WhitePaper: XipLink Real-Time Optimizations
|
|
|
- Abigayle Walters
- 10 years ago
- Views:
Transcription
1 WhitePaper: XipLink Real-Time Optimizations XipLink Real Time Optimizations Header Compression, Packet Coalescing and Packet Prioritization Overview XipLink Real Time ( XRT ) is a new optimization capability that compresses, coalesces and prioritizes VOIP and UDP for significantly more bandwidth and packet efficiency without compromising quality. XRT can provide bandwidth savings up to 50% and guarantee quality delivery. This paper describes how small packet applications can benefit from optimization, how XRT functions, how XRT can be added to a network to deliver large bandwidth and packets per second reductions, and then specific XRT savings examples. XipLink, Inc P1
2 Introduction XipLink Real Time ( XRT ) is a new optimization capability that compresses, coalesces and prioritizes VOIP and UDP for significantly more bandwidth and packet efficiency without compromising quality. It provides key benefits including dramatic bandwidth reduction, significant reduction in the packets per second carried over a network, and ensures that real time traffic is properly prioritized for optimum quality. XRT optimizes small packets, in particular VOIP, but Skype and other UDP/TCP applications with many small packets can also benefit from XRT. While there are now many highly bandwidth efficient VOIP codecs available, they cannot address the header overhead. XRT removes the high overhead associated with IP packet delivery. XRT is available through XipLink s flexible and scalable line of Appliances (XA). Background The amount of voice traffic on satellite links continues to increase at a rapid pace, with significant growth in the use of VoIP, Skype and other voice applications. Real time traffic such as voice, which is based on small UDP packets, places a tremendous load on network devices due to the high packets per second per voice call. In addition, voice traffic such as H.323 based VoIP or Skype, is highly bandwidth inefficient as the packet headers are often the same size as the payload an overhead rate of 40%. Codec & Bit Rate (Kbps) Payload Size (Bytes) Sample period (ms) PPS Bandwidth (kbps) G.729 (8 Kbps) G.711 (64 Kbps G (6.3 Kbps) G.728 (16 Kbps) Skype (variable) ~ How can VOIP and UDP traffic benefit from optimization? It's true that they cannot be 'accelerated' in the same way that TCP traffic can be optimized, but there are important other optimizations that help both the quality, timeliness and bandwidth utilization of these real time applications. XipLink, Inc P 2
3 WhitePaper: XipLink Real-Time Optimizations VOIP and other streaming application can benefit from optimization in many ways: Approximately 40% of most VOIP packets are headers. Most headers do not change much from packet to packet: there is a lot of redundancy between packets -- even as they are sent milliseconds apart. This redundancy is true even with multiple streams (calls) : calls may often have a common destination or source IP address, but there is no sharing of headers between them. Inefficiency applies to all UDP standard VOIP as well as Skype etc., but in particular small packet applications (e.g. not full frame video streaming). These real-time steams need to be prioritized but managed through the network. Effective voice codecs are well established and provide excellent options to tune quality versus size. Little need to touch the data stream. Jitter and delay are critical in VOIP, but optimization is possible with minimal impact and in many cases will benefit from quality improvement at the same time. All of these issues and weaknesses are addressed by XRT. XRT Capabilities The primary features of the XipLink Real Time include: Header Compression ROHC Header Compression Coalescing Concatenate small packets together while minimizing jitter QoS Shaping and bandwidth control of traffic Header Compression The XipLink solution incorporates an implementation of the Robust Header Compression (ROHC) standard. This is an IETF standard and the most modern and effective technique for header compression. Header compression takes advantage of the streamed nature of the UDP protocol, since most headers stay the same or are similar (IP address is always the same, etc.), a small reference token is substituted for the repetitive fields. This typically reduces the packets from 40 bytes to 6 bytes or less. The XRT solution has profiles to compress the IP headers, UDP, UDPlite and then RTP for VOIP. So a UDP based application, like Skype, can have its UDP and IP headers compressed while maintaining it s own proprietary (non-rtp) session header. XipLink, Inc P3
4 So while the largest benefits can be seen from VOIP, an IP application can also benefit from XRT if it has streams of small packets, including TCP applications such as Citrix. ROHC is substantially more effective than older compression techniques such as crtp, for compression effectiveness, and for resilience against packet loss. Coalescing Coalescing groups multiple header-compressed packets together into a single packet. This can also be termed as aggregation. Compressed packets are concatenated within the coalesced packet. This allows the IP headers of individual packets to be compressed, yet provides an ultra-lightweight shell that provides route-ability and the correct DSCP mark as the packets it contains. Multiple coalescing queues are used, one for each DSCP class. This ensures that the QoS is maintained throughout the network. At the most basic level, it ensures that high priority traffic is not compromised by coalescing a larger non-priority packet, such as coalescing VOIP together with video. It also allows for multiple priority queues to be active at the same time, for instance it automatically supports Multi-Layer Protocol Prioritization (MLPP) in US government and military applications. XipLink, Inc P 4
5 WhitePaper: XipLink Real-Time Optimizations Once the capture window timer expires or the coalesced maximum size is reached, the coalesced packet is sent immediately. The capture window and maximum size of the coalesced packet can be configured. On a low bandwidth network, a smaller maximum packet size can be configured so the serialization delay does not contribute to jitter. A longer capture window can provide more benefit if there are only a few calls on a network link, but for VOIP, the value must be safely less than the jitter buffers of the phone systems. No packets are sent if there is nothing to coalesce. Despite the header compression, XRT has a valid IP header address so it is fully routable through any network. XRT is completely independent of the VOIP codec or payload being used, and different codecs can be combined in the same coalesced packet. To ensure that the QoS is properly enforced on the packet as it continues to traverse the network, a different coalescing queue is used for each DSCP value. This also helps ensure that a large video does not get lumped in with a more latency sensitive VOIP packet. The XA Appliance User Interface (UI) provides a means to configure what traffic should be compressed. VOIP traffic must be configured explicitly to use the RTP ROHC profile for maximum compression benefit, usually by specifying the call manager IP address on the network. XipLink, Inc P5
6 QoS and Prioritization XipLink Appliances also incorporate advanced QoS functionality, which is tightly coupled with other XipLink optimization functions. The QoS is also capable of working harmoniously with networks that already have an existing QoS implementation to support voice based applications. On networks with an existing QoS system, XRT ensures that optimized traffic retains the same DSCP tags, such that the QoS through the network is maintained and the VOIP is properly prioritized and served. On networks without QoS, as is typical of SCPC technologies, the XipOS QoS provides operators with the ability to prioritize and shape traffic using a Hierarchical Class Based Queuing technology. In addition, the operator can configure real-time, maximum and relative priorities. It also provides features specifically of interest for real time traffic delivery, including latency bounded queues which is a highly desirable feature for managing real time traffic effectively. These features give an operator a very rich classification engine, not only intended to classify the voice packets, but to simultaneously prioritize and ensure quality SLAs are achieved. In both cases, the end result will be bandwidth efficient, high quality voice and properly prioritized delivery of real-time data. XipLink, Inc P 6
7 WhitePaper: XipLink Real-Time Optimizations Analysis Let us examine the most popular codec for bandwidth efficient networks, the G.729A codec. The following diagram illustrates that the benefits associated with XRT delivers approximately a 50% savings in bandwidth after just five calls on any particular link. Codec & Bit Rate (Kbps) Capture Window (ms) # of Calls Bandwidth Savings % PPS Benefit Ratio G.729 (8 Kbps) % 1 G.729 (8 Kbps) % 2 G.729 (8 Kbps) % 5 G.729 (8 Kbps) % 10 G.729 (8 Kbps) % 20 G.729 (8 Kbps) % 50 G.729 (8 Kbps) % 70 G.729 (8 Kbps) % 70 When testing using an Ixia IXLoad device over an emulated satellite link, the benefits can be clearly seen. Importantly, the MOS quality score that is auto-calculated by the Ixia device remained at 3.4 both without optimization and with optimization. A MOS score of 3.4 is essentially inherent with the G.729 codec with a satellite delay. The use of QoS protects call quality and MOS score against degradation when the network congests. XipLink, Inc P7
8 Aggregate 2-Way IP Information Rate (kbps) XipLink XRT Performance Improvement Non Optimized Coalesce + UDP ROHC Coalesce + RTP ROHC # of Simultaneous 2-Way Voice Calls (G.729-A) The benefit varies with the payload; smaller payloads with a higher percentage of header-topayload will benefit the most. Let us examine the benefit across a sample of different codecs that may be used, with an assumed volume of 10 calls. XipLink, Inc P 8
9 WhitePaper: XipLink Real-Time Optimizations Codec & Bit Rate (Kbps) Capture Window (ms) # of Calls Bandwidth Savings % PPS Benefit Ratio G.729 (8 Kbps) % 10 G.711 (64 Kbps) % 9 G (6.3 Kbps) % 7 G (5.3 Kbps) % 7 G.726 (32 Kbps) % 10 G.726 (24 Kbps) % 10 G.728 (16 Kbps) % 7 Skype (variable) % 7 It can be seen that very high data rate VOIP codecs like G.711 stand to benefit the least, as they carry a large payload compared to the header. Protocols like Skype or any other UDP streaming application do not benefit from the RTP level compression, but do benefit from having the UDP and IP headers compressed. A typical 28% bandwidth savings for Skype is still very significant. Predicting XRT Benefits XipLink has a calculator tool which models the compression solution and accurately predicts the benefit that can be expected from XRT, including the bandwidth and the PPS, using packet sizes, traffic type and packet arrival rates as inputs. Configuration options available from the XipLink UI including the capture window and maximum coalesced packet size can be configured. The XipLink calculator tool is available on request. Deployment The XRT solution is a feature of all XipLink XA Appliances and is included free of charge with all XA units. XRT runs simultaneously with other XipLink optimization techniques. The solution can be deployed over point-to-point links as well as hub-spoke networks common of TDMA and meshed network architectures. XA Appliances can be installed inline, use policy based routing, or WCCP for out-of-path deployment; they just simply need to be installed so they can intercept the traffic requiring optimization. The solution makes use of XipLink Lightweight Tunnels (XLT). XLT has only a one byte header on top of UDP/IP so it is highly bandwidth efficient. At the hub of a network, the XA appliances receive tunnels from the remotes. Up to 1,000 tunnels can be supported simultaneously. XipLink, Inc P9
10 Remote units are simply configured with the IP address of the tunnel server and a password. If the tunnel cannot be established, packets are sent without optimization. The XRT solution currently does not support the optimization of VOIP between nodes in a meshed network. However, packets going remote-to-remote will work automatically but will not see any compression benefit. If there is traffic to a common node, which is common of meshed networks, those links can be fully optimized. Consult the model specifications to see how many calls and PPS are supported per particular model. Conclusion This paper examined how using XRT on a network can provide large bandwidth savings for small packet applications and ensure high quality packet delivery through the network. It can be deployed easily. XRT can be installed with the primary purpose of saving VOIP bandwidth or as part of an integrated solution to bandwidth optimization with XipLink technology. Packet coalescing capability and QoS capabilities are available in XipOS version 3.2. Header compression capability is available in XipOS version 3.3. XipLink, Inc P 10
Requirements of Voice in an IP Internetwork
Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.
This topic lists the key mechanisms use to implement QoS in an IP network.
IP QoS Mechanisms QoS Mechanisms This topic lists the key mechanisms use to implement QoS in an IP network. QoS Mechanisms Classification: Each class-oriented QoS mechanism has to support some type of
Voice Over IP Performance Assurance
Voice Over IP Performance Assurance Transforming the WAN into a voice-friendly using Exinda WAN OP 2.0 Integrated Performance Assurance Platform Document version 2.0 Voice over IP Performance Assurance
VoIP QoS. Version 1.0. September 4, 2006. AdvancedVoIP.com. [email protected] [email protected]. Phone: +1 213 341 1431
VoIP QoS Version 1.0 September 4, 2006 AdvancedVoIP.com [email protected] [email protected] Phone: +1 213 341 1431 Copyright AdvancedVoIP.com, 1999-2006. All Rights Reserved. No part of this
Encapsulating Voice in IP Packets
Encapsulating Voice in IP Packets Major VoIP Protocols This topic defines the major VoIP protocols and matches them with the seven layers of the OSI model. Major VoIP Protocols 15 The major VoIP protocols
An Introduction to VoIP Protocols
An Introduction to VoIP Protocols www.netqos.com Voice over IP (VoIP) offers the vision of a converged network carrying multiple types of traffic (voice, video, and data, to name a few). To carry out this
Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic.
Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic. A Network and Data Link Layer infrastructure Design to Improve QoS in Voice and video Traffic Jesús Arturo Pérez,
Clearing the Way for VoIP
Gen2 Ventures White Paper Clearing the Way for VoIP An Alternative to Expensive WAN Upgrades Executive Overview Enterprises have traditionally maintained separate networks for their voice and data traffic.
QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS
Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:
VoIP Bandwidth Considerations - design decisions
VoIP Bandwidth Considerations - design decisions When calculating the bandwidth requirements for a VoIP implementation the two main protocols are: a signalling protocol such as SIP, H.323, SCCP, IAX or
Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network
Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Jianguo Cao School of Electrical and Computer Engineering RMIT University Melbourne, VIC 3000 Australia Email: [email protected]
The Basics. Configuring Campus Switches to Support Voice
Configuring Campus Switches to Support Voice BCMSN Module 7 1 The Basics VoIP is a technology that digitizes sound, divides that sound into packets, and transmits those packets over an IP network. VoIP
Is Your Network Ready for VoIP? > White Paper
> White Paper Tough Questions, Honest Answers For many years, voice over IP (VoIP) has held the promise of enabling the next generation of voice communications within the enterprise. Unfortunately, its
Optimizing Performance for Voice over IP and UDP Traffic
A Riverbed Technology White Paper OPTIMIZING PERFORMANCE FOR VOICE OVER IP AND UDP TRAFFIC Optimizing Performance for Voice over IP and UDP Traffic 2006 Riverbed Technology, Inc. All rights reserved. 0
Voice, Video and Data Convergence > A best-practice approach for transitioning your network infrastructure. White Paper
> A best-practice approach for transitioning your network infrastructure White Paper The business benefits of network convergence are clear: fast, dependable, real-time communication, unprecedented information
How To Deliver High Quality Telephony Over A Network
Voice over Application Note Telephony Service over Satellite January 2012 Data Sells but Voice Pays In the early years of the industry, networks were deployed primarily for telephony services. As time
5. DEPLOYMENT ISSUES Having described the fundamentals of VoIP and underlying IP infrastructure, let s address deployment issues.
5. DEPLOYMENT ISSUES Having described the fundamentals of VoIP and underlying IP infrastructure, let s address deployment issues. 5.1 LEGACY INTEGRATION In most cases, enterprises own legacy PBX systems,
WAN Optimization. Riverbed Steelhead Appliances
WAN Optimization Riverbed Steelhead Appliances Steelhead appliances deliver the highest performance and the most scalable wide-area data services solution available, overcoming both bandwidth and latency
Network Simulation Traffic, Paths and Impairment
Network Simulation Traffic, Paths and Impairment Summary Network simulation software and hardware appliances can emulate networks and network hardware. Wide Area Network (WAN) emulation, by simulating
How Network Transparency Affects Application Acceleration Deployment
How Network Transparency Affects Application Acceleration Deployment By John Bartlett and Peter Sevcik July 2007 Acceleration deployments should be simple. Vendors have worked hard to make the acceleration
Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm
Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:
Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc
(International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan [email protected]
Optimizing Converged Cisco Networks (ONT)
Optimizing Converged Cisco Networks (ONT) Module 2: Cisco VoIP Implementations (Deploy) Calculating Bandwidth Requirements for VoIP Objectives Describe factors influencing encapsulation overhead and bandwidth
IP videoconferencing solution with ProCurve switches and Tandberg terminals
An HP ProCurve Networking Application Note IP videoconferencing solution with ProCurve switches and Tandberg terminals Contents 1. Introduction... 3 2. Architecture... 3 3. Videoconferencing traffic and
Network Considerations for IP Video
Network Considerations for IP Video H.323 is an ITU standard for transmitting voice and video using Internet Protocol (IP). It differs from many other typical IP based applications in that it is a real-time
Application Note How To Determine Bandwidth Requirements
Application Note How To Determine Bandwidth Requirements 08 July 2008 Bandwidth Table of Contents 1 BANDWIDTH REQUIREMENTS... 1 1.1 VOICE REQUIREMENTS... 1 1.1.1 Calculating VoIP Bandwidth... 2 2 VOIP
Achieving High Quality Voiceover-IP Across WANs With Talari Networks APN Technology
Achieving High Quality Voiceover-IP Across WANs With Talari Networks APN Technology A Talari Networks Application Note 2012 Talari Networks / www.talari.com Enterprise-class Voice-over-IP Challenges In
Introduction to Differentiated Services (DiffServ) and HP-UX IPQoS
Introduction to Differentiated Services (DiffServ) and HP-UX IPQoS What is Quality of Service (QoS)?... 2 Differentiated Services (DiffServ)... 2 Overview... 2 Example XYZ Corporation... 2 Components of
The FX Series Traffic Shaping Optimizes Satellite Links
Contact us for more information U.S. & Canada: +1.800.763.3423 Outside U.S. & Canada: +1.937.291.5035 The FX Series Traffic Shaping Optimizes Satellite Links February 2011 2011 Comtech EF Data Corporation
AN OVERVIEW OF SILVER PEAK S WAN ACCELERATION TECHNOLOGY
AN OVERVIEW OF SILVER PEAK S WAN ACCELERATION TECHNOLOGY TABLE OF CONTENTS Understanding WAN Challenges 2 Network Memory - Maximize Bandwidth Efficiency 2 Network Integrity - Overcome Congestion and Packet
VoIP Bandwidth Calculation
VoIP Bandwidth Calculation AI0106A VoIP Bandwidth Calculation Executive Summary Calculating how much bandwidth a Voice over IP call occupies can feel a bit like trying to answer the question; How elastic
Optimizing Converged Cisco Networks (ONT)
Optimizing Converged Cisco Networks (ONT) Module 3: Introduction to IP QoS Introducing QoS Objectives Explain why converged networks require QoS. Identify the major quality issues with converged networks.
Distributed Systems 3. Network Quality of Service (QoS)
Distributed Systems 3. Network Quality of Service (QoS) Paul Krzyzanowski [email protected] 1 What factors matter for network performance? Bandwidth (bit rate) Average number of bits per second through
Introduction VOIP in an 802.11 Network VOIP 3
Solutions to Performance Problems in VOIP over 802.11 Wireless LAN Wei Wang, Soung C. Liew Presented By Syed Zaidi 1 Outline Introduction VOIP background Problems faced in 802.11 Low VOIP capacity in 802.11
The need for bandwidth management and QoS control when using public or shared networks for disaster relief work
International Telecommunication Union The need for bandwidth management and QoS control when using public or shared networks for disaster relief work Stephen Fazio Chief, Global Telecommunications Officer
Improving Quality of Service
Improving Quality of Service Using Dell PowerConnect 6024/6024F Switches Quality of service (QoS) mechanisms classify and prioritize network traffic to improve throughput. This article explains the basic
Voice Over IP Per Call Bandwidth Consumption
Over IP Per Call Bandwidth Consumption Interactive: This document offers customized voice bandwidth calculations with the TAC Bandwidth Calculator ( registered customers only) tool. Introduction Before
Quality of Service. Traditional Nonconverged Network. Traditional data traffic characteristics:
Quality of Service 1 Traditional Nonconverged Network Traditional data traffic characteristics: Bursty data flow FIFO access Not overly time-sensitive; delays OK Brief outages are survivable 2 1 Converged
Curso de Telefonía IP para el MTC. Sesión 2 Requerimientos principales. Mg. Antonio Ocampo Zúñiga
Curso de Telefonía IP para el MTC Sesión 2 Requerimientos principales Mg. Antonio Ocampo Zúñiga Factors Affecting Audio Clarity Fidelity: Audio accuracy or quality Echo: Usually due to impedance mismatch
Comparison of Voice over IP with circuit switching techniques
Comparison of Voice over IP with circuit switching techniques Author Richard Sinden Richard Sinden 1 of 9 Abstract Voice-over-IP is a growing technology. Companies are beginning to consider commercial
VegaStream Information Note Considerations for a VoIP installation
VegaStream Information Note Considerations for a VoIP installation To get the best out of a VoIP system, there are a number of items that need to be considered before and during installation. This document
Management of Telecommunication Networks. Prof. Dr. Aleksandar Tsenov [email protected]
Management of Telecommunication Networks Prof. Dr. Aleksandar Tsenov [email protected] Part 1 Quality of Services I QoS Definition ISO 9000 defines quality as the degree to which a set of inherent characteristics
TECHNICAL CHALLENGES OF VoIP BYPASS
TECHNICAL CHALLENGES OF VoIP BYPASS Presented by Monica Cultrera VP Software Development Bitek International Inc 23 rd TELELCOMMUNICATION CONFERENCE Agenda 1. Defining VoIP What is VoIP? How to establish
Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks
Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks Ayman Wazwaz, Computer Engineering Department, Palestine Polytechnic University, Hebron, Palestine, [email protected] Duaa sweity
Implementing VoIP support in a VSAT network based on SoftSwitch integration
Implementing VoIP support in a VSAT network based on SoftSwitch integration Abstract Satellite communications based on geo-synchronous satellites are characterized by a large delay, and high cost of resources.
VoIP over DVB-RCS A Radio Resource and QoS Perspective
VoIP over DVB-RCS A Radio Resource and QoS Perspective Executive Summary One of the drivers of VoIP over DVB-RCS satellite based IP networks is the requirement for cost-effective telephony in regions with
12 Quality of Service (QoS)
Burapha University ก Department of Computer Science 12 Quality of Service (QoS) Quality of Service Best Effort, Integrated Service, Differentiated Service Factors that affect the QoS Ver. 0.1 :, [email protected]
Cisco Networks (ONT) 2006 Cisco Systems, Inc. All rights reserved.
Optimizing Converged Cisco Networks (ONT) reserved. Lesson 2.4: Calculating Bandwidth Requirements for VoIP reserved. Objectives Describe factors influencing encapsulation overhead and bandwidth requirements
Quality of Service (QoS) on Netgear switches
Quality of Service (QoS) on Netgear switches Section 1 Principles and Practice of QoS on IP networks Introduction to QoS Why? In a typical modern IT environment, a wide variety of devices are connected
Jive Core: Platform, Infrastructure, and Installation
Jive Core: Platform, Infrastructure, and Installation Jive Communications, Inc. 888-850-3009 www.getjive.com 1 Overview Jive hosted services are run on Jive Core, a proprietary, cloud-based platform. Jive
Goal We want to know. Introduction. What is VoIP? Carrier Grade VoIP. What is Meant by Carrier-Grade? What is Meant by VoIP? Why VoIP?
Goal We want to know Introduction What is Meant by Carrier-Grade? What is Meant by VoIP? Why VoIP? VoIP Challenges 2 Carrier Grade VoIP Carrier grade Extremely high availability 99.999% reliability (high
A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman
A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline
IP Telephony Design Guide AN ALCATEL WHITE PAPER
AN ALCATEL WHITE PAPER April, 2003 Overview........................................................................3 IP Telephony vs. VoIP................................................................3
Frequently Asked Questions
Frequently Asked Questions 1. Q: What is the Network Data Tunnel? A: Network Data Tunnel (NDT) is a software-based solution that accelerates data transfer in point-to-point or point-to-multipoint network
CCNP: Optimizing Converged Networks
CCNP: Optimizing Converged Networks Cisco Networking Academy Program Version 5.0 This document is exclusive property of Cisco Systems, Inc. Permission is granted to print and copy this document for noncommercial
Cisco CCNP 642 845 Optimizing Converged Cisco Networks (ONT)
Cisco CCNP 642 845 Optimizing Converged Cisco Networks (ONT) Course Number: 642 845 Length: 5 Day(s) Certification Exam This course will help you prepare for the following exam: Cisco CCNP Exam 642 845:
WAN Optimization in MPLS Networks- the Transparency Challenge!
DATE OF ISSUE May 2005 AUTHOR Efi Gat mor 103 Eisenhower Parkway Roseland, NJ 07068 USA TEL +1.888.892.1250 +1.973.618.9000 FAX +1.973.618.9254 www.expand.com WAN Optimization in MPLS Networks- the Transparency
Voice over IP (VoIP) for Telephony. Advantages of VoIP Migration for SMBs BLACK BOX. 724-746-5500 blackbox.com
Voice over IP (VoIP) for Telephony Advantages of VoIP Migration for SMBs BLACK BOX Hybrid PBX VoIP Gateways SIP Phones Headsets 724-746-5500 blackbox.com Table of Contents Introduction...3 About Voice
"Charting the Course... ... to Your Success!" QOS - Implementing Cisco Quality of Service 2.5 Course Summary
Course Summary Description Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements, conceptual models such as best effort, IntServ, and DiffServ,
Receiving the IP packets Decoding of the packets Digital-to-analog conversion which reproduces the original voice stream
Article VoIP Introduction Internet telephony refers to communications services voice, fax, SMS, and/or voice-messaging applications that are transported via the internet, rather than the public switched
Technote. SmartNode Quality of Service for VoIP on the Internet Access Link
Technote SmartNode Quality of Service for VoIP on the Internet Access Link Applies to the following products SmartNode 1000 Series SmartNode 2000 Series SmartNode 4520 Series Overview Initially designed
VOICE over IP H.323 Advanced Computer Network SS2005 Presenter : Vu Thi Anh Nguyet
VOICE over IP H.323 Advanced Computer Network SS2005 Presenter : Vu Thi Anh Nguyet 1 Outlines 1. Introduction 2. QoS in VoIP 3. H323 4. Signalling in VoIP 5. Conclusions 2 1. Introduction to VoIP Voice
Implementing Cisco Quality of Service QOS v2.5; 5 days, Instructor-led
Implementing Cisco Quality of Service QOS v2.5; 5 days, Instructor-led Course Description Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements,
IMPLEMENTING CISCO QUALITY OF SERVICE V2.5 (QOS)
IMPLEMENTING CISCO QUALITY OF SERVICE V2.5 (QOS) COURSE OVERVIEW: Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements, conceptual models such
Understanding Latency in IP Telephony
Understanding Latency in IP Telephony By Alan Percy, Senior Sales Engineer Brooktrout Technology, Inc. 410 First Avenue Needham, MA 02494 Phone: (781) 449-4100 Fax: (781) 449-9009 Internet: www.brooktrout.com
Application Note. Pre-Deployment and Network Readiness Assessment Is Essential. Types of VoIP Performance Problems. Contents
Title Six Steps To Getting Your Network Ready For Voice Over IP Date January 2005 Overview This provides enterprise network managers with a six step methodology, including predeployment testing and network
Quality of Service (QoS) and Quality of Experience (QoE) VoiceCon Fall 2008
Quality of Service (QoS) and Quality of Experience (QoE) VoiceCon Fall 2008 John Bartlett NetForecast, Inc. [email protected] www.netforecast.com VoIP Deployment Realities VoIP is not just another application
VOICE OVER IP AND NETWORK CONVERGENCE
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Assaid O. SHAROUN* VOICE OVER IP AND NETWORK CONVERGENCE As the IP network was primarily designed to carry data, it
Integration Guide. EMC Data Domain and Silver Peak VXOA 4.4.10 Integration Guide
Integration Guide EMC Data Domain and Silver Peak VXOA 4.4.10 Integration Guide August 2013 Copyright 2013 EMC Corporation. All Rights Reserved. EMC believes the information in this publication is accurate
Planning Networks for VOIP. An Introduction
Planning Networks for VOIP An Introduction Planning Networks for VOIP Page 2/10 Contents 1 Introduction...3 2 Voice Quality Requirements...3 3 Codecs...4 4 Network Layout...5 5 Planning Capacity...6 5.1
ETM System SIP Trunk Support Technical Discussion
ETM System SIP Trunk Support Technical Discussion Release 6.0 A product brief from SecureLogix Corporation Rev C SIP Trunk Support in the ETM System v6.0 Introduction Today s voice networks are rife with
Bandwidth Security and QoS Considerations
This chapter presents some design considerations for provisioning network bandwidth, providing security and access to corporate data stores, and ensuring Quality of Service (QoS) for Unified CCX applications.
Authors Mário Serafim Nunes IST / INESC-ID Lisbon, Portugal [email protected]
Adaptive Quality of Service of Voice over IP Communications Nelson Costa Instituto Superior Técnico (IST) Lisbon, Portugal [email protected] Authors Mário Serafim Nunes Lisbon, Portugal [email protected]
Whitepaper. Controlling the Network Edge to Accommodate Increasing Demand
Whitepaper Controlling the Network Edge to Accommodate Increasing Demand February 2007 Introduction A common trend in today s distributed work environment is to centralize applications and the data previously
Can PowerConnect Switches Be Used in VoIP Deployments?
PowerConnect Application Note #11 February 2004 Can PowerConnect Switches Be Used in VoIP Deployments? This Application Notes relates to the following Dell PowerConnect products: PowerConnect 33xx PowerConnect
APTA TransiTech Conference Communications: Vendor Perspective (TT) Phoenix, Arizona, Tuesday, 3.19.13. VoIP Solution (101)
APTA TransiTech Conference Communications: Vendor Perspective (TT) Phoenix, Arizona, Tuesday, 3.19.13 VoIP Solution (101) Agenda Items Introduction What is VoIP? Codecs Mean opinion score (MOS) Bandwidth
Private Cloud Solutions Virtual Onsite Data Center
ZEROOUTAGES WHITE PAPER Private Cloud Solutions Virtual Onsite Data Center ZEROOUTAGES - WHITE PAPER Single Side / Balancing The ZeroOutages solution makes for a perfect link bonding/balancing device for
Per-Flow Queuing Allot's Approach to Bandwidth Management
White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth
AN OVERVIEW OF QUALITY OF SERVICE COMPUTER NETWORK
Abstract AN OVERVIEW OF QUALITY OF SERVICE COMPUTER NETWORK Mrs. Amandeep Kaur, Assistant Professor, Department of Computer Application, Apeejay Institute of Management, Ramamandi, Jalandhar-144001, Punjab,
MINIMUM NETWORK REQUIREMENTS 1. REQUIREMENTS SUMMARY... 1
Table of Contents 1. REQUIREMENTS SUMMARY... 1 2. REQUIREMENTS DETAIL... 2 2.1 DHCP SERVER... 2 2.2 DNS SERVER... 2 2.3 FIREWALLS... 3 2.4 NETWORK ADDRESS TRANSLATION... 4 2.5 APPLICATION LAYER GATEWAY...
RTP Performance Enhancing Proxy
PACE RTP Performance Enhancing Proxy V2 Whilst the above information has been prepared by Inmarsat in good faith, and all reasonable efforts have been made to ensure its accuracy, Inmarsat makes no warranty
Preparing Your IP Network for High Definition Video Conferencing
WHITE PAPER Preparing Your IP Network for High Definition Video Conferencing Contents Overview...3 Video Conferencing Bandwidth Demand...3 Bandwidth and QoS...3 Bridge (MCU) Bandwidth Demand...4 Available
Common VoIP problems, How to detect, correct and avoid them. Penny Tone LLC 1
Common VoIP problems, How to detect, correct and avoid them. Penny Tone LLC 1 Who am I? David Attias Installing VoIP systems for over 7 years Mikrotik user for 5 years Mikrotik certifications MTCNA, MTCRE
Voice-Over-IP. Daniel Zappala. CS 460 Computer Networking Brigham Young University
Voice-Over-IP Daniel Zappala CS 460 Computer Networking Brigham Young University Coping with Best-Effort Service 2/23 sample application send a 160 byte UDP packet every 20ms packet carries a voice sample
Indepth Voice over IP and SIP Networking Course
Introduction SIP is fast becoming the Voice over IP protocol of choice. During this 3-day course delegates will examine SIP technology and architecture and learn how a functioning VoIP service can be established.
Mesh VPN Link Sharing (MVLS) Solutions
XROADS NETWORKS WHITE PAPER Mesh VPN Link Sharing (MVLS) Solutions XROADS NETWORKS - WHITE PAPER Mesh VPN Link Sharing (MVLS) Solutions The purpose of this paper is to provide an understanding of how XRoads
IP-Telephony Quality of Service (QoS)
IP-Telephony Quality of Service (QoS) Bernard Hammer Siemens AG, Munich Siemens AG 2001 1 Presentation Outline End-to-end OoS of VoIP services Quality of speech codecs Network-QoS IntServ RSVP DiffServ
Transport for Enterprise VoIP Services
Transport for Enterprise VoIP Services Introduction Many carriers are looking to advanced packet services as an opportunity to generate new revenue or lower costs. These services, which include VoIP, IP
02-QOS-ADVANCED-DIFFSRV
IP QoS DiffServ Differentiated Services Architecture Agenda DiffServ Principles DS-Field, DSCP Historical Review Newest Implementations Per-Hop Behaviors (PHB) DiffServ in Detail DiffServ in other Environments
SIP Trunking and Voice over IP
SIP Trunking and Voice over IP Agenda What is SIP Trunking? SIP Signaling How is Voice encoded and transported? What are the Voice over IP Impairments? How is Voice Quality measured? VoIP Technology Confidential
Challenges and Solutions in VoIP
Challenges and Solutions in VoIP Challenges in VoIP The traditional telephony network strives to provide 99.99 percent uptime to the user. This corresponds to 5.25 minutes per year of down time. Many data
Site2Site VPN Optimization Solutions
XROADS NETWORKS WHITE PAPER Site2Site VPN Optimization Solutions XROADS NETWORKS - WHITE PAPER Site2Site VPN Optimization Solutions The purpose of this paper is to provide an understanding of how XRoads
Nortel - 920-803. Technology Standards and Protocol for IP Telephony Solutions
1 Nortel - 920-803 Technology Standards and Protocol for IP Telephony Solutions QUESTION: 1 To achieve the QoS necessary to deliver voice between two points on a Frame Relay network, which two items are
PC-over-IP Protocol Virtual Desktop Network Design Checklist. TER1105004 Issue 2
PC-over-IP Protocol Virtual Desktop Network Design Checklist TER1105004 Issue 2 Teradici Corporation #101-4621 Canada Way, Burnaby, BC V5G 4X8 Canada p +1 604 451 5800 f +1 604 451 5818 www.teradici.com
Quality of Service for IP Videoconferencing Engineering White Paper
Engineering White Paper Subha Dhesikan Cisco Systems June 1 st, 2001 Copyright 2002 Cisco Systems, Inc. Table of Contents 1 INTRODUCTION 4 2 WHY QOS? 4 3 QOS PRIMITIVES 5 4 QOS ARCHITECTURES 7 4.1 DIFFERENTIATED
HyperIP : VERITAS Replication Application Note
QuickTime and a Graphics decompressor are needed to see this picture. HyperIP : VERITAS Replication Application Note Introduction HyperIP is a Linux software application that quantifiably and measurably
Curso de Telefonía IP para el MTC. Sesión 1 Introducción. Mg. Antonio Ocampo Zúñiga
Curso de Telefonía IP para el MTC Sesión 1 Introducción Mg. Antonio Ocampo Zúñiga Conceptos Generales VoIP Essentials Family of technologies Carries voice calls over an IP network VoIP services convert
Voice over Internet Protocol (VoIP) systems can be built up in numerous forms and these systems include mobile units, conferencing units and
1.1 Background Voice over Internet Protocol (VoIP) is a technology that allows users to make telephone calls using a broadband Internet connection instead of an analog phone line. VoIP holds great promise
