LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number
|
|
|
- Elisabeth Waters
- 10 years ago
- Views:
Transcription
1 LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number Open channel flow must have a free surface. Normally free water surface is subjected to atmospheric pressure, which remains relatively constant througout the entire length of the channel. z V + P z V + P h L The pressure distribution in any section is directly proportional to the depth measured from the free water surface. In this case, the water surface lines corresponds to the hydraulic gradient line in pipe flow. z V + y z 2 V +y h L 1
2 9.1. Important terms in open channel flow: Top width of the channel = T, Width of the channel, W T W Wetted Perimeter (P) F Hydraulic Radius (R) W F A Hydraulic Depth (D) = T W Hydraulic radius for full flow R.D /.D = D, Full flow Hydraulic radius for half-full flow R.D //.D / = D Half - full Bottom Slope, S Side Slope (m) 2
3 2 common equations for the analysis of uniform open channel flow. Uniform = flow area does not change with the length of channel a) Chezy Equation b) Manning s Equation (derived from Chezy Equation) Chezy Equation: First Formula for uniform open channel flow. V C. R. S Velocity m/s Chezy s constant S = Slope of HGL for uniform flow S S C =./S/ /R../S C R R m = Depends on pipe material m = 0.35 for concrete pipe m = 0.25 for vitrified clay pipe Manning s Equation C. R/ Emprical relation for Chezy s constant V 1 n. R/. R /. S / 3
4 V 1 n. R/. S / Slope of EGL = L L Velocity m/s Manning s Constant Hydraulic Radius 9.2 Open Channel Flow Classification Space & Time Uniform Varied Flow Steady Flow Unsteady Flow Graduady Varied Flow Rapidly Varied Flow Uniform Flow: Water depth remains same along the channel length at a given time Varied Flow: Water depth or discharge changes along the length at a given time Steady Flow: The discharge and water depth at any section in the reach do not change with time. Unsteady Flow: The discharge and water depth at any section in the reach change with time. Uniform Flow => Water depth = Normal depth y 8.3. Uniform Flow in Open Channels 1. Water depth, flow area, discharge and velocity must remain unchanged in all sections of the entire channel. 2. EGL, the water surface, the channel bottom must be parellel to each other S S.. S Slope of EGL Slope water surface Slope of Channel 4
5 Example 9.1 (Ex. 6.1, Hwang, 4th Edition): A 3 m wide rectangular channel a discharge of 25 m /s at a uniform depth of 1.2 m. Determine the slope of the channel if n V. R /. S / y = 1.2 m Slope of EGL b = 3 m Area = b. y m ρ 2y b m R A/P 3.6 m/5.4 m 0.67 m Q A.R /. S / Q. A.R / S. /..... / S S
6 9.3 Energy Principles in Open Channel Flow Enerygy contained in a unit weight of water flowing in an open channel may also be measured in three basic forms: 1. Kinetic Energy 2. Pressure Energy 3. Elevation (Potential) Energy above a certain datum line. 1-) V Q A = V 2-) P = y Flow area in the channel Flow area in the channel Pressure energy in open channel flow is usually computed with reference to the free surface. If the free surface in a channel approximates a straight line slope, the pressure at any submerged point A is equal to the vertical distance measured from the free surface to the point. Figure 6.7 Flow over curved surfaces: (a) convex surface and (b) concave surface P y V P y V 6
7 Total energy in open channel H=z V + y Specific Energy (E) Energy with respect to channel bottom E y V E Q..A y For a given water area and discharge For a given discharge, Q, specific energy (E) at any section is a function of depth of flow only. Depth of flow Specific energy for a given discharge Vertex C on a specific enetgy curve represents the depth (yc) at which the discharge Q may be delivered through the section at minimum energy, E c. This depth is commonly known as the critical depth fort he discharge Q at a given section. The corresponding flow in the section is knwon as the critical flow. At a smaller depth the same dicharge can be delivered 7
8 only by a higher velocity and, hence, a higher specific energy. The state of rapid and shallow flow through a section is known as supercritical flow or rapid flow. At a larger depth the same discharge may be delivered through the section with a smaller velocity and a higher specific enerrgy than a critical depth. It is known as subcritical flow. For a given value of specific energy, E1, the discharge may pass through the channel section at either depth d1 (supercritical flow) or d2 (subcritical flow). These two depths known as alternate depths Froude Number At critical state the spefic energy of the flow takes a minimum value. This value can be computed by equating the first derivative of the specific energy with respect to the water depth zero. E. Q A. y Q. A.A +1 =0 A =Differantial water area=t Q.A. T +1 = 0 A/T = D Hydraulic Depth for rectangular sections D = y for rectangular cross sections Q.A. T = 0 V.D.A = 0 or V.D 1 V Froude number, N F =.D 8
9 F = 1 Flow is in critical state F < 1 Subcritical state F > 1 Supercritical state Q = A T D. A D = y A = b.y Q =. T y. A Q y. b q Q F Unit discharge y Q. y. 9
What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)
OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure
OPEN-CHANNEL FLOW. Free surface. P atm
OPEN-CHANNEL FLOW Open-channel flow is a flow of liquid (basically water) in a conduit with a free surface. That is a surface on which pressure is equal to local atmospheric pressure. P atm Free surface
M6a: Open Channel Flow (Manning s Equation, Partially Flowing Pipes, and Specific Energy)
M6a: Open Channel Flow (, Partially Flowing Pipes, and Specific Energy) Steady Non-Uniform Flow in an Open Channel Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Continuity
Experiment (13): Flow channel
Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and
Open channel flow Basic principle
Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure
Chapter 9. Steady Flow in Open channels
Chapter 9 Steady Flow in Open channels Objectives Be able to define uniform open channel flow Solve uniform open channel flow using the Manning Equation 9.1 Uniform Flow in Open Channel Open-channel flows
Appendix 4-C. Open Channel Theory
4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient
Chapter 13 OPEN-CHANNEL FLOW
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required
Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient
Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient Open Channel Flow 1. Uniform flow - Manning s Eqn in a prismatic channel - Q, V, y, A, P, B, S and roughness are all constant
CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow
CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented
Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology
M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: [email protected] Landline: +98 21 77240391 Fall 2013 Introduction
Exercise (4): Open Channel Flow - Gradually Varied Flow
Exercise 4: Open Channel Flow - Gradually Varied Flow 1 A wide channel consists of three long reaches and has two gates located midway of the first and last reaches. The bed slopes for the three reaches
Lecture 25 Design Example for a Channel Transition. I. Introduction
Lecture 5 Design Example for a Channel Transition I. Introduction This example will be for a transition from a trapezoidal canal section to a rectangular flume section The objective of the transition design
Hydraulics Laboratory Experiment Report
Hydraulics Laboratory Experiment Report Name: Ahmed Essam Mansour Section: "1", Monday 2-5 pm Title: Flow in open channel Date: 13 November-2006 Objectives: Calculate the Chezy and Manning coefficients
21. Channel flow III (8.10 8.11)
21. Channel flow III (8.10 8.11) 1. Hydraulic jump 2. Non-uniform flow section types 3. Step calculation of water surface 4. Flow measuring in channels 5. Examples E22, E24, and E25 1. Hydraulic jump Occurs
Open Channel Flow 2F-2. A. Introduction. B. Definitions. Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow
Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow 2F-2 Open Channel Flow A. Introduction The beginning of any channel design or modification is to understand the hydraulics of the stream. The
STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL. OFFICE OF DESIGN, DRAINAGE SECTION November 2009 TALLAHASSEE, FLORIDA
STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL OFFICE OF DESIGN, DRAINAGE SECTION TALLAHASSEE, FLORIDA Table of Contents Open Channel Handbook Chapter 1 Introduction... 1
2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT
2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the
CITY UTILITIES DESIGN STANDARDS MANUAL
CITY UTILITIES DESIGN STANDARDS MANUAL Book 2 (SW) SW9 June 2015 SW9.01 Purpose This Chapter provides information for the design of open channels for the conveyance of stormwater in the City of Fort Wayne.
CHAPTER 4 OPEN CHANNEL HYDRAULICS
CHAPTER 4 OPEN CHANNEL HYDRAULICS 4. Introduction Open channel flow refers to any flow that occupies a defined channel and has a free surface. Uniform flow has been defined as flow with straight parallel
CEE 370 Fall 2015. Laboratory #3 Open Channel Flow
CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:
LECTURE 1: Review of pipe flow: Darcy-Weisbach, Manning, Hazen-Williams equations, Moody diagram
LECTURE 1: Review of pipe flow: Darcy-Weisbach, Manning, Hazen-Williams equations, Moody diagram 1.1. Important Definitions Pressure Pipe Flow: Refers to full water flow in closed conduits of circular
Civil Engineering Hydraulics Open Channel Flow. Adult: Where s your costume? What are you supposed to be?
Civil Engineering Hydraulics Calvin: Trick or treat! Adult: Where s your costume? What are you supposed to be? Calvin: I m yet another resource-consuming kid in an overpopulated planet, raised to an alarming
Lecture 24 Flumes & Channel Transitions. I. General Characteristics of Flumes. Flumes are often used:
Lecture 24 Flumes & Channel Transitions I. General Characteristics of Flumes Flumes are often used: 1. Along contours of steep slopes where minimal excavation is desired 2. On flat terrain where it is
Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978)
Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978) I. An Example Culvert Design Design a concrete culvert using the
...Eq(11.6) The energy loss in the jump is dependent on the two depths y 1 and y 2 3 = E =...Eq(11.7)
. Open Channel Flow Contd.5 Hydraulic Jump A hydraulic jump occurs when water in an open channel is flowing supercritical and is slowed by a deepening of the channel or obstruction in the channel. The
Chapter 10. Open- Channel Flow
Updated: Sept 3 2013 Created by Dr. İsmail HALTAŞ Created: Sept 3 2013 Chapter 10 Open- Channel Flow based on Fundamentals of Fluid Mechanics 6th EdiAon By Munson 2009* *some of the Figures and Tables
Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507. Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.
Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com Many examples of open channel flow can be approximated
2O-1 Channel Types and Structures
Iowa Stormwater Management Manual O-1 O-1 Channel Types and Structures A. Introduction The flow of water in an open channel is a common event in Iowa, whether in a natural channel or an artificial channel.
Design Charts for Open-Channel Flow HDS 3 August 1961
Design Charts for Open-Channel Flow HDS 3 August 1961 Welcome to HDS 3-Design Charts for Open-Channel Flow Table of Contents Preface DISCLAIMER: During the editing of this manual for conversion to an electronic
Topic 8: Open Channel Flow
3.1 Course Number: CE 365K Course Title: Hydraulic Engineering Design Course Instructor: R.J. Charbeneau Subject: Open Channel Hydraulics Topics Covered: 8. Open Channel Flow and Manning Equation 9. Energy,
CIVE2400 Fluid Mechanics Section 2: Open Channel Hydraulics
CIVE400 Fluid Mechanics Section : Open Channel Hydraulics. Open Channel Hydraulics.... Definition and differences between pipe flow and open channel flow.... Types of flow.... Properties of open channels...
Module 9: Basics of Pumps and Hydraulics Instructor Guide
Module 9: Basics of Pumps and Hydraulics Instructor Guide Activities for Unit 1 Basic Hydraulics Activity 1.1: Convert 45 psi to feet of head. 45 psis x 1 ft. = 103.8 ft 0.433 psi Activity 1.2: Determine
Broad Crested Weirs. I. Introduction
Lecture 9 Broad Crested Weirs I. Introduction The broad-crested weir is an open-channel flow measurement device which combines hydraulic characteristics of both weirs and flumes Sometimes the name ramp
CHAPTER 5 OPEN CHANNEL HYDROLOGY
5.4 Uniform Flow Calculations 5.4.1 Design Charts CHAPTER 5 OPEN CHANNEL HYDROLOGY Following is a discussion of the equations that can be used for the design and analysis of open channel flow. The Federal
EVALUATION OF UNSTEADY OPEN CHANNEL FLOW CHARACTERISTICS OVER A CRUMP WEIR
EVALUATION OF UNSTEADY OPEN CHANNEL FLOW CHARACTERISTICS OVER A CRUMP WEIR Mohd Adib Mohd Razi, Dwi Tjahjanto, Wan Afnizan Wan Mohamed, Siti Norashikin Binti Husin Department of Water Resource and Environmental
Note: first and second stops will be reversed. Bring clothing and shoes suitable for walking on rough ground.
Open Channel Page 1 Intro check on laboratory results Field Trip Note: first and second stops will be reversed Irrigation and Drainage Field Trip Bring clothing and shoes suitable for walking on rough
Module 7: Hydraulic Design of Sewers and Storm Water Drains. Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains
1 P age Module 7: Hydraulic Design of Sewers and Storm Water Drains Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains 2 P age 7.1 General Consideration Generally, sewers are laid at steeper
1. Carry water under the canal 2. Carry water over the canal 3. Carry water into the canal
Lecture 21 Culvert Design & Analysis Much of the following is based on the USBR publication: Design of Small Canal Structures (1978) I. Cross-Drainage Structures Cross-drainage is required when a canal
CHAPTER 3 STORM DRAINAGE SYSTEMS
CHAPTER 3 STORM DRAINAGE SYSTEMS 3.7 Storm Drains 3.7.1 Introduction After the tentative locations of inlets, drain pipes, and outfalls with tail-waters have been determined and the inlets sized, the next
Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations
Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.
Hydraulics Prof. A. K. Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati. Module No. # 02 Uniform Flow Lecture No.
Hydraulics Prof. A. K. Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No. # 02 Uniform Flow Lecture No. # 04 Computation of Uniform Flow (Part 02) Welcome to this
Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical
European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru
Basic Hydrology. Time of Concentration Methodology
Basic Hydrology Time of Concentration Methodology By: Paul Schiariti, P.E., CPESC Mercer County Soil Conservation District What is the Time of Concentration? The time it takes for runoff to travel from
EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015
EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015 Normal and Critical Depths Q1. If the discharge in a channel of width 5 m is 20 m 3 s 1 and Manning s n is 0.02 m 1/3 s, find: (a) the normal depth and Froude number
1 Fundamentals of. open-channel flow 1.1 GEOMETRIC ELEMENTS OF OPEN CHANNELS
1 Fundamentals of open-channel flow Open channels are natural or manmade conveyance structures that normally have an open top, and they include rivers, streams and estuaries. n important characteristic
FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUT-SW
FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUT-SW Daniel J. Howes, P.E. 1 Charles M. Burt, Ph.D., P.E. 2 Brett F. Sanders, Ph.D. 3 ABSTRACT Acoustic
A n. P w Figure 1: Schematic of the hydraulic radius
BEE 473 Watershed Engineering Fall 2004 OPEN CHANNELS The following provide the basic equations and relationships used in open channel design. Although a variety of flow conditions can exist in a channel
FUNDAMENTALS OF FLUID MECHANICS Chapter 10 Flow in Open Channels
FUNDAMENTALS OF FLUID MECHANICS Chapter 10 Flow in Open Channels Jyh-Cherng Shieh Department of Bio-Industrial Mechatronics Engineering National Taiwan University 1 MAIN TOPICS General Characteristics
Basic Hydraulic Principles
CHAPTER 1 Basic Hydraulic Principles 1.1 General Flow Characteristics In hydraulics, as with any technical topic, a full understanding cannot come without first becoming familiar with basic terminology
Design of open channel
Design of open channel Manning s n Sides slope Seepage losses Evaporation losses Free board Data ssumptions Two unknowns b & Flow rate Q Tpe of soil Longitudinal slope S Meterlogical data (temp., wind...etc.
Open Channel Flow Measurement Weirs and Flumes
Open Channel Flow Measurement Weirs and Flumes by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here Measuring the flow rate of water in an open channel typically involves some type of
Proceeding of International Seminar on Application of Science Matehmatics 2011 (ISASM2011) PWTC, KL, Nov, 1-3, 2011
Proceeding of International Seminar on Application of Science Matehmatics 2011 (ISASM2011) PWTC, KL, Nov, 1-3, 2011 INFLUENCE OF BED ROUGHNESS IN OPEN CHANNEL Zarina Md Ali 1 and Nor Ashikin Saib 2 1 Department
CHAPTER 860 OPEN CHANNELS
HIGHWAY DESIGN MANUAL 860-1 CHAPTER 860 OPEN CHANNELS Topic 861 - General Index 861.1 - Introduction An open channel is a conveyance in which water flows with a free surface. Although closed conduits such
Spreadsheet Use for Partially Full Pipe Flow Calculations
Spreadsheet Use for Partially Full Pipe Flow Calculations Course No: C02-037 Credit: 2 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY
Travel Time. Computation of travel time and time of concentration. Factors affecting time of concentration. Surface roughness
3 Chapter 3 of Concentration and Travel Time Time of Concentration and Travel Time Travel time ( T t ) is the time it takes water to travel from one location to another in a watershed. T t is a component
MODELING FLUID FLOW IN OPEN CHANNEL WITH CIRCULAR CROSS SECTION DADDY PETER TSOMBE MASTER OF SCIENCE. (Applied Mathematics)
MODELING FLUID FLOW IN OPEN CHANNEL WITH CIRCULAR CROSS SECTION DADDY PETER TSOMBE MASTER OF SCIENCE (Applied Mathematics) JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY 2011 Modeling fluid flow
APPENDIX M-2 SANITARY SEWER TECHNICAL MEMORANDUM. Stadium Reconstruction EIR
APPENDIX M-2 SANITARY SEWER TECHNICAL MEMORANDUM Stadium Reconstruction EIR Appendices \ AECOM Technical Services, Inc 401 West A Street Suite 1200 San Diego, CA 92101 www.aecom.com 619-610-7600 tel 619-610-7601
Index-Velocity Rating Development for Rapidly Changing Flows in an Irrigation Canal Using Broadband StreamPro ADCP and ChannelMaster H-ADCP
Index-Velocity Rating Development for Rapidly Changing Flows in an Irrigation Canal Using Broadband StreamPro ADCP and ChannelMaster H-ADCP HENING HUANG, RD Instruments, 9855 Businesspark Avenue, San Diego,
Rational Method Hydrologic Calculations with Excel. Rational Method Hydrologic Calculations with Excel, Course #508. Presented by:
Rational Method Hydrologic Calculations with Excel, Course #508 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com Calculation of peak storm water runoff rate from a drainage
Urban Hydraulics. 2.1 Basic Fluid Mechanics
Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able
THE UNIVERSITY OF TRINIDAD & TOBAGO
THE UNIVERSITY OF TRINIDAD & TOBAGO FINAL ASSESSMENT/EXAMINATIONS APRIL 2014 Course Code and Title: Programme: Date and Time: Duration: HYDRAULICS FLUD2006 BASc. Civil Engineering Wednesday 16 th April,
Section 3. HYDRAULIC DESIGN A. Weirs and Orifices
Section 3. HYDRAULIC DESIGN A. Weirs and Orifices NOTE: Some of the graphs contained in this section are copied from the Los Angeles Hydraulics Manual and we wish to give them credit for their efforts.
L r = L m /L p. L r = L p /L m
NOTE: In the set of lectures 19/20 I defined the length ratio as L r = L m /L p The textbook by Finnermore & Franzini defines it as L r = L p /L m To avoid confusion let's keep the textbook definition,
CHAPTER 5 OPEN-CHANNEL FLOW
CHAPTER 5 OPEN-CHANNEL FLOW 1. INTRODUCTION 1 Open-channel flows are those that are not entirely included within rigid boundaries; a part of the flow is in contract with nothing at all, just empty space
Lecture 6. Jump as energy dissipation Control of jump.
Lecture 6 Jump as energy dissipation Control of jump. Jump as energy dissipation The high energy loss that occurs in a hydraulic jump has led to its adoption as a part of high energy dissipater system
Emergency Spillways (Sediment basins)
Emergency Spillways (Sediment basins) DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short-Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1] [1]
Calculating resistance to flow in open channels
Alternative Hydraulics Paper 2, 5 April 2010 Calculating resistance to flow in open channels http://johndfenton.com/alternative-hydraulics.html [email protected] Abstract The Darcy-Weisbach formulation
CONTENTS Channels. 1 Introduction... 7.1
CONTENTS Channels Introduction... 7. Flow classification... 7.. Steady uniform flow... 7.. Unsteady non-uniform flow... 7.. Unsteady uniform flow... 7. Laminar and turbulent flow... 7. 4 Flow equations...
DIVISION OF WATER QUALITY CONSTRUCTION GRANTS & LOANS SECTION FAST TRACK AUDIT CHECKLIST
DIVISION OF WATER QUALITY CONSTRUCTION GRANTS & LOANS SECTION FAST TRACK AUDIT CHECKLIST CERTIFICATION 1. Did the engineer submit a certificate of completion utilizing the appropriate page of the issued
Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506. Presented by:
Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com A weir is basically an obstruction in an open channel
Chapter 7 Ditches and Channels
Chapter 7 Ditches and Channels TABLE OF CONTENTS CHAPTER 7 - DITCHES AND CHANNELS... 7-1 7.1 Introduction... 7-1 7.2 Design Policy... 7-2 7.2.1 Federal Policy... 7-2 7.2.2 Commonwealth of Virginia Policy...
Guo, James C.Y. (2004). Design of Urban Channel Drop Structure, J. of Flood Hazards News, December,
Guo, James C.. (004). esign of Urban Channel rop Structure, J. of Flood azards News, ecember, Guo, James C.., (009) Grade Control for Urban Channel esign, submitted to Elsevier Science, J. of ydro-environmental
Chapter 9 Sanitary Sewers
Chapter 9 Sanitary Sewers S:/Engineering/Design Standards/Chapter 9 12/29/2014 Section 9.1 Topic General Requirements Chapter 9 Sanitary Sewers Page 9-1 9.2 Plan Submittals 9-1 9.3 Determination of Flow
CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 800 STORM SEWER SYSTEMS TABLE OF CONTENTS
CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 800 STORM SEWER SYSTEMS TABLE OF CONTENTS 801 INTRODUCTION 803 802 DESIGN PARAMETERS 804 802.1 - Allowable
Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity
1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood
Principles of groundwater flow
Principles of groundwater flow Hydraulic head is the elevation to which water will naturally rise in a well (a.k.a. static level). Any well that is not being pumped will do for this, but a well that is
Part 654 Stream Restoration Design National Engineering Handbook
United States Department of Agriculture Natural Resources Conservation Service Stream Restoration Design Chapter 6 Issued August 007 Cover photo: Stream hydraulics focus on bankfull frequencies, velocities,
Open Channel Flow in Aquaculture
SRAC Publication No. 74 Southern Regional Aquaculture Center March 1995 PR VI Open Channel Flow in Aquaculture J. David Bankston, Jr. 1 and Fred Eugene Baker Open channel flow of water has been used in
Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright
MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2
MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we
Chapter 12 - HYDROLOGICAL MEASUREMENTS
Water Quality Monitoring - A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes Edited by Jamie Bartram and Richard Ballance Published on behalf of
CHAPTER 4 STORM DRAINAGE SYSTEMS
CHAPTER 4 STORM DRAINAGE SYSTEMS 4.1 Overview... 4-1 4.1.1 Introduction... 4-1 4.1.2 Inlet Definition... 4-1 4.1.3 Criteria... 4-1 4.2 Pavement Drainage... 4-2 4.2.1 Introduction... 4-2 4.2.2 Storm Drain
VOLUME AND SURFACE AREAS OF SOLIDS
VOLUME AND SURFACE AREAS OF SOLIDS Q.1. Find the total surface area and volume of a rectangular solid (cuboid) measuring 1 m by 50 cm by 0.5 m. 50 1 Ans. Length of cuboid l = 1 m, Breadth of cuboid, b
Performing a Steady Flow Analysis
C H A P T E R 7 Performing a Steady Flow Analysis This chapter discusses how to calculate steady flow water surface profiles. The chapter is divided into two parts. The first part discusses how to enter
FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER
VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect
For Water to Move a driving force is needed
RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND
Evaluation of Open Channel Flow Equations. Introduction :
Evaluation of Open Channel Flow Equations Introduction : Most common hydraulic equations for open channels relate the section averaged mean velocity (V) to hydraulic radius (R) and hydraulic gradient (S).
TENNESSEE GAS PIPELINE COMPANY, L.L.C.
TENNESSEE GAS PIPELINE COMPANY, L.L.C. HYDROLOGIC & HYDRAULIC CALCULATIONS FOR WATERBODIES CROSSED BY CONNECTICUT PIPELINE EXPANSION PROJECT CONNECTICUT LOOP Submitted by: Tennessee Gas Pipeline Company,
XI / PHYSICS FLUIDS IN MOTION 11/PA
Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A
Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
DRAINAGE MANUAL CHAPTER VII STORM DRAINAGE SYSTEMS
TDOT DESIGN DIVISION DRAINAGE MANUAL CHAPTER VII STORM DRAINAGE SYSTEMS August 1, 2012 CHAPTER 7 STORM DRAINAGE SYSTEMS SECTION 7.01 INTRODUCTION 7.01 INTRODUCTION...7-1 SECTION 7.02 DOCUMENTATION PROCEDURES
oil liquid water water liquid Answer, Key Homework 2 David McIntyre 1
Answer, Key Homework 2 David McIntyre 1 This print-out should have 14 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making
CHAPTER: 6 FLOW OF WATER THROUGH SOILS
CHAPTER: 6 FLOW OF WATER THROUGH SOILS CONTENTS: Introduction, hydraulic head and water flow, Darcy s equation, laboratory determination of coefficient of permeability, field determination of coefficient
Scattergraph Principles and Practice Practical Application of the Froude Number to Flow Monitor Data
Scattergraph Principles and Practice Practical Application of the Froude Number to Flow Monitor Data Kevin L. Enfinger, P.E. and Patrick L. Stevens, P.E. ADS Environmental Services 4940 Research Drive
From Civil 3D, with Love
From Civil 3D, with Love Download the zip file containing the files needed for the exercise. Extract the files to a convenient location on your hard drive before you begin. The files associated with this
** Pressure represents energy when a. pressure difference is available.
4 * ** Pressure represents energy when a pressure difference is available. Potential Energy Datum Potential Energy Datum Pressure Energy Pressure Energy Kinetic Energy Kinetic Energy Kinetic Energy Dividing
Steven R. McManus Environmental Product Support Teledyne Isco
Steven R. McManus Environmental Product Support Teledyne Isco Flow Measurement Applications and Technologies. Methods of flow measurement Technologies of flow measurement Flow Rate Applications Channel
REHABILITATION METHOD FOR INCREASING FLOW VELOCITY AND REDUCING SEDIMENTATION
.asu/ North American Society for Trenchless Technology (NASTT) NO-DIG 2005 Orlando, Florida April 24-27, 2005 REHABILITATION METHOD FOR INCREASING FLOW VELOCITY AND REDUCING SEDIMENTATION Hwan-Kook Hwang
