecture
Development of Wireless Networks
Development of Wireless Networks Cellular Revolution In 1990 mobile phone users populate 11 million. By 2004 the figure will become 1 billion Phones are most obvious sign of the success of wireless technology.
Cellular Network Organization. Cellular Wireless Networks. Approaches to Cope with Increasing Capacity. Frequency Reuse
Cellular Network Organization Cellular Wireless Networks Use multiple low-power transmitters (100 W or less) Areas divided into cells Each served by its own antenna Served by base station consisting of
Guide to Wireless Communications. Digital Cellular Telephony. Learning Objectives. Digital Cellular Telephony. Chapter 8
Guide to Wireless Communications Digital Cellular Telephony Chapter 2 Learning Objectives Digital Cellular Telephony 3 Describe the applications that can be used on a digital cellular telephone Explain
Chapter 3 Cellular Networks. Wireless Network and Mobile Computing Professor: Dr. Patrick D. Cerna
Chapter 3 Cellular Networks Wireless Network and Mobile Computing Professor: Dr. Patrick D. Cerna Objectives! Understand Cellular Phone Technology! Know the evolution of evolution network! Distinguish
8. Cellular Systems. 1. Bell System Technical Journal, Vol. 58, no. 1, Jan 1979. 2. R. Steele, Mobile Communications, Pentech House, 1992.
8. Cellular Systems References 1. Bell System Technical Journal, Vol. 58, no. 1, Jan 1979. 2. R. Steele, Mobile Communications, Pentech House, 1992. 3. G. Calhoun, Digital Cellular Radio, Artech House,
Location management Need Frequency Location updating
Lecture-16 Mobility Management Location management Need Frequency Location updating Fig 3.10 Location management in cellular network Mobility Management Paging messages Different paging schemes Transmission
NTRC Dominica April 28 to May 2, 2014 Fort Young Hotel
NTRC Dominica April 28 to May 2, 2014 Fort Young Hotel Mobile Networks Next Generation Mobile Networks Keith A. Benjamin Operations Manager South Cluster LIME (Cable & Wireless) Global Markets Global Markets
Mobile Wireless Overview
Mobile Wireless Overview A fast-paced technological transition is occurring today in the world of internetworking. This transition is marked by the convergence of the telecommunications infrastructure
Appendix A: Basic network architecture
Appendix A: Basic network architecture TELECOMMUNICATIONS LOCAL ACCESS NETWORKS Traditionally, telecommunications networks are classified as either fixed or mobile, based on the degree of mobility afforded
CHAPTER 1 1 INTRODUCTION
CHAPTER 1 1 INTRODUCTION 1.1 Wireless Networks Background 1.1.1 Evolution of Wireless Networks Figure 1.1 shows a general view of the evolution of wireless networks. It is well known that the first successful
How To Understand The Gsm And Mts Mobile Network Evolution
Mobile Network Evolution Part 1 GSM and UMTS GSM Cell layout Architecture Call setup Mobility management Security GPRS Architecture Protocols QoS EDGE UMTS Architecture Integrated Communication Systems
Mobility and cellular networks
Mobility and cellular s Wireless WANs Cellular radio and PCS s Wireless data s Satellite links and s Mobility, etc.- 2 Cellular s First generation: initially debuted in Japan in 1979, analog transmission
Wireless Cellular Networks: 1G and 2G
Wireless Cellular Networks: 1G and 2G Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available
Basic Network Design
Frequency Reuse and Planning Cellular Technology enables mobile communication because they use of a complex two-way radio system between the mobile unit and the wireless network. It uses radio frequencies
Over the PSTN... 2 Over Wireless Networks... 2. Network Architecture... 3
Content Introduction... 1 History of Modems... 2 Over the PSTN... 2 Over Wireless Networks... 2 Network Architecture... 3 Circuit-Switched Cellular Data... 3 Short Message Service... 3 Packet-Switched
Imre Földes THE EVOLUTION OF MODERN CELLULAR NETWORKS
Budapest University of Technology and Economics Faculty of Electrical Engineering and Informatics Imre Földes THE EVOLUTION OF MODERN CELLULAR NETWORKS Research Report BUDAPEST, 2015 Contents 1 The early
4G MOBILE COMMUNICATION SYSTEM
4G MOBILE COMMUNICATION SYSTEM INTRODUCTION 1. In telecommunications, 4G is the fourth generation of cellular wireless standards. It is a successor to the 3G and 2G families of standards. In 2008, the
Wireless Broadband Access
Wireless Broadband Access (Brought to you by RMRoberts.com) Mobile wireless broadband is a term used to describe wireless connections based on mobile phone technology. Broadband is an electronics term
1G to 4G. Overview. Presentation By Rajeev Bansal Director(Mobile-1) Telecommunication Engineering Centre
1G to 4G Overview Presentation By Rajeev Bansal Director(Mobile-1) Telecommunication Engineering Centre Mobile Networks differentiated from each other by the word Generation 1G, 2G, 2.5G, 2.75G, 3G milestones
LTE: Technology and Health. 4G and Mobile Broadband
LTE: Technology and Health 4G and Mobile Broadband LTE Technology and Health Mobile Broadband typically refers to providing customers with high speed data while on the move. There are several technologies
Lecture 1. Introduction to Wireless Communications 1
896960 Introduction to Algorithmic Wireless Communications Lecture 1. Introduction to Wireless Communications 1 David Amzallag 2 May 25, 2008 Introduction to cellular telephone systems. How a cellular
Introductory Concepts
Chapter 1 Introductory Concepts 1.1 Introduction Communication is one of the integral parts of science that has always been a focus point for exchanging information among parties at locations physically
How To Understand Cellular Communications
Definition Cellular Communications A cellular mobile communications system uses a large number of low-power wireless transmitters to create cells the basic geographic service area of a wireless communications
HSPA, LTE and beyond. HSPA going strong. PRESS INFORMATION February 11, 2011
HSPA, LTE and beyond The online multimedia world made possible by mobile broadband has changed people s perceptions of data speeds and network service quality. Regardless of where they are, consumers no
3GPP Wireless Standard
3GPP Wireless Standard Shishir Pandey School of Technology and Computer Science TIFR, Mumbai April 10, 2009 Shishir Pandey (TIFR) 3GPP Wireless Standard April 10, 2009 1 / 23 3GPP Overview 3GPP : 3rd Generation
Mobile Communications TCS 455
Mobile Communications TCS 455 Dr. Prapun Suksompong [email protected] Lecture 26 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 Announcements Read the following from the SIIT online
How To Know If You Are Safe To Use An Antenna (Wired) Or Wireless (Wireless)
1 2 The range of RF spans 3 KHz (3000 Hz) to 300 GHz (300 million Hz) Frequencies of RF devices range from the low frequency AM broadcasts (80 MHz) to higher frequency mobile phones (1900 MHz) smart meters
GSM v. CDMA: Technical Comparison of M2M Technologies
GSM v. CDMA: Technical Comparison of M2M Technologies Introduction Aeris provides network and data analytics services for Machine-to- Machine ( M2M ) and Internet of Things ( IoT ) applications using multiple
Wireless Mobile Telephony
Wireless Mobile Telephony The Ohio State University Columbus, OH 43210 [email protected] http://www.cis.ohio-state.edu/~durresi/ 1 Overview Why wireless mobile telephony? First Generation, Analog
International Journal of Advanced Research in Computer Science and Software Engineering
Volume 2, Issue 11, November 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Automated
The GSM and GPRS network T-110.300/301
The GSM and GPRS network T-110.300/301 History The successful analog 1:st generation mobile telephone systems proved that there is a market for mobile telephones ARP (AutoRadioPuhelin) in Finland NMT (Nordic
Cooperative Techniques in LTE- Advanced Networks. Md Shamsul Alam
Cooperative Techniques in LTE- Advanced Networks Md Shamsul Alam Person-to-person communications Rich voice Video telephony, video conferencing SMS/MMS Content delivery Mobile TV High quality video streaming
Wireless Solution for Rural Broadband Access
Wireless Solution for Rural Broadband Access As addressed to U.S. Department of Agriculture, Rural Utilities Service public meeting on Rural Broadband Access, June 27, 2002. I would like to thank Administrator
Pradipta Biswas Roll No. 04IT6007 M. Tech. (IT) School of Information Technology Indian Institute of Technology, Kharagpur
Pradipta Biswas Roll No. 04IT6007 M. Tech. (IT) School of Information Technology Indian Institute of Technology, Kharagpur ABSTRACT W-CDMA (Wideband Code-Division Multiple Access), an ITU standard derived
LTE BACKHAUL REQUIREMENTS: A REALITY CHECK
By: Peter Croy, Sr. Network Architect, Aviat Networks INTRODUCTION LTE mobile broadband technology is now being launched across the world with more than 140 service providers committed to implement it
Chapter 6 Telecommunications, Networks, and Wireless. Computing
Chapter 6 Telecommunications, Networks, and Wireless Computing Essay Questions: 1. Define a hub, switch, and a router. 2. List the challenges associated with managing contemporary telecommunications and
Foreword... 2 Introduction to VoIP... 3 SIP:... 3 H.323:... 4 SER:... 4 Cellular network... 4 GSM... 5 GPRS... 6 3G... 6 Wimax... 7 Introduction...
Foreword... 2 Introduction to VoIP... 3 SIP:... 3 H.323:... 4 SER:... 4 Cellular network... 4 GSM... 5 GPRS... 6 3G... 6 Wimax... 7 Introduction... 7 Fixed-WiMAX based on the IEEE 802.16-2004... 8 Mobile
Wireless Technologies for the 450 MHz band
Wireless Technologies for the 450 MHz band By CDG 450 Connectivity Special Interest Group (450 SIG) September 2013 1. Introduction Fast uptake of Machine- to Machine (M2M) applications and an installed
Emerging Wireless Technologies
Emerging Wireless Technologies A look into the future of wireless communications beyond 3G Forward: The Public Safety Wireless Network (PSWN) Program is conducting an ongoing assessment of advancements
Technical and economical assessment of selected LTE-A schemes.
Technical and economical assessment of selected LTE-A schemes. Heinz Droste,, Darmstadt Project Field Intelligent Wireless Technologies & Networks 1 Mobile Networks enabler for connected life & work. Textbox
Huawei Answer to ARCEP s public consultation on the challenges tied to new frequency bands for electronic communication services access networks
Huawei Answer to ARCEP s public consultation on the challenges tied to new frequency bands for electronic communication services access networks July 2007-26 September 2007 Question no. 1: What is your
White Paper. D-Link International Tel: (65) 6774 6233, Fax: (65) 6774 6322. E-mail: [email protected]; Web: http://www.dlink-intl.
Introduction to Voice over Wireless LAN (VoWLAN) White Paper D-Link International Tel: (65) 6774 6233, Fax: (65) 6774 6322. Introduction Voice over Wireless LAN (VoWLAN) is a technology involving the use
System Design in Wireless Communication. Ali Khawaja
System Design in Wireless Communication Ali Khawaja University of Texas at Dallas December 6, 1999 1 Abstract This paper deals with the micro and macro aspects of a wireless system design. With the growing
REPORT ITU-R M.2134. Requirements related to technical performance for IMT-Advanced radio interface(s)
Rep. ITU-R M.2134 1 REPORT ITU-R M.2134 Requirements related to technical performance for IMT-Advanced radio interface(s) (2008) TABLE OF CONTENTS... Page 1 Introduction... 2 2 Scope and purpose... 2 3
HOW W I R E L E S S T E C H N O L O G Y WORKS
HOW WORKS OW ORKS WHAT S INSIDE Inside your wireless phone, there is a compact speaker, a microphone, a keyboard, a display screen, and a powerful circuit board with microprocessors that make each phone
Environmental Monitoring: Guide to Selecting Wireless Communication Solutions
Environmental Monitoring: Guide to Selecting Wireless Communication Solutions By: Scott South Published in WaterWorld, January 2005 (Page 48) Rapidly growing demands for information and increased productivity
Mobile Communications
Mobile Communications Vincent Roca (2001-10) Claude Castelluccia (1998-2001) INRIA [email protected] [email protected] http://planete.inrialpes.fr/~roca/ Overview of the Course! Part 1:
Appendix 1: Satellite broadband service providers
Appendixes Appendix 1: Satellite broadband service providers In 2005 06, satellite broadband services were provided by the following companies: Australian Private Networks (ACTIV8me) Be Communications
The Economics of Gigabit 4G Mobile Backhaul
The Economics of Gigabit 4G Mobile Backhaul How wireless fiber 80 GHz links provide an economical alternative to operator-owned fiber Gregg Levin Vice President, Infrastructure Solutions BridgeWave Communications
The Growth and Evolution of CDMA2000 1xEV-DO
The Growth and Evolution of CDMA2000 1xEV-DO March 2005 CDMA2000 1xEV-DO The fastest mobile wireless networks in the world, from Seoul to San Diego and Sao Paolo, are powered by CDMA2000 1xEV- DO (Evolution
Cellular Data Communications Made Easy
Cellular Data Communications Made Easy by Peter Rysavy Published July 1, 1997, Network Computing Copyright Peter Rysavy and Network Computing All rights reserved Huge numbers of people are hitting the
Evolution of Mobile Communications: from 1G to 4G
Evolution of Mobile Communications: from 1G to 4G Vasco Pereira and Tiago Sousa Department of Informatics Engineering of the University of Coimbra {vasco,tmas}@dei.uc.pt Abstract Today, mobile communications
Cellular Wireless Networks. Principles of Cellular Networks
Cellular Wireless Networks Chapter 14 CS420/520 Axel Krings Page 1 Principles of Cellular Networks Underlying technology for mobile phones, personal communication systems, wireless networking etc. Developed
ADSL or Asymmetric Digital Subscriber Line. Backbone. Bandwidth. Bit. Bits Per Second or bps
ADSL or Asymmetric Digital Subscriber Line Backbone Bandwidth Bit Commonly called DSL. Technology and equipment that allow high-speed communication across standard copper telephone wires. This can include
Mobile Backhaul The Next Telecoms Revolution
Mobile Backhaul The Next Telecoms Revolution Foreword Every once in a while the telecommunications industry experiences a technological and commercial revolution. One such revolution took place in the
White Paper ON Dual Mode Phone (GSM & Wi-Fi)
White Paper ON Dual Mode Phone (GSM & Wi-Fi) Author: N Group 1.0 Abstract Dual Mode Handset is in demand for converged Network, Access, Billing, and Operation environment. Dual mode handsets provide cost
The 3GPP and 3GPP2 Movements Towards an All IP Mobile Network. 1 Introduction
The 3GPP and 3GPP2 Movements Towards an All IP Mobile Network Girish Patel Wireless Solutions Nortel Networks Richardson, TX [email protected] Steven Dennett Personal Communications Sector Motorola
Cellular Technology Sections 6.4 & 6.7
Overview Cellular Technology Sections 6. & 6.7 CSC 9 December, 0 Cellular architecture evolution Cellular telephony and internet terminology Mobility for cellular mobiles 6- Components of cellular architecture
Inter-Cell Interference Coordination (ICIC) Technology
Inter-Cell Interference Coordination (ICIC) Technology Dai Kimura Hiroyuki Seki Long Term Evolution (LTE) is a promising standard for next-generation cellular systems targeted to have a peak downlink bit
Cell Planning in GSM Mobile
Cell Planning in Mobile JALAL JAMAL HAMAD-AMEEN M.Sc, College of Engineering, Electrical Engineering Dept. Salahaddin University, Erbil, IRAQ E-mail : [email protected] Abstract: Cell planning
Mobile broadband for all
ericsson White paper Uen 284 23-3195 Rev B March 2015 Mobile broadband for all optimizing radio technologies As operators roll out LTE 4G networks, WCDMA/HSPA 3G technology is rapidly shifting from the
WiMAX and the IEEE 802.16m Air Interface Standard - April 2010
WiMAX and the IEEE 802.16m Air Interface Standard - April 2010 Introduction The IEEE 802.16e-2005 amendment to the IEEE Std 802.16-2004 Air Interface Standard which added Scalable-Orthogonal Frequency
Wireless Cellular Networks: 3G
Wireless Cellular Networks: 3G Raj Jain Washington University Saint Louis, MO 63131 [email protected] These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/ 7-1 Overview Wireless
Wi-Fi calling for business: ROGERS WHITE PAPER. An Executive Overview
1 ROGERS WHITE PAPER Wi-fi calling for business An Executive Overview page 2 2 TABLE OF CONTENTS Introduction 3 What Is Wi-Fi Calling? 4 How Does It Work? 5 What Are the Business Benefits? 7 What Are the
Telecommunications and the Information Age ET108B. Cell Phone Network
Telecommunications and the Information Age ET108B Cell Phone Network The Cellular Telephone Network Cellular Telephone Features Carrying Data Across the Cellular Network Satellite Telephone Service Cellular
Implementation of Mobile Measurement-based Frequency Planning in GSM
Implementation of Mobile Measurement-based Frequency Planning in GSM Comp.Eng. Serkan Kayacan (*), Prof. Levent Toker (**) (*): Ege University, The Institute of Science, Computer Engineering, M.S. Student
How To Understand The History Of The United States
WIRELESS GLOSSARY OF TERMS Air Interface: The operating system of a wireless network. Technologies include AMPS, TDMA, CDMA, GSM and iden. AMPS: Advanced Mobile Phone Service (AMPS) is the original analog
Physical Layer. Communication Satellites. ECE 453 Introduction to Computer Networks. Lecture 3 Physical Layer II
ECE 453 Introduction to Computer Networks Lecture 3 Physical Layer II 1 Physical Layer Services transmit bits from sender to receiver. Transmission media Guided: twisted pair, coax, fiber Unguided (wireless):
Chapter 1: Introduction
Chapter 1: Introduction Jyh-Cheng Chen and Tao Zhang IP-Based Next-Generation Wireless Networks Published by John Wiley & Sons, Inc. January 2004 This material is protected under all Copyright Laws as
History of Mobile. MAS 490: Theory and Practice of Mobile Applications. Professor John F. Clark
History of Mobile Telephony MAS 490: Theory and Practice of Mobile Applications Professor John F. Clark Everything I know about mobile telephony, I learned from: Evolution is not a theory when it concerns
1 Introduction to mobile telecommunications
1 Introduction to mobile telecommunications Mobile phones were first introduced in the early 1980s. In the succeeding years, the underlying technology has gone through three phases, known as generations.
R2. The word protocol is often used to describe diplomatic relations. How does Wikipedia describe diplomatic protocol?
Chapter 1 Review Questions R1. What is the difference between a host and an end system? List several different types of end systems. Is a Web server an end system? 1. There is no difference. Throughout
Wireless and Mobile Communication
Wireless and Mobile Communication Prof. RambabuMakkena,Prof. Sudhir P. Sitanagre Asm`s IBMR Chinchwad, Pune-19, India Email Id:[email protected] ABSTRACT The success of mobile communications lies in
Deployment of UMTS in 900 MHz band
FORUM WHITE PAPER Deployment of in MHz band 1. Introduction IMT-2000/ service was launched in the core band (1920-1980 MHz/2110-2170 MHz) during the year 2001, and by mid-2006 there are more than 75 million
LTE, WLAN, BLUETOOTHB
LTE, WLAN, BLUETOOTHB AND Aditya K. Jagannatham FUTURE Indian Institute of Technology Kanpur Commonwealth of Learning Vancouver 4G LTE LTE (Long Term Evolution) is the 4G wireless cellular standard developed
Use Current Success to Develop Future Business
>THIS IS THE WAY Use Current Success to Develop Future Business Malur Narayan / Nitin Khanna February 2005 >THIS IS Wireless Broadband Opportunities & Segments Mobile Broadband Access Enterprise Broadband
Telephone Service: A Natural Monopoly?
Box 6-2 continued By June 2003, this had grown to 88 percent. A recent study indicates that the introduction of satellite TV led to substantial gains for consumers. However, ongoing antitrust oversight
4G-Quadruple Play High Speed Mobile Broadband Technologies
4G-Quadruple Play High Speed Mobile Broadband Technologies Author: Venkat Annadata Next Generation Networks. Abstract: 4G or the 4th generation technologies promise the full mobility with high speed internet
How To Get A Phone In The United States
Telephone Systems COMP476 Home Telephones Plain Old Telephone Service (POTS) provides a twisted pair connection from your phone to the central office. You own your home wiring and the telephone company
Global System for Mobile Communication Technology
Global System for Mobile Communication Technology Mobile Device Investigations Program Technical Operations Division DHS - FLETC GSM Technology Global System for Mobile Communication or Groupe Special
Unlicensed Mobile Access (UMA) Handover and Packet Data Performance Analysis
Unlicensed Mobile Access (UMA) Handover and Packet Data Performance Analysis Andres Arjona Nokia Siemens Networks [email protected] Hannu Verkasalo Helsinki University of Technology [email protected]
SECTION 2 TECHNICAL DESCRIPTION OF BPL SYSTEMS
SECTION 2 TECHNICAL DESCRIPTION OF SYSTEMS 2.1 INTRODUCTION Access equipment consists of injectors (also known as concentrators), repeaters, and extractors. injectors are tied to the backbone via fiber
White paper. Mobile broadband with HSPA and LTE capacity and cost aspects
White paper Mobile broadband with HSPA and LTE capacity and cost aspects Contents 3 Radio capacity of mobile broadband 7 The cost of mobile broadband capacity 10 Summary 11 Abbreviations The latest generation
COMPUTERS ARE YOUR FUTURE CHAPTER 8 WIRED & WIRELESS COMMUNICATION
COMPUTERS ARE YOUR FUTURE CHAPTER 8 WIRED & WIRELESS COMMUNICATION Answers to End-of-Chapter Questions Matching g 1. whiteboard i 2. sending device o 3. streaming j 4. WiFi m 5. Webcam d 6. data transfer
Mobile Communications Chapter 4: Wireless Telecommunication Systems slides by Jochen Schiller with modifications by Emmanuel Agu
Mobile Communications Chapter 4: Wireless Telecommunication Systems slides by Jochen Schiller with modifications by Emmanuel Agu Market GSM Overview Services Sub-systems Components Prof. Dr.-Ing. Jochen
For the purpose of setting up a home network, all you need to worry about are two major categories of components:
Access Points, Routers, and Hubs In the first lesson, you learned about the world of wireless standards -- what frequencies are used, distances involved, and other general topics. In this lesson, you learn
Mobile Phone Terminology Simplifying telecoms management
Mobile Phone Terminology Simplifying telecoms management _ 3G The next generation mobile network, launched in the UK in March 2003, pushed heavily by the company, Hutchison 3. The other major networks
Broadband Access Technologies
Broadband Access Technologies Chris Wong Communications Engineering Sector Analysis & Reporting Branch International Training Program 23 October 2007 Presentation Outline What is broadband? What are the
Making Communities Better with Broadband
* Making Communities Better with Broadband So Many Choices!!!!!! Where Do I Even Start? *Where to Begin *Start With Your Community *Demographics *Current Needs *Vision for the Future *Strengths and Challenges
