Innovative LNAPL Recovery Techniques

Size: px
Start display at page:

Download "Innovative LNAPL Recovery Techniques"

Transcription

1 Innovative LNAPL Recovery Techniques RTDF NON-AQUEOUS PHASE LIQUID (NAPL) CLEANUP ALLIANCE San Antonio, Texas February 7-8, 2006 Presented by: Patrick E. Haas P. E. Haas & Associates, LLC

2 Problem: LNAPL on Soil

3 Problem: LNAPL in Soil and in a well

4 LNAPL Characteristics LNAPLs Gasoline; jet fuels; diesels contain 200+ individual components Composition varies with source LNAPLs can contain DNAPLs DNAPLS can contain LNAPLs Always characterize NAPL composition; viscosity; density Composition over time

5 Vertical NAPL Migration Zones of higher relative soil moisture or water saturation tend to inhibit downward migration of NAPL and cause spreading and pooling Examples: Clay layers: Lower porosity and more perfectly wetted Higher displacement pressures

6 NAPL Phases Mobile - flows into wells % saturation (pore space) Residual - small discontinuous globules or ganglia trapped in pore spaces Can accumulate in wells Dissolved - solubilized in water in accordance with Rauolt s law Vapor - volatilized into soil gas

7 Influence of Site Conditions on Maximum Plume Length Free Product? Yes No Number of sites th Quartile th Quartile (median) th Quartile Maximum 7,600 1,700 Units: feet Reference: University of Texas at at Austin Bureau of Economic Geology, 1997

8 Smearing: Before Water Table Fluctuation NAPL Water Solid

9 Smearing: After Water Table Fluctuation Air NAPL Solid Water

10 Conventional Water Treatment Discharge Oil/Water Separator No Air Flow Vacuum-enhanced Air/Liquid Separator- Vacuum Pump Air Treatment or Discharge Air Flow in Vadose Zone Flow Due to Pressure Induced Gradient Horizontal Flow Lines Oil Oil/Water Separator Flow Due to Pressure Induced Gradient Oil Skimmer Pump Groundwater Depression Pump Groundwater

11 Schedule of Activities: Free Product Recovery Pilot Test Pilot Test Activity Schedule Site-specific Test Plan Day 14 Test Plan Approval TBD Mobilization Day 1-2 Site Characterization Day 2-3 Baildown Tests Soil Gas Survey (Focused) Vapor Monitoring Point Installation Soil Sampling Slug Test

12 Schedule of Activities: Free Product Recovery Pilot Test (cont) Pilot Test Activity Schedule System Installation Day 2-3 Test Start-up Day 4 Skimmer Test (2 days) Day 4-5 Bioslurper Test (4 days) Day 6-9 Air Permeability Test Day 6 Skimmer and/or SVE Test (1 day) Day 10 Drawdown Test (2 days) Day In Situ Respiration Test Day 11 In Situ Respiration Test Day Demobilization Day 14-15

13 Baildown and Recovery Data Site Andrews AFB, MD Bolling AFB, D.C. (B. 18) Fuel Type No. 2 Fuel Oil No. 2 Fuel Oil Original Product Thickness (ft) Baildown Test Final Product Thickness (ft) Recovery (%) Fuel (gal/day) Recovery Rates Water (gal/day) TPH Vapor (lb/day) * , , Bolling AFB, D.C. (B.41) Gasoline ,286 1, /--- Dover AFB, DE JP , /4.4 Edwards AFB, CA JP ,447 Havre AFS, MT (MW-7) Havre AFS, MT (MW-F) Hickam AFB, HI No.2 Fuel Oil No.2 Fuel Oil Aviation Gasoline , / Hill AFB, UT Fuel Oil ,500 92

14 Fuel Recovery vs. Time Building 18 Well # HP-3 Fuel Recovered (gal) Time (hrs)

15 Fuel Recovery vs. Time Building 41 MW-3 Fuel Recovered (gal) Time (hrs)

16 Comparative Recovery Data Final Daily Fuel Recovery Rates (gal/day) 2-Day 4-Day 1-Day 2-Day Bioslurper Base Skimmer Bioslurper Skimmer Drawdown Vapor Location Site ID Test Test Test Test (lb/day TPH) Andrews AFB, MD B (a) 6.5 Bolling AFB, D.C. B Bolling AFB, D.C. B NA Dover AFB, DE SS (a) 612 Edwards AFB, CA Site / 73 (b) NA 54 Griffiss AFB, NY PH NA 0 91 Havre AFS, MT Unit 70, (MW-7) Havre AFS, MT Unit 63, (MW-F) NA 0.62 NA NA NA Hickam AFB, HI Area H 16.5 (b) (b) Hill AFB, UT OU

17 Soil Vapor Extraction via Internal Combustion Engine

18 Monitoring Well Converted to a SVE Well

19 Aboveground Knockout Tank Separator Separator is modified vacuum tank that separates LNAPL from ground water/soil gas LNAPL accumulates in tank to a pre-set level and then drains to fuel storage tank under gravity To LRP Vapor Fuel Water Drain From Extraction Manifold Vacuum Equalization Tube V Three-Way Valve Drain

20 Knockout Tank Separator Liquid ring pump

21 Dual Drop Tube Design Water/Soil-Gas Fuel To Liquid Ring Pump Liquid Trap Ground Surface Water/Soil-Gas Extraction Tube Soil-Gas PVC Well Fuel Extraction Tube Screen Free-Phase Product Fuel Isolation Sleeve Water Hydrophobic Filter Water Table

22 In-Well Separator: Dual Drop Tube Shield prevents LNAPL from entering into drop tube while allowing groundwater to enter from below and soil vapor to enter from above LNAPL is extracted by a smalldiameter tube located outside the shield

23 Dual Drop Tube Test: CSS Panama City

24 Results: Vacuum Pump Effluent Water Site Location TPH Concentration (mg/l) (Percent Reduction from Conventional Configuration) Conventional Dual Drop Tube Knockout Tank Short-Term Test Sites (1 2 day) NAS Fallon 1, (99%) 500 (72%) NCBC Davisville (EW-3) 1, (57%) NA NCBC Davisville (EW-4) 3, (99%) NA MCBH Kaneohe 1, (96%) 230 (86%) CSS Panama City (90%) NA ESTCP Short-Term Demonstrations (Preliminary) NAS Fallon 4, (99%) 1,600 (67%) Bolling AFB (99%) 633 (0%) NAWS China Lake

25 Results: Vacuum Pump Effluent Water NCBC Davisville Samples

26 NAS Fallon - Short Term Test Influent and Effluent TPH O/W Separator Influent TPH (mg/l) Operation Hours Conventional (Initial Knock out Tank Dual Drop Tube Conventional (Final) O/W Separator Effluent TPH (mg/l) Operation Hours

27 NAS Fallon - Short Term Test Fuel and Groundwater Recovery Fuel Recovery Fuel Volume (gal) Traditional 1 Knockout Tank Dual Drop Tube Traditional 2 25,000 Water Recovery 50 20, Time (hrs) Water Volume (gal) 15,000 10,000 5, Time (hrs)

28 Bolling AFB - Short Term Test Influent and Effluent TPH O/W Separator Influent TPH (mg/l) Conventional (Initial Operation Hours Knock out Tank Dual Drop Tube Conventional (Final) 200 O/W Separator Effluent TPH (mg/l) Operation Time

29 Bolling AFB - Short Term Test Fuel and Groundwater Recovery Fuel Recovery Fuel Volume (gal) Traditional 1 Knockout Tank Dual Drop Tube Traditional 2 Water Recovery Time (hrs) 5000 Water Volume (gal) Time (hrs)

30 NAWS China Lake - Short Term Test Fuel and Groundwater Recovery Fuel Recovery Fuel Volume (gal) Traditional 1 Knockout Tank Dual Drop Tube 1 Dual Drop Tube 2 40 Water Recovery Time (hrs) Water Volume (gal) Time (hrs)

31 Site Location Results: Off-Gas TPH Concentration in the Off-Gas (ppmv), (Percent Reduction from Conventional Configuration) Conventional Dual Drop Tube Knockout Tank NAS Fallon 3, (72%) 1,950 (39%) NCBC Davisville (EW-3) (8%) NA NCBC Davisville (EW-4) (83%) NA ESTCP Short-Term Demonstrations (Preliminary) NAS Fallon 2,940 2,350 (20%) 3,960 (0%) Bolling AFB (37%) 150 (6%) NAWS China Lake Source: Hoeppel et. al.

32 72-hour Baildown Recovery Test Data

33 In Situ Respiration He O 2 CO2

34 Date/Time (mm/dd/yr hr:min) Date: 1/23/95 Site Name: Travis Air Force Base Monitoring Point: MPC Depth of MP (ft): 5.5 Time (hr) In Situ Respiration In Situ Respiration Test: Data Analysis Oxygen (%) Carbon Dioxide (%) Helium (%) 1/23/95 11: /23/95 12: /23/95 13: /23/95 14: /23/95 16: /24/95 9: /24/95 17: O 2 and CO 2 (%) Time (hr) Helium (%) Oxygen Conc. O2 Regression CO2 Conc. CO2 Regression Helium BiodegradationR ate (mg/kg-day) O 2 Utilization Rate Regression Lines O 2 CO 2 Slope ko %/min Intercept %/hr Determination Coef %/day No. of Data Points 4 4

35 Bioventing Potential Fuel Storage Area G Average biodegradation rate = 67.6 mg/kg-day Assume: Area of contamination = 750 m 2 Contaminated soil is 2m thick 1m 3 of soil weighs 1440kg 67.6mg/kg-day x 1440kg/m 3 x 750m 2 x 2m = 146kg/day Approximately 146 kg of hydrocarbons are biodegraded per day

36 Laser-induced Hydrocarbon Fluorescence

37 Fuel hydrocarbons at ft bgs Water table fluctuates from 6-26 ft bgs Laserinduced fluorescence log 26 ft bgs 31 ft bgs Historic low at 32 ft bgs

38 Smear Zone Treatment Product Recovery Well Bioventing Well at GW Current Bioventing Well at GW Low-Low GW High-High UST Injected Air Flow Lines GW Current LNAPL GW Low-Low

39 Stable Benzene Plume June 1992 June 2001 October 2001

40 Natural Removal Rates Stable Plume Assuming ground water seepage velocities of 1 to 11 feet/day, a 450-foot plume width and an average dissolved benzene concentration of 15 mg/l across a 20-foot vertical thickness, the mass removal rate of natural attenuation ranges from ,400 lbs/year (140-1,600 gallons/year)

41 Strategy Site characterization Where is LNAPL in soil/aquifer matrix? Is LNAPL mobile? Consecutive baildown recovery to assess mobility Short-term low tech removal Recovery Potential Baildown, baildown, baildown? What s the risk? Composition Kerosene or Benzene? NAPL and dissolved plume mobility Stable, decreasing?

42 Remediation Strategy (cont) During low ground water levels If mobile, consider liquid phase recover Vacuum-enhanced? If volatile, consider SVE Always consider biodegradation Natural and bioventing Closure Risk-based Develop criteria for free product recovery to the maximum extent practical

43 Questions?

Well gauging results LNAPL in Benzol Processing Area

Well gauging results LNAPL in Benzol Processing Area Well gauging results LNAPL in Benzol Processing Area 3.59 ft 0.62 ft 4.64 ft Context Scope & Methods Onshore Results Offshore Results Summary & Conclusions 13 Page 1 of 4 Underground Storage Tanks Last

More information

Key Factors for Successful DPVE Remediation at Hydrocarbon-Impacted Sites. by Wanda Sakura, John Agar & Tai Wong

Key Factors for Successful DPVE Remediation at Hydrocarbon-Impacted Sites. by Wanda Sakura, John Agar & Tai Wong Key Factors for Successful DPVE Remediation at Hydrocarbon-Impacted Sites by Wanda Sakura, John Agar & Tai Wong OUTLINE What is DPVE? Why DPVE? How to design it? How should it be operated? How well would

More information

Bioremediation of contaminated soil. Dr. Piyapawn Somsamak Department of Environmental Science Kasetsart University

Bioremediation of contaminated soil. Dr. Piyapawn Somsamak Department of Environmental Science Kasetsart University Bioremediation of contaminated soil Dr. Piyapawn Somsamak Department of Environmental Science Kasetsart University Outline Process description In situ vs ex situ bioremediation Intrinsic biodegradation

More information

U. S. Army Corps of Engineers Ground Water Extraction System Subsurface Performance Checklist

U. S. Army Corps of Engineers Ground Water Extraction System Subsurface Performance Checklist U. S. Army Corps of Engineers Ground Water Extraction System Subsurface Performance Checklist Installation Name Site Name / I.D. Evaluation Team Site Visit Date This checklist is meant to aid in evaluating

More information

The QED Advantage. Put Our Experience to Work for You Now! How Free Product and DNAPL Remediation Site Conditions Affect Equipment Selection

The QED Advantage. Put Our Experience to Work for You Now! How Free Product and DNAPL Remediation Site Conditions Affect Equipment Selection QED ing Technologies Free Product Recovery Systems Removal Systems Genie Systems The Genie systems use a high-suction draw in The gas is a simple, free product through a floating that tracks changes with

More information

CHAPTER 13 LAND DISPOSAL

CHAPTER 13 LAND DISPOSAL CHAPTER 13 LAND DISPOSAL Supplemental Questions: Which of Shakespeare's plays is the source of the opening quote? The Tempest [1611-1612],Act: I, Scene: i, Line: 70. 13-1. Cite four reasons landfills remain

More information

Presumptive Remedy: Supplemental Bulletin Multi-Phase Extraction (MPE) Technology for VOCs in Soil and Groundwater Quick Reference Fact Sheet

Presumptive Remedy: Supplemental Bulletin Multi-Phase Extraction (MPE) Technology for VOCs in Soil and Groundwater Quick Reference Fact Sheet Office of Emergency and Remedial Response United States Air Force Air Combat Command United States Environmental Protection Agency Office of Solid Waste and Emergency Response Directive No. 9355.0-68FS

More information

CHAPTER 7: REMEDIATION TECHNOLOGIES FOR CONTAMINATED GROUNDWATER

CHAPTER 7: REMEDIATION TECHNOLOGIES FOR CONTAMINATED GROUNDWATER CHAPTER 7: REMEDIATION TECHNOLOGIES FOR CONTAMINATED GROUNDWATER There are a number of technologies that are being use to remediate contaminated groundwater. The choice of a certain remediation technology

More information

Soil and Groundwater. Removing Contaminants. Groundwater. Implementing. Remediation. Technologies 1 / 6

Soil and Groundwater. Removing Contaminants. Groundwater. Implementing. Remediation. Technologies 1 / 6 carol townsend, C: 469-263-4343, [email protected] robert sherrill, C: 512-470-8710, [email protected] October 2012. ALL RIGHTS RESERVED. Revised Nov. 12, 2012 Background:

More information

Bioremediation of Petroleum Hydrocarbons and Chlorinated Volatile Organic Compounds with Oxygen and Propane Gas infusion

Bioremediation of Petroleum Hydrocarbons and Chlorinated Volatile Organic Compounds with Oxygen and Propane Gas infusion Bioremediation of Petroleum Hydrocarbons and Chlorinated Volatile Organic Compounds with Oxygen and Propane Gas infusion Walter S. Mulica Global Technologies Fort Collins, CO Co-Authors Mike Lesakowski

More information

SEAR Wastewater Treatment: Contaminant Removal and Material Recovery

SEAR Wastewater Treatment: Contaminant Removal and Material Recovery ESTCP SEAR Wastewater Treatment: Contaminant Removal and Material Recovery U.S. Environmental Protection Agency National Risk Management Research Laboratory Cincinnati, Ohio SEAR Workshop Outline Motivation

More information

In-Situ Remediation Strategies as Sustainable Alternatives to Traditional Options. Ryan Bernesky, B.Sc., P.Ag. February 26, 2013

In-Situ Remediation Strategies as Sustainable Alternatives to Traditional Options. Ryan Bernesky, B.Sc., P.Ag. February 26, 2013 In-Situ Remediation Strategies as Sustainable Alternatives to Traditional Options Ryan Bernesky, B.Sc., P.Ag. February 26, 2013 Outline Introduction to Contaminated Sites and Remediation Strategies In-Situ

More information

OZONE SPARGE TECHNOLOGY FOR GROUNDWATER REMEDIATION. Charles R. Plummer, P.E., M.S., Michael D. Luckett, P.E., Shaun Porter, and Robert Moncrief

OZONE SPARGE TECHNOLOGY FOR GROUNDWATER REMEDIATION. Charles R. Plummer, P.E., M.S., Michael D. Luckett, P.E., Shaun Porter, and Robert Moncrief OZONE SPARGE TECHNOLOGY FOR GROUNDWATER REMEDIATION Charles R. Plummer, P.E., M.S., Michael D. Luckett, P.E., Shaun Porter, and Robert Moncrief ABSTRACT Ozone sparging is an oxidization remedial technology

More information

Site Assessment for the Proposed Coke Point Dredged Material Containment Facility at Sparrows Point

Site Assessment for the Proposed Coke Point Dredged Material Containment Facility at Sparrows Point Site Assessment for the Proposed Coke Point Dredged Material Containment Facility at Sparrows Point Prepared for Maryland Port Administration 2310 Broening Highway Baltimore, MD 21224 (410) 631-1022 Maryland

More information

Vapor Intrusion Pathway: A Practical Guideline

Vapor Intrusion Pathway: A Practical Guideline Vapor Intrusion Pathway: A Practical Guideline John Boyer New Jersey Dept. of Environmental Protection November 2009 2 ITRC Shaping the Future of Regulatory Acceptance Host organization Network State regulators

More information

SUCCESSFUL FIELD-SCALE IN SITU THERMAL NAPL REMEDIATION AT THE YOUNG-RAINEY STAR CENTER

SUCCESSFUL FIELD-SCALE IN SITU THERMAL NAPL REMEDIATION AT THE YOUNG-RAINEY STAR CENTER Paper 2B-01, in: A.R. Gavaskar and A.S.C. Chen (Eds.), Remediation of Chlorinated and Recalcitrant Compounds 2004. Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant

More information

GAS WELL/WATER WELL SUBSURFACE CONTAMINATION

GAS WELL/WATER WELL SUBSURFACE CONTAMINATION GAS WELL/WATER WELL SUBSURFACE CONTAMINATION Rick Railsback Professional Geoscientist CURA Environmental & Emergency Services [email protected] And ye shall know the truth and the truth shall make you free.

More information

CHAPTER IV METHODS FOR EVALUATING RECOVERABILITY OF FREE PRODUCT

CHAPTER IV METHODS FOR EVALUATING RECOVERABILITY OF FREE PRODUCT CHAPTER IV METHODS FOR EVALUATING RECOVERABILITY OF FREE PRODUCT CHAPTER IV METHODS FOR EVALUATING RECOVERABILITY OF FREE PRODUCT The primary objectives of a free product recovery system are to recover

More information

COST AND PERFORMANCE REPORT

COST AND PERFORMANCE REPORT COST AND PERFORMANCE REPORT Pump and Treat of Contaminated Groundwater at the United Chrome Superfund Site Corvallis, Oregon September 1998 Prepared by: SITE INFORMATION Identifying Information: United

More information

Operations, Maintenance, and Monitoring Plan

Operations, Maintenance, and Monitoring Plan Operations, Maintenance, and Monitoring Plan Groundwater Remediation System Prepared for Flint Hills Resources laska, LLC October 2014 Operations, Maintenance, and Monitoring Plan Groundwater Remediation

More information

LNAPL Distribution and Recovery Model (LDRM) Volume 2: User and Parameter Selection Guide. Regulatory and Scientific Affairs Department

LNAPL Distribution and Recovery Model (LDRM) Volume 2: User and Parameter Selection Guide. Regulatory and Scientific Affairs Department LNAPL Distribution and Recovery Model (LDRM) Volume 2: User and Parameter Selection Guide Regulatory and Scientific Affairs Department API PUBLICATION 4760 JANUARY 2007 LNAPL Distribution and Recovery

More information

In-situ Chemical Oxidation via Ozone at a Multiple-Remedy UST Site - 9124

In-situ Chemical Oxidation via Ozone at a Multiple-Remedy UST Site - 9124 ABSTRACT In-situ Chemical Oxidation via Ozone at a Multiple-Remedy UST Site - 9124 Frederic R. Coll and R.A. Moore URS Corporation Foster Plaza 4, Suite 300 501 Holiday Drive Pittsburgh, PA 15220 URS Corporation

More information

In-situ Bioremediation of oily sediments and soil

In-situ Bioremediation of oily sediments and soil 1 Peter Werner, Jens Fahl, Catalin Stefan DRESDEN UNIVERSITY OF TECHNOLOGY In-situ Bioremediation of oily sediments and soil 2 WHAT IS OIL? MIXTURE of aliphatic and aromatic hydrocarbons Different composition

More information

M Area Inactive Process Sewer Lines (MIPSL) Operable Unit CAB Recommendation #236 Update

M Area Inactive Process Sewer Lines (MIPSL) Operable Unit CAB Recommendation #236 Update A Presentation to the Facilities Disposition and Site Remediation Committees SRS Citizens Advisory Board M Area Inactive Process Sewer Lines (MIPSL) Operable Unit CAB Recommendation #236 Update A Presentation

More information

Presented by: Craig Puerta, PE, MBA December 12, 2012

Presented by: Craig Puerta, PE, MBA December 12, 2012 Presented by: Craig Puerta, PE, MBA December 12, 2012 Established in 2010 under charter from New York State to transfer lower priority sites from State s program. First municipally-run brownfield cleanup

More information

TCE. The Use & Remediation of TCE at NASA. Keep reading. is developing innovative. NASA s pollution prevention efforts significantly reduced TCE use

TCE. The Use & Remediation of TCE at NASA. Keep reading. is developing innovative. NASA s pollution prevention efforts significantly reduced TCE use National Aeronautics and Space Administration Space flight and exploration begin with developing innovative technologies here on Earth. Our commitment to environmental stewardship is central to that effort.

More information

Water Pollution. A Presentation for Café Scientifique Cherie L. Geiger, Ph.D. Department of Chemistry, UCF

Water Pollution. A Presentation for Café Scientifique Cherie L. Geiger, Ph.D. Department of Chemistry, UCF Water Pollution A Presentation for Café Scientifique Cherie L. Geiger, Ph.D. Department of Chemistry, UCF Overview What is Causing it? Problems with Groundwater Contamination Traditional Remediation Techniques

More information

Air Eliminators and Combination Air Eliminators Strainers

Air Eliminators and Combination Air Eliminators Strainers Description Air Eliminators and Combination Air Eliminator Strainers are designed to provide separation, elimination and prevention of air in piping systems for a variety of installations and conditions.

More information

In-well Vapor Stripping

In-well Vapor Stripping Technology Overview Report TO-97-01 GWRTAC O SERIES Prepared By: Ralinda R. Miller, P.G. and Diane S. Roote, P.G. Ground-Water Remediation Technologies Analysis Center February 1997 Prepared For: Ground-Water

More information

Long-Term Monitoring Network Optimization Evaluation. for. Wash King Laundry Superfund Site Lake County, Michigan

Long-Term Monitoring Network Optimization Evaluation. for. Wash King Laundry Superfund Site Lake County, Michigan Long-Term Monitoring Network Optimization Evaluation for Wash King Laundry Superfund Site Lake County, Michigan June 2006 Solid Waste and Emergency Response (5102P) EPA 542-R-06-004 December 2006 www.epa.gov

More information

Guidance on Remediation of Petroleum-Contaminated Ground Water By Natural Attenuation

Guidance on Remediation of Petroleum-Contaminated Ground Water By Natural Attenuation Guidance on Remediation of Petroleum-Contaminated Ground Water By Natural Attenuation Washington State Department of Ecology Toxics Cleanup Program July 2005 Publication No. 05-09-091 (Version 1.0) Geochemical

More information

BIOREMEDIATION: A General Outline www.idem.in.gov Mitchell E. Daniels, Jr.

BIOREMEDIATION: A General Outline www.idem.in.gov Mitchell E. Daniels, Jr. TECHNICAL GUIDANCE DOCUMENT INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT BIOREMEDIATION: A General Outline www.idem.in.gov Mitchell E. Daniels, Jr. Thomas W. Easterly Governor Commissioner 100 N. Senate

More information

Bioremediation. Biodegradation

Bioremediation. Biodegradation Bioremediation A technology that encourages growth and reproduction of indigenous microorganisms (bacteria and fungi) to enhance biodegradation of organic constituents in the saturated zone Can effectively

More information

Remediation Services & Technology

Remediation Services & Technology Remediation Services & Technology Miranda Cruttenden- Well Remediation Engineer Todd Studer- Business Development Manager September 2011 Agenda Near wellbore remediation Causes of formations damage Field

More information

Distribution Restriction Statement

Distribution Restriction Statement CEMP-R Engineer Manual 1110-1-4010 Department of the Army U.S. Army Corps of Engineers Washington, DC 20314-1000 EM 1110-1-4010 1 June 1999 Engineering and Design MULTI-PHASE EXTRACTION Distribution Restriction

More information

PROGRAM AT A GLANCE 12

PROGRAM AT A GLANCE 12 PROGRAM AT A GLANCE 12 Sunday, May 22, 2016 8:00 a.m. 5:00 p.m. Short Courses 3:00 9:00 p.m. Registration Desk Open 6:00 9:00 p.m. Welcome Reception, Exhibits, Poster Group 1 Display Monday, May 23, 2016

More information

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF UNDERGROUND STORAGE TANKS TECHNICAL GUIDANCE DOCUMENT - 008

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF UNDERGROUND STORAGE TANKS TECHNICAL GUIDANCE DOCUMENT - 008 STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF UNDERGROUND STORAGE TANKS TECHNICAL GUIDANCE DOCUMENT - 008 Effective Date - January 13, 1992 Revised Date - November 19, 1993

More information

WASTE WATER TREATMENT SYSTEM (OPERATING MANUALS )

WASTE WATER TREATMENT SYSTEM (OPERATING MANUALS ) Page 1 of 76 1.0 PURPOSE The purpose of the Wastewater Treatment System is to remove contaminates from plant wastewater so that it may be sent to the Final Plant Effluent Tank and eventually discharged

More information

Soil remediation you can trust In Situ Thermal Desorption. The real ISTD TERRATHERM R TECHNOLOGY. Technology

Soil remediation you can trust In Situ Thermal Desorption. The real ISTD TERRATHERM R TECHNOLOGY. Technology Soil remediation you can trust In Situ Thermal Desorption TERRATHERM R TECHNOLOGY Technology The real ISTD ISTD Testing the efficiency Our pilot ISTD system is easy and ready to use if a client wants to

More information

Prepared for ENRY2000, Belgrade, Yugoslavia, September 27, 2001

Prepared for ENRY2000, Belgrade, Yugoslavia, September 27, 2001 Prepared for ENRY2000, Belgrade, Yugoslavia, September 27, 2001 PERSPECTIVES ON INNOVATIVE CHARACTERIZATION AND REMEDIATION TECHNOLOGIES FOR CONTAMINATED SITES W.W. Kovalick, Jr. Technology Innovation

More information

RULE 8-8 - ORGANIC COMPOUNDS - WASTEWATER COLLECTION AND SEPARATION SYSTEMS

RULE 8-8 - ORGANIC COMPOUNDS - WASTEWATER COLLECTION AND SEPARATION SYSTEMS BAY AREA AIR QUALITY MANAGEMENT DISTRICT RULE 8-8 - ORGANIC COMPOUNDS - WASTEWATER COLLECTION AND SEPARATION SYSTEMS (ADOPTED: January 17, 1979) (AMENDED: November 1, 1989; October 6, 1993; June 15, 1994;

More information

Soil Vapor Extraction System Optimization, Transition, and Closure Guidance

Soil Vapor Extraction System Optimization, Transition, and Closure Guidance PNNL-21843 RPT-DVZ-AFRI-006 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Soil Vapor Extraction System Optimization, Transition, and Closure Guidance MJ Truex DJ Becker MA

More information

Domino VGS. Domino. Vertical Gravity Separator VGS. Oil Out. Clean Water Outlet. Oily Water In. Sludge Outlet. Everything Water PTY LTD

Domino VGS. Domino. Vertical Gravity Separator VGS. Oil Out. Clean Water Outlet. Oily Water In. Sludge Outlet. Everything Water PTY LTD Vertical Gravity Separator Oil Out Clean Water Outlet Oily Water In Sludge Outlet Pg 1 Introduction Product Overview The is an oil/water separator developed to effectively remove free oil, grease and suspended

More information

In Situ Bioremediation at FracRock Sites Mary F. deflaun, PhD

In Situ Bioremediation at FracRock Sites Mary F. deflaun, PhD In Situ Bioremediation at FracRock Sites Mary F. deflaun, PhD Slide 1 Overview Two case studies of bioaugmentation in fractured rock: 1. Naval Air Warfare Center in NJ fractured mudstones 2. Industrial

More information

Objectives. Describing Waterflooding. Infill Drilling. Reservoir Life Cycle

Objectives. Describing Waterflooding. Infill Drilling. Reservoir Life Cycle Objectives Describing Waterflooding Definition Objectives Candidates Patterns Oil, water, and gas saturations Fractional flow Performance measures Practices and problems Reservoir monitoring 1 2 Reservoir

More information

SPE-139516 Life beyond 80 A Look at Conventional WAG Recovery beyond 80% HCPV Injection in CO2 Tertiary Floods David Merchant, Merchant Consulting

SPE-139516 Life beyond 80 A Look at Conventional WAG Recovery beyond 80% HCPV Injection in CO2 Tertiary Floods David Merchant, Merchant Consulting CMTC-440075-MS SPE-139516 Life beyond 80 A Look at Conventional WAG Recovery beyond 80% HCPV Injection in CO2 Tertiary Floods David Merchant, Merchant Consulting Copyright 2015, Carbon Management Technology

More information

Focus on Developing Ground Water Cleanup Standards Under the Model Toxics Control Act

Focus on Developing Ground Water Cleanup Standards Under the Model Toxics Control Act Focus on Developing Ground Water Cleanup Standards Under the Model Toxics Control Act from Department of Ecology s Toxic Cleanup Program Background The Washington Department of Ecology (Ecology) adopted

More information

Technical Report TR-2222-ENV

Technical Report TR-2222-ENV NAVAL FACILITIES ENGINEERING SERVICE CENTER Port Hueneme, California 93043-4370 Technical Report TR-2222-ENV IN SITU BIOREMEDIATION OF MTBE IN GROUNDWATER (ESTCP Project No. CU-0013) by Dr. Paul C. Johnson,

More information

San Mateo County Environmental Health Characterization and Reuse of Petroleum Hydrocarbon Impacted Soil

San Mateo County Environmental Health Characterization and Reuse of Petroleum Hydrocarbon Impacted Soil INTRODUCTION San Mateo County Environmental Health Characterization and Reuse of Petroleum Hydrocarbon Impacted Soil This guidance relates to the on-site reuse of non-hazardous petroleum hydrocarbon impacted

More information

TECHNICAL REPORT TR-2306-ENV

TECHNICAL REPORT TR-2306-ENV ENGINEERING SERVICE CENTER Port Hueneme, California 93043-4370 TECHNICAL REPORT TR-2306-ENV COST AND PERFORMANCE REPORT FOR A PERSULFATE TREATABILITY STUDY AT NAVAL AIR STATION NORTH ISLAND Prepared by

More information

BASIC MATH FORMULAS - CLASS I. A. Rectangle [clarifiers, ponds] I = length; w = width; A = area; area in square ft [sq ft]

BASIC MATH FORMULAS - CLASS I. A. Rectangle [clarifiers, ponds] I = length; w = width; A = area; area in square ft [sq ft] WASTEWATER MATH CONVERSION FACTORS 1. 1 acre =43,560 sq ft 2. 1 acre =2.47 hectares 3. 1 cu ft [of water] = 7.48 gallons 4. 1 cu ft [of water] = 62.4 Ibs/ft 3 5. Diameter =radius plus radius, D =r + r

More information

Bioremediation. Introduction

Bioremediation. Introduction Bioremediation Introduction In the twentieth century, the ever increase in the global human population and industrialization led to the exploitation of natural resources. The increased usage of heavy metals

More information

Pierre VOC Ground Water Investigation and MTBE Remediation Pilot Study

Pierre VOC Ground Water Investigation and MTBE Remediation Pilot Study Pierre VOC Ground Water Investigation and MTBE Remediation Pilot Study Joint Meeting of 2007 Eastern South Dakota Water Conference and the 52 nd Annual Midwest Ground Water Conference October 30, 2007

More information

Accelerated Site Cleanup Using a Sulfate-Enhanced In Situ Remediation Strategy

Accelerated Site Cleanup Using a Sulfate-Enhanced In Situ Remediation Strategy Accelerated Site Cleanup Using a Sulfate-Enhanced In Situ Remediation Strategy By: Sheri Knox, Tim Parker, & Mei Yeh YOUR NATURAL SOLUTIONS Patented Methods for In Situ Bioremediation Slide 2 About EOS

More information

Pump-and-Treat Ground-Water Remediation A Guide for Decision Makers and Practitioners

Pump-and-Treat Ground-Water Remediation A Guide for Decision Makers and Practitioners United States Environmental Protection Agency Office of Research and Development Washington DC 20460 EPA/625/R-95/005 July 1996 Pump-and-Treat Ground-Water Remediation A Guide for Decision Makers and Practitioners

More information

Tim Johnson, Mike Truex, Jason Greenwood, Chris Strickland, Dawn Wellman: Pacific Northwest National Laboratory

Tim Johnson, Mike Truex, Jason Greenwood, Chris Strickland, Dawn Wellman: Pacific Northwest National Laboratory 3D Site Characterization and Autonomous Remedial Process Monitoring Using High Performance Electrical Resistivity and Induced Polarization Tomographic Imaging Tim Johnson, Mike Truex, Jason Greenwood,

More information

Bioremediation of Petroleum Contamination. Augustine Ifelebuegu GE413

Bioremediation of Petroleum Contamination. Augustine Ifelebuegu GE413 Bioremediation of Petroleum Contamination Augustine Ifelebuegu GE413 Bioremediation Bioremediation is the use of living microorganisms to degrade environmental contaminants in the soil and groundwater

More information

The Problem. Enhanced Oil Recovery Research. Research Details. www.equilibar.com. For immediate release: June, 2015

The Problem. Enhanced Oil Recovery Research. Research Details. www.equilibar.com. For immediate release: June, 2015 For immediate release: June, 2015 Equilibar Plays Key Role in Research of Enhanced Oil Recovery Using Carbonated Water Flooding Dome loaded regulator holds pressure under extreme testing conditions at

More information

Unconventional Challenges: Integrated Analysis for Unconventional Resource Development Robert Gales VP Resource Development

Unconventional Challenges: Integrated Analysis for Unconventional Resource Development Robert Gales VP Resource Development Unconventional Challenges: Integrated Analysis for Unconventional Resource Development Robert Gales VP Resource Development Opening Remarks The Obvious Fossil fuels will be the main energy supply, accounting

More information

Illinois Environmental Protection Agency Division of Water Pollution Control Class K Study Guide Industrial Wastewater Operator Certification

Illinois Environmental Protection Agency Division of Water Pollution Control Class K Study Guide Industrial Wastewater Operator Certification Illinois Environmental Protection Agency Division of Water Pollution Control Class K Study Guide Industrial Wastewater Operator Certification Revised March 2003 The purpose of this study guide is to help

More information

FMC Environmental Solutions Peroxygen Talk January 2010 Use of Compound Specific Isotope Analysis to Enhance In Situ

FMC Environmental Solutions Peroxygen Talk January 2010 Use of Compound Specific Isotope Analysis to Enhance In Situ FMC Environmental Solutions Peroxygen Talk January 2010 Use of Compound Specific Isotope Analysis to Enhance In Situ Chemical Oxidation Performance Monitoring and Project Management In this edition of

More information

Forensic Fingerprinting Petroleum Contaminants using UVF Field Screening Technology

Forensic Fingerprinting Petroleum Contaminants using UVF Field Screening Technology Forensic Fingerprinting Petroleum Contaminants using UVF Field Screening Technology Grand Calumet River and Lake Michigan Steve Greason, Speaker Sitelab Corporation Technical Session (Frio): Environmental

More information

RESERVOIR EVALUATION. The volume of hydrocarbons in a reservoir can be calculated:

RESERVOIR EVALUATION. The volume of hydrocarbons in a reservoir can be calculated: RESERVOIR EVALUATION The volume of hydrocarbons in a reservoir can be calculated: 1. directly by volumetric methods 2. indirectly by material balance methods Volumetrics provide a static measure of oil

More information

Petroleum Hydrocarbons And Chlorinated Solvents Differ In Their Potential For Vapor Intrusion

Petroleum Hydrocarbons And Chlorinated Solvents Differ In Their Potential For Vapor Intrusion Office of Underground Storage Tanks, Washington, D.C. 20460 March 2012 www.epa.gov/oust Petroleum Hydrocarbons And Chlorinated Solvents Differ In Their Potential For Vapor Intrusion Contents Page Background

More information

5.2 Transportation And Marketing Of Petroleum Liquids 1-3. 5.2.1 General

5.2 Transportation And Marketing Of Petroleum Liquids 1-3. 5.2.1 General 5.2 Transportation And Marketing Of Petroleum Liquids 1-3 5.2.1 General The transportation and marketing of petroleum liquids involve many distinct operations, each of which represents a potential source

More information

Improper storage of potential pollutants will increase the risk of water pollution that may occur because of spills.

Improper storage of potential pollutants will increase the risk of water pollution that may occur because of spills. WQ-3 Best Management Practice (BMP) Water Quality Protection Guideline Secondary Containment Design and Operation Standards Section 1. Introduction According to the EPA, the majority of water pollution

More information

MBJ Environmental Programmes

MBJ Environmental Programmes MBJ Airports Limited Environmental Policy The following is MBJ Airports Limited s (MBJ) Environmental Policy for Sangster International Airport (SIA): Integrate environmental management measures with planning,

More information

Remediation of Sodium Contaminated Sites

Remediation of Sodium Contaminated Sites Remediation of Sodium Contaminated Sites Environmental Challenges and Innovations Conference: Gulf Coast 2007 Mark Landress P.G. Project vigator, Ltd. 10497 Town & Country Way Suite 830 Houston, TX 77024

More information

Secondary Containment Systems for Aboveground Storage Tanks

Secondary Containment Systems for Aboveground Storage Tanks New York tate Department of Environmental Conservation Division of pills Management 50WolfRoad Albany,NewYork12233-3750 Telephone: (518) 457-4351 FAX: (518)457-4332 MEMORANDUM eptember 28, 1994 To: Regional

More information

Environmental and Economical Oil and Groundwater Recovery and Treatment Options for hydrocarbon contaminated Sites

Environmental and Economical Oil and Groundwater Recovery and Treatment Options for hydrocarbon contaminated Sites 2014 5th International Conference on Environmental Science and Technology IPCBEE vol.69 (2014) (2014) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2014. V69. 15 Environmental and Economical Oil and Groundwater

More information

Review of Groundwater Vulnerability Assessment Methods Unsaturated Zone. Dept. of Earth Sciences University of the Western Cape

Review of Groundwater Vulnerability Assessment Methods Unsaturated Zone. Dept. of Earth Sciences University of the Western Cape Review of Groundwater Vulnerability Assessment Methods Unsaturated Zone Dept. of Earth Sciences University of the Western Cape Background Sililo et al. (2001) Groundwater contamination depends on: Intrinsic

More information

Retention/Irrigation. Design Considerations. Soil for Infiltration Area Required Slope Environmental Side-effects

Retention/Irrigation. Design Considerations. Soil for Infiltration Area Required Slope Environmental Side-effects Description Retention/irrigation refers to the capture of stormwater runoff in a holding pond and subsequent use of the captured volume for irrigation of landscape of natural pervious areas. This technology

More information

HISTORICAL OIL CONTAMINATION TRAVEL DISTANCES IN GROUND WATER AT SENSITIVE GEOLOGICAL SITES IN MAINE

HISTORICAL OIL CONTAMINATION TRAVEL DISTANCES IN GROUND WATER AT SENSITIVE GEOLOGICAL SITES IN MAINE HISTORICAL OIL CONTAMINATION TRAVEL DISTANCES IN GROUND WATER AT SENSITIVE GEOLOGICAL SITES IN MAINE BUREAU OF REMEDIATION & WASTE MANAGEMENT MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION APRIL 30, 2002

More information

CHAPTER 16 REMEDIAL TECHNOLOGIES

CHAPTER 16 REMEDIAL TECHNOLOGIES Hazardous Waste Management, nd ed. Instructors Manual CHAPTER 16 REMEDIAL TECHNOLOGIES Supplemental Questions: The opening quote describes the fifth labor of Hercules. How many labors were there and what

More information

Mark A. Lehar, P.Geo. Regional Environmental Lead and Senior Environmental Geologist

Mark A. Lehar, P.Geo. Regional Environmental Lead and Senior Environmental Geologist Mark A. Lehar, P.Geo. Regional Environmental Lead and Senior Environmental Geologist Exova Seminar: 15 January 2016 HYDRASleeve TM Focused Sampling - Monitoring Well Sampling Using No Purge HYDRASleeves

More information

Putting a chill on global warming

Putting a chill on global warming Carbon capture and storage Putting a chill on global warming SABINE SULZER SULZER PUMPS MARKUS DUSS SULZER CHEMTECH Whenever fuel is burned, carbon dioxide (CO ) is emitted into the atmosphere. The subsequent

More information

Soil depth: meters Type of restrictive layer:

Soil depth: meters Type of restrictive layer: Job Name: Date: Designer: Sand mound design worksheet UNITS: Liters and Meters See diagrams page 6, below for dimension letters. See pressure distribution worksheet for conversions. A. DESIGN INPUTS, FLOW

More information

Improper storage of fuel on construction sites will increase the risk of water pollution that may occur as a result of leaks or spills.

Improper storage of fuel on construction sites will increase the risk of water pollution that may occur as a result of leaks or spills. WQ-10 Best Management Practice (BMP) Water Quality Protection Guideline Secondary Containment Design Standards Fuel Storage on Construction Sites According to the EPA, the majority of water pollution in

More information

Compliance Guidance for Motor Vehicle Waste Disposal Wells in Oregon September 2015

Compliance Guidance for Motor Vehicle Waste Disposal Wells in Oregon September 2015 Compliance Guidance for Motor Vehicle Waste Disposal Wells in Oregon September 2015 Underground Injection Control Program 700 NE Multnomah Street Suite 600 Portland, OR 97232 Phone: 503-229-6371 800-452-4011

More information

New Jersey Department of Environmental Protection (NJDEP) Site Remediation Program INSTRUCTIONS FOR NJDEP ONLINE REMEDIAL INVESTIGATION REPORT SERVICE

New Jersey Department of Environmental Protection (NJDEP) Site Remediation Program INSTRUCTIONS FOR NJDEP ONLINE REMEDIAL INVESTIGATION REPORT SERVICE New Jersey Department of Environmental Protection (NJDEP) Site Remediation Program INSTRUCTIONS FOR NJDEP ONLINE REMEDIAL INVESTIGATION REPORT SERVICE Applicability Use these instructions when submitting

More information

MARYLAND DEPARTMENT OF THE ENVIRONMENT 1800 Washington Boulevard Baltimore Maryland 21230-1719 1-800-633-6101 http://www.mde.state.md.

MARYLAND DEPARTMENT OF THE ENVIRONMENT 1800 Washington Boulevard Baltimore Maryland 21230-1719 1-800-633-6101 http://www.mde.state.md. MARYLAND DEPARTMENT OF THE ENVIRONMENT 1800 Washington Boulevard Baltimore Maryland 21230-1719 1-800-633-6101 http://www.mde.state.md.us Colonial Pipeline Dorsey Junction Facility 929 Hood s Mill Road,

More information