Speeding up MATLAB and Simulink Applications
|
|
|
- Sarah Lynch
- 10 years ago
- Views:
Transcription
1 Speeding up MATLAB and Simulink Applications 2009 The MathWorks, Inc. Customer Tour 2009
2 Today s Schedule Introduction to Parallel Computing with MATLAB and Simulink Break Master Class on Speeding Up MATLAB OR Master Class on Optimizing Simulation Performance in Simulink 2
3 Large Problems and Large Data Find new cancer therapies High-quality 3-D images of protein complexes Millions of projections Schematic of the 26S proteasome. Working on this problem for 10 years Computational Biology 3
4 Large Problems and Large Data Optimize stock portfolios High-fidelity simulations of risk-return relationship Thousands of stocks Millions of time points Data is too large for desktop computer Computational Finance 4
5 High-Performance Hardware is Available GPGPU, FPGA Single processor Multicore Multiprocessor Cluster Grid, Cloud 5
6 Grids and Clouds Offer Dynamic, Large-Scale Resources Cloud computing Resizable compute capacity Grid computing Sharing computing and storage resources 6
7 Parallel Computing with MATLAB Goals Simple and portable Straightforward speed up of users programs Interactive programming Portable code Scalable Deployable Integrated into organization s infrastructure 7
8 MATLAB Pool Extends Desktop MATLAB Worker Worker Worker TOOLBOXES BLOCKSETS Worker Worker Worker Worker Worker 8
9 Programming Parallel MATLAB Applications Level of control Level of effort Minimal None Some Straightforward Extensive Extensive 9
10 Programming Parallel MATLAB Applications Level of effort None Support built into Toolboxes and Blocksets: Optimization Toolbox Genetic Algorithm and Direct Search Toolbox SystemTest Real Time Workshop Simulink Design Optimization Straightforward Extensive 10
11 Example: Built-in Support for Parallelism in Other Tools Use built-in support for Parallel Computing Toolbox in Optimization Toolbox Optimize in parallel using fmincon Use pool of MATLAB workers 11
12 Example: Built-in Support for Parallelism in Other Tools Use built-in support for Parallel Computing Toolbox in Simulink Design Optimization Parameter estimation of a model in parallel Use pool of MATLAB workers 12
13
14 Programming Parallel MATLAB Applications Level of effort None Support built into Toolboxes and Blocksets: Optimization Toolbox Genetic Algorithm and Direct Search Toolbox SystemTest Real Time Workshop Simulink Design Optimization Straightforward Extensive 14
15 Long Computations with Independent Tasks Task Parallelism Task 1 Task 2 Task 3 Task 4 Time Time 15
16 Example: Multiple Independent Simulations Stochastic simulations of model Use pool of MATLAB workers Convert for to parfor 16
17 Speed up of MATLAB Programs Max Planck Institute Find new cancer therapies High-quality 3-D images of protein complexes Millions of projections Simulations run on 64 MATLAB workers "Parallel Computing Toolbox enabled us to speed up our processing by 20 to 30 times. We were able to use our cluster from MATLAB without having to be experts in parallel programming or having to learn another programming language." Andreas Korinek Max Planck Institute of Biochemistry 17
18 Programming Parallel MATLAB Applications Level of effort None Support built into Toolboxes and Blocksets Straightforward Simple programming constructs: parfor Extensive 18
19 Large Data Problems
20 Large Data Problems Data Parallelism
21 Example: Multiple Independent Simulations Use pool of MATLAB workers Distribute data across computers Run functions and matrix operations in parallel 21
22 Programming Parallel MATLAB Applications Level of effort None Support built into Toolboxes and Blocksets Straightforward Simple programming constructs: parfor distributed array spmd Extensive Full control of parallelization: job and task MATLAB and MPI 22
23 Parallel Computing with MATLAB Goals Simple and portable Scalable Support parallelism on desktop Treat large resources as extensions of desktop Deployable Integrated into organization s infrastructure 23
24 Run 8 Local Workers on Desktop Parallel Computing Toolbox Desktop Computer Parallel Computing Toolbox 24
25 Scale up with No Code Changes MATLAB Distributed Computing Server Computer Cluster Desktop Computer MATLAB Distributed Computing Server Parallel Computing Toolbox Scheduler 25
26 Extend Desktop to the Grid and Cloud Desktop Computer Parallel Computing Toolbox 26
27 I wrote and debugged my program by using multiple MATLAB workers on a workstation. I then ran it on the EGEE Grid and reduced computation time from 5 days to just 6 hours. Pavel Ivanov Optics Group, University of Bristol 27
28 Example: Multiple Independent Simulations on Amazon EC2 Stochastic simulations of model Use pool of MATLAB workers Convert for to parfor 28
29 Parallel Computing with MATLAB Goals Simple and portable Scalable Deployable Simple path from development to enterprise systems Integrated into organization s infrastructure 29
30 Deployment of MATLAB Applications Parallel q Share application with others who do not use MATLAB Standalone executables or components (C++, Java, C#, etc.) Royalty-free distribution Oil Exploration PTG shaker rig. MRI imaging 30
31 Oil Exploration PTG shaker rig. MRI imaging 31
32 Parallel Computing with MATLAB Goals Simple and portable Scalable Deployable Integrated into organization s infrastructure Dynamic licensing Support for third-party schedulers 32
33 Licensing Parallel Computing Tools Desktop Computer Parallel Computing Toolbox Cluster, Grid or Cloud MATLAB Distributed Computing Server Scheduler 33
34 Licensing MATLAB Distributed Computing Server Only product required on cluster All-product installation Cluster, Grid or Cloud MATLAB Distributed Computing Server One license key per worker Not per core, processor, Scheduler Available in worker packs of 8, 16, 32, 64, 34
35 Dynamic Licensing Access by Multiple Users Users have access to their licensed products Cluster, Grid or Cloud MATLAB Distributed Computing Server Cluster is extension of desktop Can exit MATLAB after submitting work Scheduler 35
36 Support for Schedulers Integrated with product MathWorks job manager Supported by product Platform LSF Windows HPC Server 2008 (and CCS 2003) PBS family PBS Professional TORQUE Open API for other schedulers Sun Grid Engine glite 36
37 Works on all Platforms Supported by MATLAB 37
38 Parallel Computing with MATLAB Simple and portable Straightforward program speed up Interactive parallel programming Portable code Deployable Simple path from development to enterprise systems Scalable Support parallelism on desktop Treat large resource as extensions of desktop Integrated into organization Dynamic licensing Support for third-party schedulers 38
39 Today s Schedule Introduction to Parallel Computing with MATLAB and Simulink Break Master Class on Speeding Up MATLAB OR Master Class on Optimizing Simulation Performance in Simulink 39
40 2009 The MathWorks, Inc. Customer Tour 2009
Parallel Computing with MATLAB
Parallel Computing with MATLAB Scott Benway Senior Account Manager Jiro Doke, Ph.D. Senior Application Engineer 2013 The MathWorks, Inc. 1 Acceleration Strategies Applied in MATLAB Approach Options Best
MATLAB in Business Critical Applications Arvind Hosagrahara Principal Technical Consultant Arvind.Hosagrahara@mathworks.
MATLAB in Business Critical Applications Arvind Hosagrahara Principal Technical Consultant [email protected] 310-819-3970 2014 The MathWorks, Inc. 1 Outline Problem Statement The Big Picture
Speed up numerical analysis with MATLAB
2011 Technology Trend Seminar Speed up numerical analysis with MATLAB MathWorks: Giorgia Zucchelli Marieke van Geffen Rachid Adarghal TU Delft: Prof.dr.ir. Kees Vuik Thales Nederland: Dènis Riedijk 2011
What s New in MATLAB and Simulink
What s New in MATLAB and Simulink Kevin Cohan Product Marketing, MATLAB Michael Carone Product Marketing, Simulink 2015 The MathWorks, Inc. 1 What was new for Simulink in R2012b? 2 What Was New for MATLAB
Tackling Big Data with MATLAB Adam Filion Application Engineer MathWorks, Inc.
Tackling Big Data with MATLAB Adam Filion Application Engineer MathWorks, Inc. 2015 The MathWorks, Inc. 1 Challenges of Big Data Any collection of data sets so large and complex that it becomes difficult
2015 The MathWorks, Inc. 1
25 The MathWorks, Inc. 빅 데이터 및 다양한 데이터 처리 위한 MATLAB의 인터페이스 환경 및 새로운 기능 엄준상 대리 Application Engineer MathWorks 25 The MathWorks, Inc. 2 Challenges of Data Any collection of data sets so large and complex
Bringing Big Data Modelling into the Hands of Domain Experts
Bringing Big Data Modelling into the Hands of Domain Experts David Willingham Senior Application Engineer MathWorks [email protected] 2015 The MathWorks, Inc. 1 Data is the sword of the
Parallel Computing using MATLAB Distributed Compute Server ZORRO HPC
Parallel Computing using MATLAB Distributed Compute Server ZORRO HPC Goals of the session Overview of parallel MATLAB Why parallel MATLAB? Multiprocessing in MATLAB Parallel MATLAB using the Parallel Computing
Deploying MATLAB -based Applications David Willingham Senior Application Engineer
Deploying MATLAB -based Applications David Willingham Senior Application Engineer 2014 The MathWorks, Inc. 1 Data Analytics Workflow Access Files Explore & Discover Data Analysis & Modeling Share Reporting
10- High Performance Compu5ng
10- High Performance Compu5ng (Herramientas Computacionales Avanzadas para la Inves6gación Aplicada) Rafael Palacios, Fernando de Cuadra MRE Contents Implemen8ng computa8onal tools 1. High Performance
Cluster, Grid, Cloud Concepts
Cluster, Grid, Cloud Concepts Kalaiselvan.K Contents Section 1: Cluster Section 2: Grid Section 3: Cloud Cluster An Overview Need for a Cluster Cluster categorizations A computer cluster is a group of
Solving Big Data Problems in Computer Vision with MATLAB Loren Shure
Solving Big Data Problems in Computer Vision with MATLAB Loren Shure 2015 The MathWorks, Inc. 1 Why Are We Talking About Big Data? 100 hours of video uploaded to YouTube per minute 1 Explosive increase
Data Analysis with MATLAB. 2013 The MathWorks, Inc. 1
Data Analysis with MATLAB 2013 The MathWorks, Inc. 1 Agenda Introduction Data analysis with MATLAB and Excel Break Developing applications with MATLAB Solving larger problems Summary 2 Modeling the Solar
Neptune. A Domain Specific Language for Deploying HPC Software on Cloud Platforms. Chris Bunch Navraj Chohan Chandra Krintz Khawaja Shams
Neptune A Domain Specific Language for Deploying HPC Software on Cloud Platforms Chris Bunch Navraj Chohan Chandra Krintz Khawaja Shams ScienceCloud 2011 @ San Jose, CA June 8, 2011 Cloud Computing Three
The Lattice Project: A Multi-Model Grid Computing System. Center for Bioinformatics and Computational Biology University of Maryland
The Lattice Project: A Multi-Model Grid Computing System Center for Bioinformatics and Computational Biology University of Maryland Parallel Computing PARALLEL COMPUTING a form of computation in which
LSKA 2010 Survey Report Job Scheduler
LSKA 2010 Survey Report Job Scheduler Graduate Institute of Communication Engineering {r98942067, r98942112}@ntu.edu.tw March 31, 2010 1. Motivation Recently, the computing becomes much more complex. However,
Is a Data Scientist the New Quant? Stuart Kozola MathWorks
Is a Data Scientist the New Quant? Stuart Kozola MathWorks 2015 The MathWorks, Inc. 1 Facts or information used usually to calculate, analyze, or plan something Information that is produced or stored by
MATLAB Distributed Computing Server System Administrator's Guide
MATLAB Distributed Computing Server System Administrator's Guide R2015b How to Contact MathWorks Latest news: www.mathworks.com Sales and services: www.mathworks.com/sales_and_services User community:
Echtzeittesten mit MathWorks leicht gemacht Simulink Real-Time Tobias Kuschmider Applikationsingenieur
Echtzeittesten mit MathWorks leicht gemacht Simulink Real-Time Tobias Kuschmider Applikationsingenieur 2015 The MathWorks, Inc. 1 Model-Based Design Continuous Verification and Validation Requirements
:Introducing Star-P. The Open Platform for Parallel Application Development. Yoel Jacobsen E&M Computing LTD [email protected]
:Introducing Star-P The Open Platform for Parallel Application Development Yoel Jacobsen E&M Computing LTD [email protected] The case for VHLLs Functional / applicative / very high-level languages allow
Cost Savings Solutions for Year 5 True Ups
Cost Savings Solutions for Year 5 True Ups US Dept. of Energy EA Affigent/CDWG/Microsoft Realizing Cost Savings Now and Moving to a Dynamic Datacenter via your Current EA Enterprise Desktop Solutions to
MATLAB Distributed Computing Server System Administrator s Guide. R2013b
MATLAB Distributed Computing Server System Administrator s Guide R2013b How to Contact MathWorks www.mathworks.com Web comp.soft-sys.matlab Newsgroup www.mathworks.com/contact_ts.html Technical Support
Introduction to MATLAB for Data Analysis and Visualization
Introduction to MATLAB for Data Analysis and Visualization Sean de Wolski Application Engineer 2014 The MathWorks, Inc. 1 Data Analysis Tasks Files Data Analysis & Modeling Reporting and Documentation
PARALLEL & CLUSTER COMPUTING CS 6260 PROFESSOR: ELISE DE DONCKER BY: LINA HUSSEIN
1 PARALLEL & CLUSTER COMPUTING CS 6260 PROFESSOR: ELISE DE DONCKER BY: LINA HUSSEIN Introduction What is cluster computing? Classification of Cluster Computing Technologies: Beowulf cluster Construction
Origins, Evolution, and Future Directions of MATLAB Loren Shure
Origins, Evolution, and Future Directions of MATLAB Loren Shure 2015 The MathWorks, Inc. 1 Agenda Origins Peaks 5 Evolution 0-5 Tomorrow 2 0 y -2-3 -2-1 x 0 1 2 3 2 Computational Finance Workflow Access
How To Build A Trading Engine In A Microsoft Microsoft Matlab 2.5.2.2 (A Trading Engine)
Algorithmic Trading with MATLAB Martin Demel, Application Engineer 2011 The MathWorks, Inc. 1 Challenges when building trading strategies Increasing complexity More data More complicated models Increasing
Numerix CrossAsset XL and Windows HPC Server 2008 R2
Numerix CrossAsset XL and Windows HPC Server 2008 R2 Faster Performance for Valuation and Risk Management in Complex Derivative Portfolios Microsoft Corporation Published: February 2011 Abstract Numerix,
Algorithmic Trading with MATLAB Martin Demel, Application Engineer
Algorithmic Trading with MATLAB Martin Demel, Application Engineer 2011 The MathWorks, Inc. 1 Agenda Introducing MathWorks Introducting MATLAB (Portfolio Optimization Example) Introducting Algorithmic
WINDOWS AZURE AND WINDOWS HPC SERVER
David Chappell March 2012 WINDOWS AZURE AND WINDOWS HPC SERVER HIGH-PERFORMANCE COMPUTING IN THE CLOUD Sponsored by Microsoft Corporation Copyright 2012 Chappell & Associates Contents High-Performance
Cloud Computing Technology
Cloud Computing Technology The Architecture Overview Danairat T. Certified Java Programmer, TOGAF Silver [email protected], +66-81-559-1446 1 Agenda What is Cloud Computing? Case Study Service Model Architectures
Introduction to MATLAB Gergely Somlay Application Engineer [email protected]
Introduction to MATLAB Gergely Somlay Application Engineer [email protected] 2012 The MathWorks, Inc. 1 What is MATLAB? High-level language Interactive development environment Used for: Numerical
Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga
Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.
Matlab on a Supercomputer
Matlab on a Supercomputer Shelley L. Knuth Research Computing April 9, 2015 Outline Description of Matlab and supercomputing Interactive Matlab jobs Non-interactive Matlab jobs Parallel Computing Slides
Cloud Computing 159.735. Submitted By : Fahim Ilyas (08497461) Submitted To : Martin Johnson Submitted On: 31 st May, 2009
Cloud Computing 159.735 Submitted By : Fahim Ilyas (08497461) Submitted To : Martin Johnson Submitted On: 31 st May, 2009 Table of Contents Introduction... 3 What is Cloud Computing?... 3 Key Characteristics...
Calcul Parallèle sous MATLAB
Calcul Parallèle sous MATLAB Journée Calcul Parallèle GPU/CPU du PEPI MACS Olivier de Mouzon INRA Gremaq Toulouse School of Economics Lundi 28 novembre 2011 Paris Présentation en grande partie fondée sur
HPC Cloud Computing Guide. www.penguincomputing.com 1-888-PENGUIN (736-4846) twitter: @Penguin HPC
HPC Cloud Computing Guide www.penguincomputing.com 1888PENGUIN (7364846) twitter: @Penguin HPC organizations are facing increasing pressure to deliver critical services to their users while their budgets
Grid Scheduling Architectures with Globus GridWay and Sun Grid Engine
Grid Scheduling Architectures with and Sun Grid Engine Sun Grid Engine Workshop 2007 Regensburg, Germany September 11, 2007 Ignacio Martin Llorente Javier Fontán Muiños Distributed Systems Architecture
High Performance Computing. Course Notes 2007-2008. HPC Fundamentals
High Performance Computing Course Notes 2007-2008 2008 HPC Fundamentals Introduction What is High Performance Computing (HPC)? Difficult to define - it s a moving target. Later 1980s, a supercomputer performs
A High Performance Computing Scheduling and Resource Management Primer
LLNL-TR-652476 A High Performance Computing Scheduling and Resource Management Primer D. H. Ahn, J. E. Garlick, M. A. Grondona, D. A. Lipari, R. R. Springmeyer March 31, 2014 Disclaimer This document was
Cloud Computing. Chapter 1 Introducing Cloud Computing
Cloud Computing Chapter 1 Introducing Cloud Computing Learning Objectives Understand the abstract nature of cloud computing. Describe evolutionary factors of computing that led to the cloud. Describe virtualization
SECURE BACKUP SYSTEM DESKTOP AND MOBILE-PHONE SECURE BACKUP SYSTEM HOSTED ON A STORAGE CLOUD
SECURE BACKUP SYSTEM DESKTOP AND MOBILE-PHONE SECURE BACKUP SYSTEM HOSTED ON A STORAGE CLOUD The Project Team AGENDA Introduction to cloud storage. Traditional backup solutions problems. Objectives of
Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12
Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using
Machine Learning with MATLAB David Willingham Application Engineer
Machine Learning with MATLAB David Willingham Application Engineer 2014 The MathWorks, Inc. 1 Goals Overview of machine learning Machine learning models & techniques available in MATLAB Streamlining the
IBM Platform Computing Cloud Service Ready to use Platform LSF & Symphony clusters in the SoftLayer cloud
IBM Platform Computing Cloud Service Ready to use Platform LSF & Symphony clusters in the SoftLayer cloud February 25, 2014 1 Agenda v Mapping clients needs to cloud technologies v Addressing your pain
Facilitating On-Demand Risk and Actuarial Analysis in MATLAB. Timo Salminen, CFA, FRM Model IT
Facilitating On-Demand Risk and Actuarial Analysis in MATLAB Timo Salminen, CFA, FRM Model IT Introduction It is common that insurance companies can valuate their liabilities only quarterly Sufficient
Product Development Flow Including Model- Based Design and System-Level Functional Verification
Product Development Flow Including Model- Based Design and System-Level Functional Verification 2006 The MathWorks, Inc. Ascension Vizinho-Coutry, [email protected] Agenda Introduction to Model-Based-Design
SURFsara HPC Cloud Workshop
SURFsara HPC Cloud Workshop doc.hpccloud.surfsara.nl UvA workshop 2016-01-25 UvA HPC Course Jan 2016 Anatoli Danezi, Markus van Dijk [email protected] Agenda Introduction and Overview (current
High-Performance Computing
High-Performance Computing Windows, Matlab and the HPC Dr. Leigh Brookshaw Dept. of Maths and Computing, USQ 1 The HPC Architecture 30 Sun boxes or nodes Each node has 2 x 2.4GHz AMD CPUs with 4 Cores
MATLAB Distributed Computing Server Installation Guide. R2012a
MATLAB Distributed Computing Server Installation Guide R2012a How to Contact MathWorks www.mathworks.com Web comp.soft-sys.matlab Newsgroup www.mathworks.com/contact_ts.html Technical Support [email protected]
Cloud Computing. Chapter 1 Introducing Cloud Computing
Cloud Computing Chapter 1 Introducing Cloud Computing Learning Objectives Understand the abstract nature of cloud computing. Describe evolutionary factors of computing that led to the cloud. Describe virtualization
Data Centers and Cloud Computing. Data Centers. MGHPCC Data Center. Inside a Data Center
Data Centers and Cloud Computing Intro. to Data centers Virtualization Basics Intro. to Cloud Computing Data Centers Large server and storage farms 1000s of servers Many TBs or PBs of data Used by Enterprises
Recent Advances in HPC for Structural Mechanics Simulations
Recent Advances in HPC for Structural Mechanics Simulations 1 Trends in Engineering Driving Demand for HPC Increase product performance and integrity in less time Consider more design variants Find the
EE289 Lab Fall 2009. LAB 4. Ambient Noise Reduction. 1 Introduction. 2 Simulation in Matlab Simulink
EE289 Lab Fall 2009 LAB 4. Ambient Noise Reduction 1 Introduction Noise canceling devices reduce unwanted ambient noise (acoustic noise) by means of active noise control. Among these devices are noise-canceling
Microsoft Compute Clusters in High Performance Technical Computing. Björn Tromsdorf, HPC Product Manager, Microsoft Corporation
Microsoft Compute Clusters in High Performance Technical Computing Björn Tromsdorf, HPC Product Manager, Microsoft Corporation Flexible and efficient job scheduling via Windows CCS has allowed more of
High-Performance Computing and Big Data Challenge
High-Performance Computing and Big Data Challenge Dr Violeta Holmes Matthew Newall The University of Huddersfield Outline High-Performance Computing E-Infrastructure Top500 -Tianhe-II UoH experience: HPC
GridWay: Open Source Meta-scheduling Technology for Grid Computing
: Open Source Meta-scheduling Technology for Grid Computing Ruben S. Montero dsa-research.org Open Source Grid & Cluster Oakland CA, May 2008 Contents Introduction What is? Architecture & Components Scheduling
Data Centers and Cloud Computing. Data Centers
Data Centers and Cloud Computing Intro. to Data centers Virtualization Basics Intro. to Cloud Computing 1 Data Centers Large server and storage farms 1000s of servers Many TBs or PBs of data Used by Enterprises
Interoperability between Sun Grid Engine and the Windows Compute Cluster
Interoperability between Sun Grid Engine and the Windows Compute Cluster Steven Newhouse Program Manager, Windows HPC Team [email protected] 1 Computer Cluster Roadmap Mainstream HPC Mainstream
Cloud Computing Solutions for Genomics Across Geographic, Institutional and Economic Barriers
Cloud Computing Solutions for Genomics Across Geographic, Institutional and Economic Barriers Ntinos Krampis Asst. Professor J. Craig Venter Institute [email protected] http://www.jcvi.org/cms/about/bios/kkrampis/
Part V Applications. What is cloud computing? SaaS has been around for awhile. Cloud Computing: General concepts
Part V Applications Cloud Computing: General concepts Copyright K.Goseva 2010 CS 736 Software Performance Engineering Slide 1 What is cloud computing? SaaS: Software as a Service Cloud: Datacenters hardware
Cloud Computing. Chapter 1 Introducing Cloud Computing
Cloud Computing Chapter 1 Introducing Cloud Computing Learning Objectives Understand the abstract nature of cloud computing. Describe evolutionary factors of computing that led to the cloud. Describe virtualization
How To Run A Cloud At Cornell Cac
On-Demand Research Computing Infrastructure as a Service Software as a Service Cloud Storage Solutions David A. Lifka Cornell Center for Advanced Computing [email protected] www.cac.cornell.edu 1 Cornell
Credit Risk Modeling with MATLAB
Credit Risk Modeling with MATLAB Martin Demel, Application Engineer 95% VaR: $798232. 95% CVaR: $1336167. AAA 93.68% 5.55% 0.59% 0.18% AA 2.44% 92.60% 4.03% 0.73% 0.15% 0.06% -1 0 1 2 3 4 A5 0.14% 6 4.18%
StorPool Distributed Storage. Software-Defined. Business Overview
StorPool Distributed Storage. Software-Defined. Business Overview StorPool, 2015 Page 1 of 5 About StorPool StorPool is the leading vendor of distributed storage software. Our innovative solution eradicates
Introduction to Engineering Using Robotics Experiments Lecture 18 Cloud Computing
Introduction to Engineering Using Robotics Experiments Lecture 18 Cloud Computing Yinong Chen 2 Big Data Big Data Technologies Cloud Computing Service and Web-Based Computing Applications Industry Control
bwgrid Treff MA/HD Sabine Richling, Heinz Kredel Universitätsrechenzentrum Heidelberg Rechenzentrum Universität Mannheim 29.
bwgrid Treff MA/HD Sabine Richling, Heinz Kredel Universitätsrechenzentrum Heidelberg Rechenzentrum Universität Mannheim 29. September 2010 Richling/Kredel (URZ/RUM) bwgrid Treff WS 2010/2011 1 / 25 Course
Windows HPC Server 2008 R2 Service Pack 3 (V3 SP3)
Windows HPC Server 2008 R2 Service Pack 3 (V3 SP3) Greg Burgess, Principal Development Manager Windows Azure High Performance Computing Microsoft Corporation HPC Server Components Job Scheduler Distributed
THE NEXT FRONTIER IN COMPUTING QUANTUM OPTICAL COMPUTING. Presentation For Venture Capital Investment
THE NEXT FRONTIER IN COMPUTING QUANTUM OPTICAL COMPUTING Presentation For Venture Capital Investment Dr. Brian Antao, CEO and Founder tundrasystems.eu 1 OPTICONDUCTORS: THE FUTURE OF SEMICONDUCTORS Mission:
Cloud Computing. Chapter 1 Introducing Cloud Computing
Cloud Computing Chapter 1 Introducing Cloud Computing Learning Objectives Understand the abstract nature of cloud computing. Describe evolutionary factors of computing that led to the cloud. Describe virtualization
Clouds vs Grids KHALID ELGAZZAR GOODWIN 531 [email protected]
Clouds vs Grids KHALID ELGAZZAR GOODWIN 531 [email protected] [REF] I Foster, Y Zhao, I Raicu, S Lu, Cloud computing and grid computing 360-degree compared Grid Computing Environments Workshop, 2008.
DISTRIBUTED SYSTEMS AND CLOUD COMPUTING. A Comparative Study
DISTRIBUTED SYSTEMS AND CLOUD COMPUTING A Comparative Study Geographically distributed resources, such as storage devices, data sources, and computing power, are interconnected as a single, unified resource
MATLAB in Production Systems, Database Integration, and Big Data Eugene McGoldrick
MATLAB in Production Systems, Database Integration, and Big Data Eugene McGoldrick 2013 The MathWorks, Inc. 1 Agenda MATLAB Production Server and Excel Integrating MATLAB Production Server into Database
MathWorks Products and Prices North America Academic March 2013
MathWorks Products and Prices North America Academic March 2013 MATLAB Product Family Academic pricing is reserved for noncommercial use by degree-granting institutions in support of on-campus classroom
CLUSTER COMPUTING TODAY
David Chappell June 2011 CLUSTER COMPUTING TODAY WHAT S CHANGED AND WHY IT MATTERS Sponsored by Microsoft Corporation Copyright 2011 Chappell & Associates One way to make an application run faster is to
3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India
3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India Call for Papers Cloud computing has emerged as a de facto computing
Introduction to High Performance Cluster Computing. Cluster Training for UCL Part 1
Introduction to High Performance Cluster Computing Cluster Training for UCL Part 1 What is HPC HPC = High Performance Computing Includes Supercomputing HPCC = High Performance Cluster Computing Note: these
