Compact Integrated Antennas
|
|
|
- Asher Gardner
- 10 years ago
- Views:
Transcription
1 Freescale Semiconductor, Inc. Application Note Document Number: AN2731 Rev. 3, 09/2015 Compact Integrated Antennas Designs and Applications for the MC1321x, MC1322x, MC1323x, and MKW40/30/20 1 Introduction With the introduction of many applications into the 2.4 GHz band for commercial and consumer use, Antenna design has become a stumbling point for many customers. Moving energy across a substrate by use of an RF signal is very different than moving a low frequency voltage across the same substrate. Therefore, designers who lack RF expertise can avoid pitfalls by simply following good RF practices when doing a board layout for and Bluetooth low energy applications. The design and layout of antennas is an extension of that practice. This application note will provide some of that basic insight on board layout and antenna design to improve our customers first pass success. Antenna design is a function of frequency, application, board area, range, and costs. Whether your application requires the absolute minimum costs or minimization of board area or maximum range, it is important to understand the critical parameters so that the proper trade-offs can be chosen. Some of the parameters necessary in selecting the correct antenna are: antenna tuning, matching, gain/loss, and required radiation pattern. Contents 1. Introduction Antenna Terms Basic Antenna Theory Impedance Matching Antennas Miniaturization Trade-offs Potential Issues Recommended Antenna Designs Design Examples , 2006, 2012, 2015 Freescale Semiconductor, Inc. All rights reserved.
2 Antenna Terms This note is not an exhaustive inquiry into antenna design. It is instead, focused toward helping our customers understand enough board layout and antenna basics to aid in selecting the correct antenna type for their application as well as avoiding the typical layout mistakes that cause performance issues that lead to delays. Additionally, several popular antennas are presented as possible solutions for some of the and Bluetooth low energy applications. 2 Antenna Terms The following table lists the antenna terms. Table 1. Antenna terms Antenna Gain Decibel (db) (dbi) Term Radiation Resistance Antenna Efficiency Transmission Lines Microstrip Stripline Coplanar Waveguide (CPW) Characteristic Impedance Mismatch Loss Resistive Loss Description A mathematical measure of an antenna radiation pattern compared to a reference antenna such as a dipole or an isotropic radiator. The gain is usually measured in dbs relative to a dipole or dbi relative to an ideal isotropic. In any given direction, a negative gain means that the antenna radiates less than the reference antenna and a positive number means that the antenna radiates more than the reference antenna. A logarithmic scale that represents power gain or loss in an RF circuit. 3 db represents a doubling of power, -3 db is half the power and -6 db represents half the voltage or current, but a quarter of the power. Application of the logarithmic scale to Antenna gain that is relative to an ideal isotropic antenna. The real part of an antenna's impedance that is associated with radiated power. It is the ratio of the power radiated to the power delivered to the antenna input. Hence, an antenna with 50% efficiency has a ratio of 0.5 or -3 db. Total efficiency includes antenna efficiency and also accounts for mismatch losses. A physical means to transport an RF signal from one point to another, which is defined by its physical constraints to match the characteristic impedance of the system. Most common systems use 50 Ohms characteristic impedance. A type of electrical transmission line that can be fabricated using printed circuit board technology, and is used to convey microwave-frequency signals. It consists of a conducting strip separated from a ground plane by a dielectric layer known as the substrate. A type of electrical transmission line that can be fabricated using printed circuit board technology, and is used to convey microwave-frequency signals. It consists of a flat strip of metal that is sandwiched between two parallel ground planes. The insulating material of the substrate forms a dielectric. The width of the strip, the thickness of the substrate, and the relative permittivity of the substrate determine the characteristic impedance of the strip, which is a transmission line. Classic coplanar waveguide (CPW) is formed from a conductor separated from a pair of ground planes, all on the same plane, atop a dielectric medium. In the ideal case, the thickness of the dielectric is infinite. A variant of coplanar waveguide is formed when a ground plane is located beneath the transmission line against the substrate. Usually written Z 0, is the ratio of the amplitudes of voltage and current of a single wave propagating along a transmission line travelling in one direction. The amount of power expressed in decibels that will not be available on the output due to impedance mismatches and signal reflections. The component of Power loss, expressed in decibels, due to ohmic voltage reduction as a wave travels along a transmission line. 2 Freescale Semiconductor, Inc.
3 3 Basic Antenna Theory Basic Antenna Theory A common method to evaluate an antenna is to view its antenna gain pattern. An antenna's gain pattern is a measure of directionality of the antenna. A perfect theoretical omni-directional antenna radiates equally in all directions and its field would look like a perfect sphere. However, practical manufacturable antennas cannot be made to radiate equally in all directions. Therefore, all practical antennas will have some gain. The higher the gain the more directional is the antenna. Large distance fixed position applications actually require a highly directional antenna. Whereas, a general purpose local area network will usually require an antenna that is omni-directional. Theoretically, any metallic structure can be used as an antenna. However, some structures are more efficient in radiating and receiving RF power than others. Transmission lines are used to convey the signal between the radio and the antenna with minimum loss due to resistive, mismatch and radiative losses as possible. The following examples explain these concepts. Transmission lines take on a variety of shapes such as microstrip, coplanar waveguide, stripline, coaxial lines, etc.. For and Bluetooth low energy applications built on FR4 substrates, the methods of transmission lines typically take the form of microstrip, or coplanar waveguide (CPW). These two structures are defined by the dielectric constant of the board material, the line width, the board thickness between the line and the ground and additionally for CPW, the gap between the line and the top edge ground plane. These parameters are used to define the characteristic impedance of the transmission line that is used to convey the RF energy between the radio and the antenna. Typically, the RF ports from the radios and Bluetooth low energy applications are differential or balanced. These ports RF impedances at the radio are in the range of 100 Ohms. Freescale s applications typically use a balun to transform the balanced signals to a single ended output with a characteristic impedance of 50 ohms. Therefore, Freescale recommends an antenna with a 50 ohm feed. The typical network for an radio and Bluetooth low energy application includes a matching network between the radio ports (typically differential RF ports) and the antenna. To minimize loss and simplify the matching, a balun is typically employed with Freescale s application boards with component matching between the balun and the radio on the differential side of the balun. Then, to suppress any 2nd harmonic spurious in the spectrum, a 2nd harmonic trap is placed between the balun and the antenna on the single ended side of the balun. The transmission lines on the differential side of the Balun are usually high impedance but are short in length and therefore, are sized more for manufacturing optimization than for RF performance with little impact to performance. The balun is essentially a transformer that can be chosen at various ratios of 1:1, 2:1 or 4:1 for optimum matching. The 2nd harmonic trap consists of a high-q capacitor for minimum loss, which is used to series resonate with its self inductance along with the board via inductance at the 2nd harmonic or approximately 4900 MHz. This resonance presents an RF short at the second harmonic shunting most of the unwanted signal to ground. The trap capacitor increases the loss at the fundamental frequency. This fundamental frequency loss can be minimized in two ways: First, by adding inductance to the self inductance of the capacitor. This allows the capacitor to resonate using a lower value capacitor. The lower the value of the capacitance, the lower the impact to the fundamental frequency loss. Second, by creating an open tank circuit that resonates at the fundamental frequency (2445 MHz). This is accomplished by placing an inductor in parallel to the shunt trap capacitor that together has a 2445 MHz open circuit resonance. Freescale Semiconductor, Inc. 3
4 Impedance Matching The antenna structure should be a reasonable size compared to the wavelength of the RF field. A natural size is a half wavelength. A half wavelength corresponds to approximately 6 cm (in air) in the 2.4 GHz ISM band. This size is effective because when it is fed with RF power at the center point, the structure is resonant at the half wave frequency. Reducing the size below the natural resonant length can cause low efficiency. Not all structures make an efficient antenna. Numerous structures have been devised that provide good efficiency and a good impedance match, but most of these are derived from a few basic structures. A short description of the basic antennas recommended by Freescale and some advice on how to implement these with success is provided later in this note. It is beyond the scope of this note to include complicated formulas concerning antenna theory. This note is intended to provide basic information about antennas, which will allow users to achieve reasonable performance with a few sample antennas. Users interested in optimizing antenna performance by complex calculations and antenna simulations should consult the abundant and widely available literature concerning antenna theory and design. Usually, copying a Freescale existing design should ensure reasonable performance. However, many factors affect performance such as antenna type, matching impedance, antenna gain (directionality), substrate thickness, substrate dielectric constant, and antenna efficiency. 4 Impedance Matching 4.1 Radio to the Antenna The best chance for customer first pass success is to copy Freescale s reference designs verbatim. However, some applications require a substrate with a different layer count or different thickness than what is recommended. Sometimes space is not available for a printed antenna or components from application circuitry may be adjacent to the RF area. Often times, the product plastic encapsulation will interfere with performance. There are important aspects of the board layout that must be followed if the customer is to achieve maximum performance from the radio. That includes making sure that no metal is under or around the antenna that is not called out in Freescale reference designs. In addition, an often made mistake is for customers to run traces under the RF section on layer 2 ground, thereby cutting the ground reference plane that the RF traces require to maintain designed impedance. All of these errors cause the radio to be loaded or the return loss to be high. If that happens, the signal that is to be transported to the antenna for radiation will instead be reflected back into the radio. Therefore, it is just as critical that attention is paid to the matching network layout as to the antenna design. A good practice is to review all components in the RF section of a layout and remove all excess metal. That is, metal that fills in around components and around the radio IC pins. In addition, avoid routing of lines near or parallel to RF transmission lines or RF bias lines. RF signals will couple to these pieces of metal, which are usually connected to ground and therefore will distort the signal causing excessive VSWR. As mentioned before, avoid any routing on the ground layer that would result in cutting the ground under the RF line. Maintaining a continuous ground under an RF trace is critical to maintaining the characteristic impedance of that line. The recommended stackup is as follows: Beginning at the top: Top - RF routing of transmission lines. L2 - Ground, L3 - DC routing, Bottom - DC routing. 4 Freescale Semiconductor, Inc.
5 Impedance Matching Although there are antennas that are capable of matching to differential impedance, this application note is restricted to single ended or unbalanced matching. This is further restricted to antennas with a feed impedance of 50 Ohms. The goal is to have an antenna on the Printed Circuit Board (PCB) that has as its matching impedance 50 +J0 Ohms. In this way, the antenna will act as a 50 Ohm load to the output of the radio that feeds it. Therefore, the matching, when properly done, will load the radio s differential ports to obtain maximum power, minimum RX sensitivity, and minimum distortion of the radio signal while moving the signal with minimum loss between the antenna and the radio. Antennas can be heavily loaded (increased VSWR) when placed in close proximity to ground. The close proximity to ground affects radiation resistance, which then can cause the match to deviate considerably from 50 Ohms, which in-turn translates to a poor match further down the matching network to the radios output. During the layout of the board, provisions need to be made to allow for measurement of the antenna VSWR. Even though a user may copy the antenna shape exactly as prescribed by Freescale, the material parameters may differ enough to cause the antenna to shift in frequency. If that occurs, it may not matter that the part is tuned for maximum power as most of it will be reflected back in to the radio if the VSWR is high. To avoid that, it is necessary to measure the antenna as a one port and tune by trimming or adding metal to it to center the minimum VSWR in the band. This approach only controls the one parameter of VSWR and does nothing for Gain or efficiency. That must be addressed by design. If the user s application requires a different stackup or material properties or adjacent components that may distort the RF response, then add a millimeter to the antenna length and plan on trimming to achieve acceptable Return Loss (-10 db or less). 4.2 Antenna to 50 Ohms Three methods may be employed to have the ability to measure the antenna separate from the matching network. 1) RF microswitch, 2) Alternate path to an SMA connector (as found on Freescale s MC13233-MRB) or 3) a pigtail made from coax soldered to the board. 1. An RF microswitch has been used on some Freescale s reference designs where the method to evaluate either the antenna or the radio performance is a special connector that snaps onto the microswitch. The microswitch placement is after all matching and filtering but before the antenna. The special connector is connected to an SMA connector via a microcoax cable. The limitations are that the switch is directional and a determination has to be made in advance of which direction the switch will throw when the special connector is attached. That is, it can be looking into the output of the radio when the special connector is inserted or it can be looking into the antenna but not both. A limited number of boards can be built for each direction so that both, the RF output of the radio can be evaluated and also the input of the antenna. 2. Microstrip to SMA. In order for our customers to evaluate some of our boards without having to do over the air measurements, we have included a microstrip line to a board edge SMA connector. The microstrip is selectable from the single ended side of the Balun on the antenna side of the harmonic trap (which is usually between the balun and the antenna). The microstrip line is selectable by using a capacitor rotated toward the SMA instead of toward the antenna. In that case, if the user is careful in the placement of the capacitor, instead of selecting between an RF output path of either the SMA connector or the antenna from the radio, the capacitor can be placed Freescale Semiconductor, Inc. 5
6 Impedance Matching across the connection of the SMA and the antenna. In that case, the SMA can be used to interrogate the VSWR of the antenna without any special connectors or special preparation of the board as is required when employing method Pigtail. Often times, a customer does not want to incur the cost of a special microcoax connector and microswitch when only a few are needed for validation of design. Or it is not convenient to include an alternate path for SMA for their specific application. In this case, if a sufficient ground plane is available and the customer is careful to keep components clear, a piece of coax cable with an SMA connector on one end can be soldered to the board on the ground plane and the center pin attached to the antenna feed. Using this method does not lend itself to doing many boards but is useful for tuning and evaluating a few boards. If any serious quantity of boards is necessary for validation of design, then method 1 or 2 is recommended. The most common antenna used by our customers is an inverted F antenna. This section describes how to tune an inverted F antenna feed impedance to achieve 50 Ohms characteristic impedance. It is a simple matter to tune an inverted F antenna to operate at the proper frequency. Ideally, the minimum return loss needs to be centered at about 2445 MHz. Generally, even if the frequency is offset a little, such that there is at least 10 db return loss looking into the antenna at the band edges, is sufficient to achieve good range and receive sensitivity. Using one of the three methods outlined above, connect the antenna to a network analyzer. Adjust the bandwidth of the network analyzer display such that the natural point of resonance of the antenna is visible in the display window. Have the display view broad enough so that if the antenna resonance is a few hundred MHz low or high, it will still be in view. The purpose is to know whether to tune the antenna up in frequency or down in frequency. If the natural resonance is lower that the wanted band, then the antenna is too long for this application and can easily be tuned to center frequency by trimming the length. Take very small cuts on the length (for most of Freescale s designs this means the top and bottom sides of the substrate) and re-measure VSWR. Repeat this process until the antenna is centered in the band. If the natural resonance is higher than the wanted band, then the antenna is already shorter than needed for this band and copper foil will need to be added carefully to the antenna length to move the resonant point down in frequency. If foil must be added to increase the length, then add more than 6 Freescale Semiconductor, Inc.
7 Antennas necessary so that subsequent tuning can be done by the cutting process. After this is achieved, move onto the impedance matching exercise. 4.3 Impedance Matching Components Due to the inaccessibility of many of our customers to expensive equipment, we do not give an elaborate method for matching using a simulator. Most of Freescale s radios are tolerant to minor board changes that customers require. However, a customer's board that may be a copy of a Freescale reference design may have a response that is not meeting performance parameters due to board parameter differences, application component interference or encapsulation. In that case, the customer board needs to be re-tuned to optimize RF performance. Freescale does not maintain a reference library for matching purposes. Instead, we provide reference designs that have proven to be robust when copied carefully. Usually, the values of components that are chosen for our boards need very little adjustment for our customer boards. Therefore, as a first step in re-tuning a customer's application board, simply replace the series matching inductors with the next incremental values up or down. Then measure and evaluate TX power, Error Vector Magnitude (EVM) and RX sensitivity. Also, there is usually a shunt capacitor or inductor across the differential outputs. Adjusting this value may be necessary also. Adjust the tuning values as necessary. Usually, the component values will not need to be modified by more than one increment up or down. 5 Antennas 5.1 Monopole Antennas If one part of a dipole antenna is removed and replaced by an infinite ground plane, the remaining half of the dipole mirrors itself in the ground plane. This ground plane is sometimes referred to as the counterpoise. For all practical purposes, the monopole behaves as a half dipole. That is, it has the same doughnut shaped radiation pattern, the radiation resistance is half that of the dipole (37 Ohm), it can be bent or folded like the dipole, and the same loading and feeding techniques can be applied. However, one very important difference remains in that the antenna feed point is not balanced, but single ended. Because of this, and because most RF circuits are of the unbalanced type, this antenna type is very popular and a lot of variations of the monopole theme exist, most designed to match 50 Ohms. Freescale Semiconductor, Inc. 7
8 Antennas Figure 1. Monopole Above a Ground Plane, Showing the Mirror Antenna It is important to note that the whip is only half the antenna and that the remainder is made up of the ground plane, or counter weight, as it is sometimes called. In a practical application, the ground plane is often made up of the remainder of the PCB (ground and supply planes, traces, and components) and/or the metal case of the device, if it has one. The ground plane should be a reasonably sized area compared to the antenna, and should be as continuous as possible. If a monopole is used on a very small PCB, perhaps even with only a small area of copper, efficiency will suffer, and the antenna will be difficult to tune. Components and PCB tracks introduce additional losses and affect the feed point impedance. As for the dipole, resonance is typically obtained at a length slightly shorter than 1/4 wavelength. The radiation resistance is changed by bending the antenna, and like the dipole, the nulls in the theoretical radiation pattern can be reduced. By bending the antenna elements, the radiation resistance and efficiency drops, so the antenna should not be placed too close to ground. Like the dipole, the monopole can also be folded and bent around corners, if board space requires this, or it can be loaded with series coils. Of the many variations that exist, the following sections highlight the most common Open Stub, Tilted Whip If the monopole is bent and traced along the ground plane, it will be more compact and the null in the radiation pattern is partly eliminated. The antenna should not bee too close to ground, preferably not closer than 1/10 wavelength (1 cm), or efficiency suffers too much. At this close spacing, the radiation resistance is so low (in the order of 10 Ohms) that a matching network is usually needed. If the monopole is very close to ground, it will act as a transmission line instead of an antenna, with little or no radiation at all Inverted-F Antenna The F-antenna can be thought of as a tilted whip, where impedance matching is accomplished by tapping the antenna at the appropriate impedance point along its width. This antenna is used extensively because 8 Freescale Semiconductor, Inc.
9 Antennas it is reasonably compact, has a fairly omnidirectional radiation pattern, good efficiency, and is very simple. Note that the currents in the ground leg are high and that an adequate ground plane is necessary to provide good efficiency Meander Antenna Figure 2. Tilted Whip and F-Antenna (Note the Ground Plane Area) The meander antenna or meander pattern, is an antenna with the wire folded back and forth where resonance is found in a much more compact structure than can otherwise be obtained. The meander, spiral, and helix antennas are similar in that resonance is obtained in a compact space by compressing the wire in different ways. In all three cases, the radiation resistance, bandwidth, and efficiency drops off as size is decreased, and tuning becomes increasingly critical. Impedance matching can be implemented by tapping much like tapping is accomplished in the F-antenna. The meander and helix antenna, or a combination of these two, are easily implemented in a PCB and also many ceramic chip antennas are based on these types of antenna. 5.2 Component Antennas Chip Antennas Figure 3. Meander Pattern (Tapped for Impedance Match) Numerous commercial chip antennas are available. At first glance, chip antennas appear to work for no apparent reason. However, careful investigation reveals that most of these antennas are based on a helix, meander, or patch design. To ensure proper operation, it is very important to follow the manufacturer s recommendations regarding footprint, ground areas, and mounting of the chip antenna. The keep out area around the antenna is especially important. Even following the recommendations does not always guarantee good performance due to de-tuning by nearby objects. It is expected that fine tuning of the antenna and/or a matching network is required to ensure satisfactory performance. Because chip antennas Freescale Semiconductor, Inc. 9
10 Miniaturization Trade-offs normally, but not always, use a ceramic material with higher dielectric constant and lower loss than the usual FR4, it is possible to build smaller antennas with reasonable efficiency. Efficiency is not exceptionally high and is typically in the range of 10-50%, which corresponds to 3-10 db loss (-3 to 10 dbi). The lower number being inferior products with high inherent losses. As already stated, buying a chip antenna does not guarantee good performance. However, while they provide the smallest antenna solution possible, the size reduction comes at a cost both in performance and pricing. If a slightly larger PCB area is available than is required by the chip antenna and the keep out area can be allocated to a PCB antenna, it is possible to implement a PCB antenna with the same or better performance than a chip antenna. 6 Miniaturization Trade-offs 6.1 Antenna Size As previously stated, reducing antenna size results in reduced performance. Some of the parameters that suffer are: Reduced efficiency (or gain) Shorter range Smaller useful bandwidth More critical tuning Increased sensitivity to component and PCB spread Increased sensitivity to external factors Several performance factors deteriorate with miniaturization, but some antenna types tolerate miniaturization better than others. How much a given antenna can be reduced in size depends on the actual requirements for range, bandwidth, and repeatability. In general, an antenna can be reduced to half its natural size with moderate impact on performance. However, after a 1/2 reduction, performance becomes progressively worse as the radiation resistance drops off rapidly. As loading and antenna losses often increase with reduced size, it is clear that efficiency drops off quite rapidly. The amount of loss that can be tolerated depends on the range requirements. Bandwidth also decreases, which causes additional mismatch losses at the band ends. The bandwidth can be increased by resistive loading, but this often introduces even more loss than the mismatch loss. The low bandwidth combined with heavy loading requires a spread analysis to ensure adequate performance with variations in component values and PCB parameters. So, it is often better not to reduce antenna size too much if board space allows. Even if range requirements do not require optimum antenna performance, production problems and spread are minimized. It is also best to keep some clearance between the antenna and nearby objects. Although the antenna may be retuned to compensate for the loading introduced by the surrounding objects, tuning becomes more critical, and the radiation pattern can be heavily distorted. 6.2 Baluns Many of the antennas already mentioned in this note are single-ended and designed to have a feed point impedance close to 50 Ohms. A balun is required to interface these antennas to a balanced output/input. 10 Freescale Semiconductor, Inc.
11 Potential Issues The balun converts a single ended input to a balanced output together with an optional impedance transformation. The output is differential. That is, the output voltage on each pin is of equal magnitude, but of opposite phase. The output impedance is normally stated as the differential impedance. That is, measured between the two output pins. The balun is bidirectional. The balanced port can be both input or output. Several discrete circuits are available that perform as baluns but most of them are sensitive to input and output loading and PCB layout issues, which requires cumbersome fine tuning. Also, all of these require at least two chip inductors. In the 2.4 GHz band, there are small ceramic baluns that are easy to use and are less sensitive to the PCB layout with standard output impedances of 50, 100, and 200 Ohms. The cost of a discrete balun is comparable to the ceramic balun and the ceramic balun requires less board space. Therefore, the ceramic balun is recommended for most designs. 7 Potential Issues Numerous things can go wrong with an antenna design. The following list provides a few do s and don t s that may serve as a good checklist in a final design. Many of these items seem obvious to the experienced antenna designer, but many of these issues are routinely encountered in practice. This is obviously not a complete list. Never place ground plane or tracks underneath the antenna Never place the antenna very close to metallic objects In the final product, ensure that the wiring and components do not get too close to the antenna A monopole antenna will need a reasonable ground plane area to be efficient Do the final tuning in the end product enclosure, not in open air Never install a chip antenna in a vastly different layout than the reference design and expect it to work without tuning Do not use a metallic enclosure or metallized plastic for the antenna Test the plastic casing for high RF losses, preferably before production Never use low-q loading components, or change manufacturer without retesting Do not use very narrow PCB tracks. The tracks should be relatively wide as space allows 8 Recommended Antenna Designs The recommendation for antenna design employed by Freescale for ZigBee compliant hardware includes two substrate antenna designs and a chip component design: 1. Inverted-F antenna for best range performance 2. Meander antenna for reduced size 3. Chip Antenna for rapid time-to-market Freescale s family of integrated ZigBee solutions has differential RF inputs and outputs. All recommended antenna designs have a 50 Ohm, single ended interface. Therefore, a balun interface between the 50 Ohm single ended antenna and the differential RF terminals is required for all but the 50 Ohm I/O port available Freescale Semiconductor, Inc. 11
12 Design Examples exclusively on the MC1322X radio. The performance advantage of a design such as Freescale s Inverted-F antenna, often make this the preferred approach. The Inverted-F antenna has its limitations where board space is critical. If range is not an issue then, the trade off of space for range can be employed by a meandering inverted-f antenna. The inverted-f and consequently, the meandering inverted-f antenna is a directional antenna and orientation of the antenna on the board will affect the range. This is usually not a big concern for well tuned radios that only need to operate within a relatively small space such as a living room where the radio is being employed as a remote control. While the inverted-f and meandering inverted-f antennas represent the lowest cost options for antennas, they are not necessarily the best choice for time-to-market due to the need to tune them. If the time frame to move the end product into the market place is paramount, then employing the chip antenna for early production can generate revenue while a less expensive board level inverted-f antenna can be developed and implemented as a cost reduction measure. 9 Design Examples The following section shows a series of design examples. Each of these has been tuned for a particular design, so a cut-and-paste approach will not necessarily ensure optimum performance. However, these designs are a good starting point for further optimization, and they indicate the approximate size of the particular antenna. 9.1 Inverted-F Antenna The following figure shows an F-antenna. Measurements are in millimetres. Figure 4. F Antenna Figure 5 shows the EVK horizontal PCB radiation pattern. Red represents vertical polarization and blue represents horizontal polarization both measured in dbi. 12 Freescale Semiconductor, Inc.
13 Design Examples Figure 5. F-Antenna Radiation Pattern (For Antenna as Shown in Figure 11) Figure 6 shows a typical plot of the return loss and bandwidth obtainable with an F-antenna. A slight ripple is caused by the ground plane size. 9.2 Chip Antennas Figure 6. F Antenna Return Loss and Bandwidth Numerous chip antenna designs exist and Freescale strongly recommends carefully following the antenna manufacturers guidance regarding ground, keep-out areas, etc. Freescale Semiconductor, Inc. 13
14 Design Examples With no tuning, chip antennas often have a resonant frequency above 2.5 GHz and the return loss at 2.45 GHz is very poor. The antenna must be tuned either by inserting a chip coil in series with the feed point, or adding a PCB track to the opposite end to lower the resonant frequency to 2.45 GHz. The antenna needs to be tuned for the PCB and enclosure that the end product will have. 14 Freescale Semiconductor, Inc.
15 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including typicals, must be validated for each customer application by customer s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/salestermsandconditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor,Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. 2005, 2006, 2012, 2015 Freescale Semiconductor, Inc. Document Number: AN2731 Rev. 3 09/2015
How To Design An Ism Band Antenna For 915Mhz/2.4Ghz Ism Bands On A Pbbb (Bcm) Board
APPLICATION NOTE Features AT09567: ISM Band PCB Antenna Reference Design Atmel Wireless Compact PCB antennas for 915MHz and 2.4GHz ISM bands Easy to integrate Altium design files and gerber files Return
Simple Method of Changing the Frequency Range of a Power Amplifier Circuit
Freescale Semiconductor Application Note AN4859 Rev. 0, 8/2014 Simple Method of Changing the Frequency Range of a Power Amplifier Circuit Amplifier designers often face the challenge of modifying an existing
Time and Frequency Domain Analysis for Right Angle Corners on Printed Circuit Board Traces
Time and Frequency Domain Analysis for Right Angle Corners on Printed Circuit Board Traces Mark I. Montrose Montrose Compliance Services 2353 Mission Glen Dr. Santa Clara, CA 95051-1214 Abstract: For years,
How to make a Quick Turn PCB that modern RF parts will actually fit on!
How to make a Quick Turn PCB that modern RF parts will actually fit on! By: Steve Hageman www.analoghome.com I like to use those low cost, no frills or Bare Bones [1] type of PCB for prototyping as they
Antenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013
Antenna Properties and their impact on Wireless System Performance Dr. Steven R. Best Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013 Phone (603) 627-7877 FAX: (603) 627-1764 Email: [email protected]
Connectivity in a Wireless World. Cables Connectors 2014. A Special Supplement to
Connectivity in a Wireless World Cables Connectors 204 A Special Supplement to Signal Launch Methods for RF/Microwave PCBs John Coonrod Rogers Corp., Chandler, AZ COAX CABLE MICROSTRIP TRANSMISSION LINE
Basic Wire Antennas. Part II: Loops and Verticals
Basic Wire Antennas Part II: Loops and Verticals A loop antenna is composed of a single loop of wire, greater than a half wavelength long. The loop does not have to be any particular shape. RF power can
AN3359 Application note
Application note Low cost PCB antenna for 2.4GHz radio: Meander design 1 Introduction This application note is dedicated to the STM32W108 product family from STMicroelectronics. One of the main reasons
Designing the NEWCARD Connector Interface to Extend PCI Express Serial Architecture to the PC Card Modular Form Factor
Designing the NEWCARD Connector Interface to Extend PCI Express Serial Architecture to the PC Card Modular Form Factor Abstract This paper provides information about the NEWCARD connector and board design
Embedded FM/TV Antenna System
1 Embedded FM/TV Antenna System Final Report Prepared for By January 21, 2011 2 Table of Contents 1 Introduction... 5 2 Technical Specification... 6 3 Prototype Antenna... 7 4 FASTROAD Active module fabrication...
USB 3.0* Radio Frequency Interference Impact on 2.4 GHz Wireless Devices
USB 3.0* Radio Frequency Interference Impact on 2.4 GHz Wireless Devices White Paper April 2012 Document: 327216-001 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
AVR2006: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna. Application Note. Features.
AVR26: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna Features Radiation pattern Impedance measurements WIPL design files NEC model Application Note 1 Introduction This
$1 SRD Antennas. Keywords. Introduction. Overview. By P. M. Evjen. PCB antenna design Body-worn and handheld antennas. Antenna theory Small antennas
$1 SRD Antennas By P. M. Evjen Keywords Antenna theory Small antennas PCB antenna design Body-worn and handheld antennas Introduction This application note addresses one of the most important issues faced
Shielding Effectiveness Test Method. Harbour s LL, SB, and SS Coaxial Cables. Designs for Improved Shielding Effectiveness
Shielding Effectiveness Test Method Harbour s LL, SB, and SS Coaxial Cables Designs for Improved Shielding Effectiveness Harbour Industries 4744 Shelburne Road Shelburne Vermont 05482 USA 802-985-3311
Planar Antennas for WLAN Applications
2002 09 Ansoft Workshop Planar Antennas for WLAN Applications Kin-Lu Wong) Dept. of Electrical Engineering National Sun Yat-Sen University Kaohsiung, Taiwan 1 Outlines WLAN Mobile-Unit Antennas Surface
WAVEGUIDE-COAXIAL LINE TRANSITIONS
WAVEGUIDE-COAXIAL LINE TRANSITIONS 1. Overview Equipment at microwave frequencies is usually based on a combination of PCB and waveguide components. Filters and antennas often use waveguide techniques,
Just a Dipole. Gary Wescom N0GW July 16, 2007
Just a Dipole Gary Wescom N0GW July 16, 2007 Often we will hear people describing their antennas as just a dipole. After all, a coax cable fed, half wavelength dipole is one of the simplest antennas to
Eatman Associates 2014 Rockwall TX 800-388-4036 rev. October 1, 2014. Striplines and Microstrips (PCB Transmission Lines)
Eatman Associates 2014 Rockwall TX 800-388-4036 rev. October 1, 2014 Striplines and Microstrips (PCB Transmission Lines) Disclaimer: This presentation is merely a compilation of information from public
Selecting Receiving Antennas for Radio Tracking
Selecting Receiving Antennas for Radio Tracking Larry B Kuechle, Advanced Telemetry Systems, Inc. Isanti, Minnesota 55040 [email protected] The receiving antenna is an integral part of any radio location
Capacitor Self-Resonance
Capacitor Self-Resonance By: Dr. Mike Blewett University of Surrey United Kingdom Objective This Experiment will demonstrate some of the limitations of capacitors when used in Radio Frequency circuits.
Three Balun Designs for Push-Pull Amplifiers
Application Note ev. 0, 7/1993 Three Balun Designs for Push-Pull Amplifiers Single F power transistors seldom satisfy today s design criteria; several devices in separate packages 1,orinthesame package
Connector Launch Design Guide
WILD RIVER TECHNOLOGY LLC Connector Launch Design Guide For Vertical Mount RF Connectors James Bell, Director of Engineering 4/23/2014 This guide will information on a typical launch design procedure,
Digital Systems Ribbon Cables I CMPE 650. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip.
Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip. Each dielectric configuration has different high-frequency characteristics. All configurations
Electronic filters design tutorial -2
In the first part of this tutorial we explored the bandpass filters designed with lumped elements, namely inductors and capacitors. In this second part we will design filters with distributed components
5. ANTENNA TYPES. Figure 5. The vertical dipole and its electromagnetic equivalent, the vertical monopole
Antennas can be classified in several ways. One way is the frequency band of operation. Others include physical structure and electrical/electromagnetic design. The antennas commonly used for LMR both
VJ 6040 Mobile Digital TV UHF Antenna Evaluation Board
VISHAY VITRAMON Multilayer Chip Capacitors Application Note GENERAL is a multilayer ceramic chip antenna designed for receiving mobile digital TV transmissions in the UHF band. The target application for
Product Name Hexa-Band Cellular SMD Antenna GSM / CDMA / DCS / PCS / WCDMA /UMTS /HSDPA / GPRS / EDGE 800 MHz to 2200 MHz
Anam PA.25a Specification Part No. PA.25a Product Name Anam Hexa-Band Cellular SMD Antenna GSM / CDMA / DCS / PCS / WCDMA /UMTS /HSDPA / GPRS / EDGE 800 MHz to 2200 MHz Feature High Efficiency Multi-Band
LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays
AN-5059 Fairchild Semiconductor Application Note May 2005 Revised May 2005 LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays Differential technologies such as
Avaya WLAN 9100 External Antennas for use with the WAO-9122 Access Point
Avaya WLAN 9100 External Antennas for use with the WAO-9122 Access Point Overview To optimize the overall performance of a WLAN in an outdoor deployment it is important to understand how to maximize coverage
Flexible PCB Antenna with Cable Integration Application Note Version 2
Flexible PCB Antenna with Cable Integration Application Note Version 2 CONTENTS 1. BASICS 2. APPLICATIONS 3. SIZE 4. SHAPE 5. GROUND PLANE SIZE 6. IMPEDANCE 7. BANDWIDTH 8. VSWR 9. GAIN 10. EFFICIENCY
Standex-Meder Electronics. Custom Engineered Solutions for Tomorrow
Standex-Meder Electronics Custom Engineered Solutions for Tomorrow RF Reed Relays Part II Product Training Copyright 2013 Standex-Meder Electronics. All rights reserved. Introduction Purpose Designing
APN1001: Circuit Models for Plastic Packaged Microwave Diodes
APPLICATION NOTE APN11: Circuit Models for Plastic Packaged Microwave Diodes Abstract This paper reports on the measurement and establishment of circuit models for SOT-23 and SOD-323 packaged diodes. Results
An octave bandwidth dipole antenna
An octave bandwidth dipole antenna Abstract: Achieving wideband performance from resonant structures is challenging because their radiation properties and impedance characteristics are usually sensitive
Antenna Deployment Technical Brief
ProCurve Networking Antenna Deployment Technical Brief Introduction... 2 Antenna types... 2 Omni directional antennas... 2 Directional antennas... 2 Diversity antennas... 3 High gain directional antennas...
Antenna Trainer EAN. www.edibon.com. Technical Teaching Equipment INTRODUCTION
Antenna Trainer EAN Technical Teaching Equipment Products Products range Units 3.-Communications INTRODUCTION Antennas are the main element of aerial communications. They are the transition between a transmission
Consequence for a dualband application
rel. bandwidth -6dB [%] DESIGN CONSIDERATIONS FOR INTEGRATED MOBILE PHONE ANTENNAS D. Manteuffel, A. Bahr, D. Heberling, I. Wolff IMST GmbH, Germany, e-mail: [email protected] Abstract Based on the investigation
Rufa 2.4 GHz SMD Antenna Part No. 3030A5839 / 3030A5887 Product Specification
Product Specification 1 Features Designed for 2.4 GHz applications: Bluetooth, Wi-Fi (802.11b/g), ZigBee, etc. Easy to integrate Low profile design for use with no ground beneath the antenna High efficiency
Quick Start Guide. MRB-KW01 Development Platform Radio Utility Application Demo MODULAR REFERENCE BOARD
Quick Start Guide MRB-KW01 Development Platform Radio Utility Application Demo MODULAR REFERENCE BOARD Quick Start Guide Get to Know the MRB-KW01x Module UART Selector ANT 1 RFIO (TX/RX) USB 2.0 Serial
Signal Integrity: Tips and Tricks
White Paper: Virtex-II, Virtex-4, Virtex-5, and Spartan-3 FPGAs R WP323 (v1.0) March 28, 2008 Signal Integrity: Tips and Tricks By: Austin Lesea Signal integrity (SI) engineering has become a necessary
EM Noise Mitigation in Circuit Boards and Cavities
EM Noise Mitigation in Circuit Boards and Cavities Faculty (UMD): Omar M. Ramahi, Neil Goldsman and John Rodgers Visiting Professors (Finland): Fad Seydou Graduate Students (UMD): Xin Wu, Lin Li, Baharak
Brevis GPS SMD. The A10204 GPS antenna is intended for reception of GPS signals at 1575 MHz.
Brevis GPS SMD Antenna Product Specification 1 Features GPS antenna designed for embedded applications Designed for use with the ground plane extended beneath the antenna Good efficiency to size ratio
Fusca 2.4 GHz SMD Antenna
Product Specification 1 Features Designed for 2.4 GHz applications: Bluetooth, Wi-Fi (802.11a/b/g/n), ZigBee, etc. as well as 2.3 GHz WiMAX, 2.5 GHz WiMAX and WiBro. Easy to integrate Low profile design
Antenna Basic Concepts
ANTENNA An antenna is a device to transmit and/or receive electromagnetic waves. Electromagnetic waves are often referred to as radio waves. Most antennas are resonant devices, which operate efficiently
Using Pre-Emphasis and Equalization with Stratix GX
Introduction White Paper Using Pre-Emphasis and Equalization with Stratix GX New high speed serial interfaces provide a major benefit to designers looking to provide greater data bandwidth across the backplanes
S-Band Low Noise Amplifier Using the ATF-10136. Application Note G004
S-Band Low Noise Amplifier Using the ATF-10136 Application Note G004 Introduction This application note documents the results of using the ATF-10136 in low noise amplifier applications at S band. The ATF-10136
Experiment 7: Familiarization with the Network Analyzer
Experiment 7: Familiarization with the Network Analyzer Measurements to characterize networks at high frequencies (RF and microwave frequencies) are usually done in terms of scattering parameters (S parameters).
National Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi 710071, China
Progress In Electromagnetics Research, PIER 76, 237 242, 2007 A BROADBAND CPW-FED T-SHAPE SLOT ANTENNA J.-J. Jiao, G. Zhao, F.-S. Zhang, H.-W. Yuan, and Y.-C. Jiao National Laboratory of Antennas and Microwave
RF data receiver super-reactive ASK modulation, low cost and low consumption ideal for Microchip HCS KEELOQ decoder/encoder family. 0.
Receiver AC-RX2/CS RF data receiver super-reactive ASK modulation, low cost and low consumption ideal for Microchip HCS KEELOQ decoder/encoder family. Pin-out 38.1 3 Component Side 1 2 3 7 11 13 14 15
Extending Rigid-Flex Printed Circuits to RF Frequencies
Extending -Flex Printed Circuits to RF Frequencies Robert Larmouth Teledyne Electronic Technologies 110 Lowell Rd., Hudson, NH 03051 (603) 889-6191 Gerald Schaffner Schaffner Consulting 10325 Caminito
APPLICATION NOTES POWER DIVIDERS. Things to consider
Internet Copy Rev A Overview Various RF applications require power to be distributed among various paths. The simplest way this can be done is by using a power splitter/divider. Power dividers are reciprocal
RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs
Freescale Semiconductor Technical Data RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs These 90 W RF power LDMOS transistors are designed for wideband RF power amplifiers covering the frequency
RX-AM4SF Receiver. Pin-out. Connections
RX-AM4SF Receiver The super-heterodyne receiver RX-AM4SF can provide a RSSI output indicating the amplitude of the received signal: this output can be used to create a field-strength meter capable to indicate
PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide
Application Note PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide Introduction This document explains how to design a PCB with Prolific PL-277x SuperSpeed USB 3.0 SATA Bridge
S-PARAMETER MEASUREMENTS OF MEMS SWITCHES
Radant MEMS employs adaptations of the JMicroTechnology test fixture depicted in Figure 1 to measure MEMS switch s-parameters. RF probeable JMicroTechnology microstrip-to-coplanar waveguide adapter substrates
GaAs Switch ICs for Cellular Phone Antenna Impedance Matching
GaAs Switch ICs for Cellular Phone Antenna Impedance Matching IWATA Naotaka, FUJITA Masanori Abstract Recently cellular phones have been advancing toward multi-band and multi-mode phones and many of them
Application Note: PCB Design By: Wei-Lung Ho
Application Note: PCB Design By: Wei-Lung Ho Introduction: A printed circuit board (PCB) electrically connects circuit components by routing conductive traces to conductive pads designed for specific components
Understanding Power Splitters
Understanding Power Splitters How they work, what parameters are critical, and how to select the best value for your application. Basically, a 0 splitter is a passive device which accepts an input signal
The Critical Length of a Transmission Line
Page 1 of 9 The Critical Length of a Transmission Line Dr. Eric Bogatin President, Bogatin Enterprises Oct 1, 2004 Abstract A transmission line is always a transmission line. However, if it is physically
Balun Parameter Definitions & Measurement May 2004
Balun Parameter Definitions & Measurement May 2004 Differential circuits are becoming more widely used in RF circuits for the same reason that they have been used for years in lower frequency circuits.
When designing. Inductors at UHF: EM Simulation Guides Vector Network Analyzer. measurement. EM SIMULATION. There are times when it is
Inductors at UHF: EM Simulation Guides Vector Network Analyzer Measurements John B. Call Thales Communications Inc., USA When designing There are times when it is circuits for necessary to measure a operation
Cellular Wireless Antennas
Cellular Wireless Antennas A Technical Brief GarrettCom Inc., November 2010 Overview The Cellular Wireless Antenna Technical brief is provided to assist with the design and deployment of the DX940 Cellular
An equivalent circuit of a loop antenna.
3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally
Pillbox Antenna for 5.6 GHz Band Dragoslav Dobričić, YU1AW [email protected]
Pillbox Antenna for 5.6 GHz Band Dragoslav Dobričić, YU1AW [email protected] Introduction The pillbox or cheese antenna is made of two parallel plates which are connected to the narrow strip of parabolic
AND8326/D. PCB Design Guidelines for Dual Power Supply Voltage Translators
PCB Design Guidelines for Dual Power Supply Voltage Translators Jim Lepkowski ON Semiconductor Introduction The design of the PCB is an important factor in maximizing the performance of a dual power supply
EMC STANDARDS STANDARDS AND STANDARD MAKING BODIES. International. International Electrotechnical Commission (IEC) http://www.iec.
EMC STANDARDS The EMC standards that a particular electronic product must meet depend on the product application (commercial or military) and the country in which the product is to be used. These EMC regulatory
Miniature Surface-Mount DAA for Audio or Data Transfer XE0402LCC BLOCK DIAGRAM
XE0402LCC January 2007 Miniature Surface-Mount DAA for Audio or Data Transfer Description The XE0402LCC supplies a complete telephone line interface or DAA (Data Access Arrangement) in a miniature, surface-mount
Insight on mobile phones and communication system:
Introduction: Rapid progresses are being made in wireless communications to make interactive voice, data and even video services available anytime and anyplace. Nowadays mobile phones are becoming ubiquitous.
This Antenna Basics reference guide includes basic information about antenna types, how antennas work, gain, and some installation examples.
Antenna Basics This Antenna Basics reference guide includes basic information about antenna types, how antennas work, gain, and some installation examples. What Do Antennas Do? Antennas transmit radio
Nexus Technology Review -- Exhibit A
Nexus Technology Review -- Exhibit A Background A. Types of DSL Lines DSL comes in many flavors: ADSL, ADSL2, ADSL2+, VDSL and VDSL2. Each DSL variant respectively operates up a higher frequency level.
Impedance Matching and Matching Networks. Valentin Todorow, December, 2009
Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines
This application note is written for a reader that is familiar with Ethernet hardware design.
AN18.6 SMSC Ethernet Physical Layer Layout Guidelines 1 Introduction 1.1 Audience 1.2 Overview SMSC Ethernet products are highly-integrated devices designed for 10 or 100 Mbps Ethernet systems. They are
The Design & Test of Broadband Launches up to 50 GHz on Thin & Thick Substrates
The Performance Leader in Microwave Connectors The Design & Test of Broadband Launches up to 50 GHz on Thin & Thick Substrates Thin Substrate: 8 mil Rogers R04003 Substrate Thick Substrate: 30 mil Rogers
The Gamma Match. 1 Equal Size Elements
The Gamma Match The gamma match was originally invented as a means of feeding vertical monopole antennas for medium wave broadcasts, which were earthed at the base for lightning protection (see Figure
FM Radio Transmitter & Receiver Modules
FM Radio Transmitter & Receiver Modules T5 / R5 Features MINIATURE SIL PACKAGE FULLY SHIELDED DATA RATES UP TO 128KBITS/S RANGE UPTO 300 METRES SINGLE SUPPLY VOLTAGE INDUSTRY PIN COMPATIBLE QFMT5-434 TEMP
EH-20 20m antenna. By VE3RGW
EH-20 20m antenna By VE3RGW Equivalent circuit of EH-20 (prototype 2A) antenna system. Upper cylinder Lower cylinder Ground Counter pose Phasing coil Impedance transformer and tune circuit Tune coil Feed
Correlation between OATS, Fully Anechoic Room and GTEM Radiated Emissions
Correlation between OATS, Fully Anechoic Room and GTEM Radiated Emissions Stephen Clay Introduction: Just a few words about myself. My name is Steve Clay and I work for Nokia Mobile Phones, and it is my
Design of a Planar Omnidirectional Antenna for Wireless Applications
Design of a Planar Omnidirectional Antenna for Wireless Applications Randy Bancroft and Blaine Bateman Centurion Wireless Technologies Westminster, Colorado Abstract Omnidirectional antennas are of great
Current Probes, More Useful Than You Think
Current Probes, More Useful Than You Think Training and design help in most areas of Electrical Engineering Copyright 1998 Institute of Electrical and Electronics Engineers. Reprinted from the IEEE 1998
Coaxial Cable Feeder Influence on Yagi Antenna Dragoslav Dobričić, YU1AW [email protected]
Coaxial Cable Feeder Influence on Yagi Antenna Dragoslav Dobričić, YU1AW [email protected] Introduction o far, in several previous articles [1, 2, 3], we investigated how boom radius and its S distance
Anatech Electronics, Inc.
Like all types of RF and microwave filters, ceramic filters have unique characteristics that differentiate them from their counterparts and make them useful for specific applications. Ceramic filters are
EE302 Lesson 14: Antennas
EE302 Lesson 14: Antennas Loaded antennas /4 antennas are desirable because their impedance is purely resistive. At low frequencies, full /4 antennas are sometime impractical (especially in mobile applications).
Broadband Slotted Coaxial Broadcast Antenna Technology
Broadband Slotted Coaxial Broadcast Antenna Technology Summary Slotted coaxial antennas have many advantages over traditional broadband panel antennas including much smaller size and wind load, higher
Internal GPS Active Patch Antenna Application Note
Internal GPS Active Patch Antenna Application Note APN-13-8-002/A Page 1 of 14 1. BASICS 2. APPLICATIONS 3. SIZE 4. SHAPE 5. GROUND PLANE 6. IMPEDANCE 7. BANDWIDTH 8. VSWR 9. LINK BUDGET 10. GAIN 11. NOISE
AN2866 Application note
Application note How to design a 13.56 MHz customized tag antenna Introduction RFID (radio-frequency identification) tags extract all of their power from the reader s field. The tags and reader s antennas
Application Note. PCIEC-85 PCI Express Jumper. High Speed Designs in PCI Express Applications Generation 3-8.0 GT/s
PCIEC-85 PCI Express Jumper High Speed Designs in PCI Express Applications Generation 3-8.0 GT/s Copyrights and Trademarks Copyright 2015, Inc. COPYRIGHTS, TRADEMARKS, and PATENTS Final Inch is a trademark
Weekend Antennas No. 1 A Bobtail Curtain for 2m
Weekend Antennas No. 1 A Bobtail Curtain for 2m Welcome to the first installment of my new column, which I hope will become a regular feature in Radio ZS. Each installment will present a practical and
Designing Log Periodic Antennas
Designing Log Periodic Antennas By Glen Dash, Ampyx LLC, GlenDash at alum.mit.edu Copyright 2000, 2005 Ampyx LLC Lightweight and precise, the log periodic has become a favorite among EMC engineers. In
Balancing the Electrical and Mechanical Requirements of Flexible Circuits. Mark Finstad, Applications Engineering Manager, Minco
Balancing the Electrical and Mechanical Requirements of Flexible Circuits Mark Finstad, Applications Engineering Manager, Minco Table of Contents Abstract...............................................................................................
On Cables and Connections A discussion by Dr. J. Kramer
KRAMER ELECTRONICS LTD. On Cables and Connections A discussion by Dr. J. Kramer We are frequently asked - "what length of cable can I use for a specific application?" Seemingly a simple question, but the
PCB Antenna with Cable Integration Application Note Version 2
PCB Antenna with Cable Integration Application Note Version 2 CONTENTS 1. BASICS 2. APPLICATIONS 3. SIZE 4. SHAPE 5. GROUND PLANE SIZE 6. BANDWIDTH 7. VSWR 8. GAIN 9. EFFICIENCY 10. TECHNOLOGY ADVANTAGES
AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation
AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation Abstract EMC compatibility is becoming a key design
RF Design Guidelines: PCB Layout and Circuit Optimization
AN 1200.04 Application Note RF Design Guidelines: PCB Layout and Circuit Optimization Copyright Semtech 2006 1 of 22 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2
Sensor and Simulation Notes. Note 479. October 2003. A Dual-Polarity Impulse Radiating Antenna
Sensor and Simulation Notes Note 479 October 2003 A Dual-Polarity Impulse Radiating Antenna Leland H. Bowen and Everett G. Farr Farr Research, Inc. Dean I. Lawry Air Force Research Laboratory, Directed
Omni Antenna vs. Directional Antenna
Omni Antenna vs. Directional Antenna Document ID: 82068 Contents Introduction Prerequisites Requirements Components Used Conventions Basic Definitions and Antenna Concepts Indoor Effects Omni Antenna Pros
Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier
Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is input and output internally
Practical PCB design techniques for wireless ICs Controlled impedance layout 100Ω balanced transmission lines
APPLICATION NOTE Atmel AT02865: RF Layout with Microstrip Atmel Wireless Features Practical PCB design techniques for wireless ICs Controlled impedance layout 50Ω unbalanced transmission lines 100Ω balanced
Planar Inter Digital Capacitors on Printed Circuit Board
1 Planar Inter Digital Capacitors on Printed Circuit Board Ajayan K.R., K.J.Vinoy Department of Electrical Communication Engineering Indian Institute of Science, Bangalore, India 561 Email {ajayanr jvinoy}
Optimised For Audio Analogue PCB design for the digital era.
Optimised For Audio Analogue PCB design for the digital era. David G. Tyas IKON AVS Ltd, 238 Ikon Estate, Hartlebury, Worcs.. DY10 4EU www.ikonavs.com 1. Introduction With increasing emphasis on digital
Antenna Glossary Before we talk about specific antennas, there are a few common terms that must be defined and explained:
Antenna Basics Introduction Antennas are a very important component of communication systems. By definition, an antenna is a device used to transform an RF signal, traveling on a conductor, into an electromagnetic
Fractus Compact Reach Xtend
Fractus Compact Reach Xtend Bluetooth, Zigbee, 82.11 b/g/n WLAN Chip Antenna Antenna Part Number: FR5-S1-N--12 This product is protected by at least the following patents PAT. US 7,148,85, US 7,22,822
