OMG! Excessive Texting Tied to Risky Teen Behaviors


 Aubrey Baker
 3 years ago
 Views:
Transcription
1 BUSIESS WEEK: EXECUTIVE EALT ovember 09, 2010 OMG! Excessive Textig Tied to Risky Tee Behaviors Kids who sed more tha 120 a day more likely to try drugs, alcohol ad sex, researchers fid TUESDAY, ov. 9 (ealthday ews)  Excessive textig ad social etworkig may icrease tees' risk for dagerous health behaviors, icludig smokig, drikig ad sexual activity, a ew study suggests. Researchers looked at hypertextig (sedig more tha 120 messages per school day) ad hyperetworkig (spedig more tha three hours a school day o social etworkig sites) amog high school studets i a urba couty i the U.S. Midwest. May of the 19.8 percet of tees who reported hypertextig were female, miority, from lower socioecoomic status ad had o father at home, accordig to the researchers at Case Wester Reserve School of Medicie i Clevelad. ypertexters were: 40 percet more likely to have tried smokig; two times more likely to have tried alcohol; 43 percet more likely to bigedrik; 41 percet more likely to have used illicit drugs; 55 percet more likely to have bee i a physical fight; early 3.5 times more likely to have had sex; ad 90 percet more likely to have had four or more sexual parters. The 11.5 percet of studets who were hyperetworkers were: 62 percet more likely to have smoked cigarettes; 79 percet more likely to have tried alcohol; 69 percet more likely to be bige drikers; 84 percet more likely to have used illicit drugs; 94 percet more likely to have bee i a physical fight; 69 percet more likely to have had sex; ad 60 percet more likely to have had four or more sexual parters. yperetworkig was also associated with icreased likelihood of stress, depressio, suicide, poor sleep, poor academics, televisio watchig ad paretal permissiveess. The study was to be preseted Tuesday at the America Public ealth Associatio aual meetig i Dever. "The startlig results of this study suggest that whe left uchecked, textig ad other widely popular methods of stayig coected ca have dagerous health effects o teeagers," lead researcher Dr. Scott Frak, director of the School of Medicie's Master of Public ealth Program, said i a uiversity ews release. "This should be a wakeup call for parets to ot oly help their childre stay safe by ot textig ad drivig, but by discouragig excessive use of the cell phoe or social web sites i geeral," he added. SOURCE: Case Wester Reserve School of Medicie, ews release, ov. 9, 2010 Copyright 2010 ealthday. All rights reserved. OMG! Page 1
2 Uits: Teeagers (from urba areas i the Midwest we cofie coclusios to such teeagers). Explaatory Variable: Whether or ot a perso is a hypertexter. Categorical This is a observatioal study. 2 categories / levels Respose Variable: Whether or ot a perso has tried illicit drugs. Categorical 4 rows of the data table, showig all level combiatios Summary of the raw data two categories / levels Teeager Textig Activity Use of Illicit Drugs Illicit Drug Use Wada yper Tried Textig Activity Tried ot Tried Total Xavier yper ot tried yper Yolada ohyper Tried ohyper Zach ohyper ot tried Totals ere s a clear, simple, ad effective report of the survey results. % of teeagers who have tried illicit drugs Amog hypertexters: 44.0% ( 116) Amog ohypertexters: 31.5% ( 143) 95% cofidece itervals for the proportios of all teeagers who have tried illicit drugs: Amog hypertexters: < p < Amog ohypertexters: < p < Goal: A 95% cofidece iterval for the differece betwee populatio proportios, p p. With a categorical (two levels) respose variable ad categorical (two levels) explaatory variable we hope to use the two sample Z procedures for the differece betwee proportios. Requiremet: Radom samplig; Idepedet samples; Populatio size at least 20 times the sample size; All couts i the summary of raw data at least 5. Poit estimate of differece: Error margi for differece: 95% cofidece iterval: < p p < Iterpretate the iterval: I am 95% cofidet that For a test ( 0.05) of 0 : p p 1 : p > p what s the decisio? OMG! Page 2
3 ere are the results of the hypertextig/illicit drugs iformatio, ow split by the how may parets variable. For teeagers with two parets 2 PARETS Illicit Drugs For the 2paret teeagers, test Textig Tried ot Total ypertexters ohypertexters Total Estimated differece Test statistic: Z p p Pvalue Coclusio: At the 5% level 0 : p p 1 : p p Pooled proportio p For teeagers with oe paret 1 PARET Illicit Drugs For the 1paret teeagers, test Textig Tried ot Total ypertexters ohypertexters Total Pooled proportio p Test statistic: Z p p Pvalue Coclusio: At the 5% level 0 : p p 1 : p p Estimated differece OMG! Page 3
4 For all teeagers ere are the results aggregated over the how may parets variable (as o page 1 we earlier obtaied the cofidece iterval). This assesses the hypertextig explaatory variable. ALL Illicit Drugs 0 : p p 1 : p p Textig Tried ot Total Test statistic: Z 2.07 ypertexters Pvalue ohypertexters % cofidece iterval: Total < p p < Coclusio: At the 5% level Reread Dr. Frak s statemet. What do you thik? ere are the results aggregated over the whether or ot a hypertexter variable, ad istead compared o umber of parets (assessig the umber of parets explaatory variable). 1 The subscriptig o the p s is chaged to reflect this. otice that the totals match those from above ad o the other side. ALL Illicit Drugs 0 : p1 p2 1 : p1 p2 # of parets Tried ot Total ˆp ˆp Total % cofidece iterval: E p ˆ2 Z 7.98 Pvalue 99% CI: < p1 p2 < Coclusio: 1 This aalysis is appropriate, because we ca see from the split o the reverse side that there is virtually o effect of hypertextig o the likelihood of tryig illicit drug use. OMG! Page 4
5 Solutios Page 2 The poit estimate is The error margi is This ca also be computed from scratch (without kowig the two idividual error margis): The cofidece iterval bouds are ± which gives < p p < I am 95% cofidet that the proportio of all teeage hypertexters who have tried illicit drugs is betwee ad higher tha the proportio of all ohypertexters who have tried illicit drugs. Sice the cofidece iterval implies that p is higher tha p, the decisio is to reject the ull hypothesis. Page 3 Teeagers with two parets The two estimated proportios are p ˆ ad p ˆ The estimate differece is (ot very big at all.) The pooled proportio is p The test statistic is Z This is a right tailed test; the Pvalue is the area to the right of 0.29: Pvalue There is virtually o evidece i favor of the alterative hypothesis. At the 5% level there is to sufficiet evidece i the data to coclude that the proportio of all hypertexters who have tried illicit drugs is higher tha the proportio of all ohypertexters who have tried illicit drugs. Teeagers with oe paret The two estimated proportios are ad The estimated differece is that s about 1% ad i the wrog directio from what is suggested i the alterative hypothesis. There is O evidece agaist the ull here. The pooled proportio is The deomiator of the test statistic (the stadard error SE ) is The test statistic is / The Pvalue is At the 5% level there is isufficiet evidece i the data to coclude that the proportio of all hypertexters who have tried illicit drugs is higher tha the proportio of all ohypertexters who have tried illicit drugs. I fact: There is O evidece of this. The observed differece is opposite i sig to this. OMG! Page 5
6 Page 4 Aggregated over the how may parets variable, assessig the effects of hypertextig At the 5% level there is sufficiet evidece i the sample data to coclude that hypertextig tees are more likely to have tried illicit drugs tha are ohypertextig tees. We re 95% cofidet that the differece i proportios (percets) is betwee (0.7%) ad (27.3%). owever: That does t mea at all that textig behavior is a cause of illicit drug use. As we see above, it may well be that the root cause is how may parets a teeager has. There certaily is more i favor of such a explaatio. Aggregated over the whether or ot a hypertexter variable, assessig the effects of paretal presece. The two observed proportios are ad Their differece is The Pvalue for the test is essetially 0. The 99% CI has bouds give by ± , which gives < p1 p2 < We are 99% cofidet that the proportio of all tees from 1paret families who have tried illicit drugs is betwee ad higher tha that for tees from 2paret families. (Betwee roughly 40% ad 70% higher.) owever: This too may ot be iterpreted as causal while the umber of parets variable is certaily more strogly associated with drug use, this does ot imply that the umber of parets is a cause of illicit drug use. What about icome? I a similar way as show above, we might well fid that tees from lower icome families are simultaeously more like to have 1 paret ad to have tried illicit drugs. I short: It is oe thig to establish that two variables are associated. It is aother altogether to establish that chages i a explaatory variable cause a chage i the distributio of the respose variable. From a sigle observatioal study, oe ca ever coclude o the issue of causatio. OMG! Page 6
1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationInference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval
Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT  Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationOnesample test of proportions
Oesample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:
More informationPractice Problems for Test 3
Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all
More informationCenter, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More informationConfidence Intervals
Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More informationSTA 2023 Practice Questions Exam 2 Chapter 7 sec 9.2. Case parameter estimator standard error Estimate of standard error
STA 2023 Practice Questios Exam 2 Chapter 7 sec 9.2 Formulas Give o the test: Case parameter estimator stadard error Estimate of stadard error Samplig Distributio oe mea x s t (1) oe p ( 1 p) CI: prop.
More information15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011
15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes highdefiitio
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationChapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More information0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%
Sectio 10 Aswer Key: 0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9% 1) A simple radom sample of New Yorkers fids that 87 are
More informationChapter 14 Nonparametric Statistics
Chapter 14 Noparametric Statistics A.K.A. distributiofree statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they
More informationMannWhitney U 2 Sample Test (a.k.a. Wilcoxon Rank Sum Test)
NoParametric ivariate Statistics: WilcoxoMaWhitey 2 Sample Test 1 MaWhitey 2 Sample Test (a.k.a. Wilcoxo Rak Sum Test) The (Wilcoxo) MaWhitey (WMW) test is the oparametric equivalet of a pooled
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationOverview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
More informationProfessional Networking
Professioal Networkig 1. Lear from people who ve bee where you are. Oe of your best resources for etworkig is alumi from your school. They ve take the classes you have take, they have bee o the job market
More informationMEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)
MEI Mathematics i Educatio ad Idustry MEI Structured Mathematics Module Summary Sheets Statistics (Versio B: referece to ew book) Topic : The Poisso Distributio Topic : The Normal Distributio Topic 3:
More informationNonlife insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring
Nolife isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationAnalyzing Longitudinal Data from Complex Surveys Using SUDAAN
Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationLesson 15 ANOVA (analysis of variance)
Outlie Variability betwee group variability withi group variability total variability Fratio Computatio sums of squares (betwee/withi/total degrees of freedom (betwee/withi/total mea square (betwee/withi
More informationThis document contains a collection of formulas and constants useful for SPC chart construction. It assumes you are already familiar with SPC.
SPC Formulas ad Tables 1 This documet cotais a collectio of formulas ad costats useful for SPC chart costructio. It assumes you are already familiar with SPC. Termiology Geerally, a bar draw over a symbol
More informationUnit 8: Inference for Proportions. Chapters 8 & 9 in IPS
Uit 8: Iferece for Proortios Chaters 8 & 9 i IPS Lecture Outlie Iferece for a Proortio (oe samle) Iferece for Two Proortios (two samles) Cotigecy Tables ad the χ test Iferece for Proortios IPS, Chater
More informationSampling Distribution And Central Limit Theorem
() Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,
More informationA Test of Normality. 1 n S 2 3. n 1. Now introduce two new statistics. The sample skewness is defined as:
A Test of Normality Textbook Referece: Chapter. (eighth editio, pages 59 ; seveth editio, pages 6 6). The calculatio of p values for hypothesis testig typically is based o the assumptio that the populatio
More informationAP Calculus AB 2006 Scoring Guidelines Form B
AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a otforprofit membership associatio whose missio is to coect studets to college success
More informationConfidence intervals and hypothesis tests
Chapter 2 Cofidece itervals ad hypothesis tests This chapter focuses o how to draw coclusios about populatios from sample data. We ll start by lookig at biary data (e.g., pollig), ad lear how to estimate
More informationG r a d e. 2 M a t h e M a t i c s. statistics and Probability
G r a d e 2 M a t h e M a t i c s statistics ad Probability Grade 2: Statistics (Data Aalysis) (2.SP.1, 2.SP.2) edurig uderstadigs: data ca be collected ad orgaized i a variety of ways. data ca be used
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationStatistical inference: example 1. Inferential Statistics
Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationTopic 5: Confidence Intervals (Chapter 9)
Topic 5: Cofidece Iterval (Chapter 9) 1. Itroductio The two geeral area of tatitical iferece are: 1) etimatio of parameter(), ch. 9 ) hypothei tetig of parameter(), ch. 10 Let X be ome radom variable with
More informationHypothesis testing using complex survey data
Hypotesis testig usig complex survey data A Sort Course preseted by Peter Ly, Uiversity of Essex i associatio wit te coferece of te Europea Survey Researc Associatio Prague, 5 Jue 007 1 1. Objective: Simple
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationResearch Method (I) Knowledge on Sampling (Simple Random Sampling)
Research Method (I) Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact
More informationMaximum Likelihood Estimators.
Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio
More informationSTATISTICAL METHODS FOR BUSINESS
STATISTICAL METHODS FOR BUSINESS UNIT 7: INFERENTIAL TOOLS. DISTRIBUTIONS ASSOCIATED WITH SAMPLING 7.1. Distributios associated with the samplig process. 7.2. Iferetial processes ad relevat distributios.
More information, a Wishart distribution with n 1 degrees of freedom and scale matrix.
UMEÅ UNIVERSITET Matematiskstatistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 00409 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More informationBest of security and convenience
Get More with Additioal Cardholders. Importat iformatio. Add a coapplicat or authorized user to your accout ad you ca take advatage of the followig beefits: RBC Royal Bak Visa Customer Service Cosolidate
More informationTrading the randomness  Designing an optimal trading strategy under a drifted random walk price model
Tradig the radomess  Desigig a optimal tradig strategy uder a drifted radom walk price model Yuao Wu Math 20 Project Paper Professor Zachary Hamaker Abstract: I this paper the author iteds to explore
More informationFM4 CREDIT AND BORROWING
FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer
More informationBond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond
What is a bod? Bod Valuatio I Bod is a I.O.U. Bod is a borrowig agreemet Bod issuers borrow moey from bod holders Bod is a fixedicome security that typically pays periodic coupo paymets, ad a pricipal
More informationChapter XIV: Fundamentals of Probability and Statistics *
Objectives Chapter XIV: Fudametals o Probability ad Statistics * Preset udametal cocepts o probability ad statistics Review measures o cetral tedecy ad dispersio Aalyze methods ad applicatios o descriptive
More informationOverview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
More informationFrance caters to innovative companies and offers the best research tax credit in Europe
1/5 The Frech Govermet has three objectives : > improve Frace s fiscal competitiveess > cosolidate R&D activities > make Frace a attractive coutry for iovatio Tax icetives have become a key elemet of public
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationThe Forgotten Middle. research readiness results. Executive Summary
The Forgotte Middle Esurig that All Studets Are o Target for College ad Career Readiess before High School Executive Summary Today, college readiess also meas career readiess. While ot every high school
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More information3. If x and y are real numbers, what is the simplified radical form
lgebra II Practice Test Objective:.a. Which is equivalet to 98 94 4 49?. Which epressio is aother way to write 5 4? 5 5 4 4 4 5 4 5. If ad y are real umbers, what is the simplified radical form of 5 y
More informationAgenda. Outsourcing and Globalization in Software Development. Outsourcing. Outsourcing here to stay. Outsourcing Alternatives
Outsourcig ad Globalizatio i Software Developmet Jacques Crocker UW CSE Alumi 2003 jc@cs.washigto.edu Ageda Itroductio The Outsourcig Pheomeo Leadig Offshore Projects Maagig Customers Offshore Developmet
More informationMultiserver Optimal Bandwidth Monitoring for QoS based Multimedia Delivery Anup Basu, Irene Cheng and Yinzhe Yu
Multiserver Optimal Badwidth Moitorig for QoS based Multimedia Delivery Aup Basu, Iree Cheg ad Yizhe Yu Departmet of Computig Sciece U. of Alberta Architecture Applicatio Layer Request receptio coectio
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationNormal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
More informationGOOD PRACTICE CHECKLIST FOR INTERPRETERS WORKING WITH DOMESTIC VIOLENCE SITUATIONS
GOOD PRACTICE CHECKLIST FOR INTERPRETERS WORKING WITH DOMESTIC VIOLENCE SITUATIONS I the sprig of 2008, Stadig Together agaist Domestic Violece carried out a piece of collaborative work o domestic violece
More informationAP Calculus BC 2003 Scoring Guidelines Form B
AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationGCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea  add up all
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More information1 The Gaussian channel
ECE 77 Lecture 0 The Gaussia chael Objective: I this lecture we will lear about commuicatio over a chael of practical iterest, i which the trasmitted sigal is subjected to additive white Gaussia oise.
More informationTHE ARITHMETIC OF INTEGERS.  multiplication, exponentiation, division, addition, and subtraction
THE ARITHMETIC OF INTEGERS  multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,
More informationA Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design
A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 168040030 haupt@ieee.org Abstract:
More informationMARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measuretheoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
More informationA GUIDE TO LEVEL 3 VALUE ADDED IN 2013 SCHOOL AND COLLEGE PERFORMANCE TABLES
A GUIDE TO LEVEL 3 VALUE ADDED IN 2013 SCHOOL AND COLLEGE PERFORMANCE TABLES Cotets Page No. Summary Iterpretig School ad College Value Added Scores 2 What is Value Added? 3 The Learer Achievemet Tracker
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationPROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
More informationINVESTMENT PERFORMANCE COUNCIL (IPC)
INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks
More informationTHE ROLE OF EXPORTS IN ECONOMIC GROWTH WITH REFERENCE TO ETHIOPIAN COUNTRY
 THE ROLE OF EXPORTS IN ECONOMIC GROWTH WITH REFERENCE TO ETHIOPIAN COUNTRY BY: FAYE ENSERMU CHEMEDA EthioItalia Cooperatio ArsiBale Rural developmet Project Paper Prepared for the Coferece o Aual Meetig
More informationLECTURE 13: Crossvalidation
LECTURE 3: Crossvalidatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Threeway data partitioi Itroductio to Patter Aalysis Ricardo GutierrezOsua Texas A&M
More informationThe Stable Marriage Problem
The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,
More informationPFF2 2015/16. Assessment of Financial Circumstances For parents and partners of students. /SFEngland. /SF_England SFE/PFF2/1516/B
PFF2 2015/16 Assessmet of Fiacial Circumstaces For parets ad parters of studets SFE/PFF2/1516/B /SF_Eglad /SFEglad Who should complete this form? Complete this form if you are: The studet s atural or adoptive
More informationInvesting in Stocks WHAT ARE THE DIFFERENT CLASSIFICATIONS OF STOCKS? WHY INVEST IN STOCKS? CAN YOU LOSE MONEY?
Ivestig i Stocks Ivestig i Stocks Busiesses sell shares of stock to ivestors as a way to raise moey to fiace expasio, pay off debt ad provide operatig capital. Ecoomic coditios: Employmet, iflatio, ivetory
More informationCharacterizing EndtoEnd Packet Delay and Loss in the Internet
Characterizig EdtoEd Packet Delay ad Loss i the Iteret JeaChrysostome Bolot Xiyu Sog Preseted by Swaroop Sigh Layout Itroductio Data Collectio Data Aalysis Strategy Aalysis of packet delay Aalysis of
More informationNow here is the important step
LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"
More informationIs there employment discrimination against the disabled? Melanie K Jones i. University of Wales, Swansea
Is there employmet discrimiatio agaist the disabled? Melaie K Joes i Uiversity of Wales, Swasea Abstract Whilst cotrollig for uobserved productivity differeces, the gap i employmet probabilities betwee
More informationNational Institute on Aging. What Is A Nursing Home?
Natioal Istitute o Agig AgePage Nursig Homes: Makig The Right Choice Lucille has lived i her home for 33 years. Eve after her husbad died 3 years ago, she was able to maage o her ow. Recetly, she broke
More informationTell us if you need help because of a disability Ask for a free interpreter
Your rights uder Califoria Welfare Programs for people applyig for or receivig public aid i Califoria Tell us if you eed help because of a disability Ask for a free iterpreter 2 Your rights all people
More informationBuilding Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationUM USER SATISFACTION SURVEY 2011. Final Report. September 2, 2011. Prepared by. ers eresearch & Solutions (Macau)
UM USER SATISFACTION SURVEY 2011 Fial Report September 2, 2011 Prepared by ers eresearch & Solutios (Macau) 1 UM User Satisfactio Survey 2011 A Collaboratio Work by Project Cosultat Dr. Agus Cheog ers
More informationGet advice now. Are you worried about your mortgage? New edition
New editio Jauary 2009 Are you worried about your mortgage? Get advice ow If you are strugglig to pay your mortgage, or you thik it will be difficult to pay more whe your fixedrate deal eds, act ow to
More information