arxiv: v2 [cs.cv] 30 Jan 2015
|
|
|
- Augustine Manning
- 10 years ago
- Views:
Transcription
1 Beyond Frontal Faces: Improving Person Recognition Using Multiple Cues Ning Zhang 1,2, Manohar Paluri 2, Yaniv Taigman 2, Rob Fergus 2, Lubomir Bourdev 2 1 UC Berkeley 2 Facebook AI Research {nzhang}@eecs.berkeley.edu {mano, yaniv, robfergus, lubomir}@fb.com arxiv: v2 [cs.cv] 30 Jan 2015 Abstract We explore the task of recognizing peoples identities in photo albums in an unconstrained setting. To facilitate this, we introduce the new People In Photo Albums (PIPA) dataset, consisting of over instances of 2000 individuals collected from public Flickr photo albums. With only about half of the person images containing a frontal face, the recognition task is very challenging due to the large variations in pose, clothing, camera viewpoint, image resolution and illumination. We propose the Pose Invariant PErson Recognition (PIPER) method, which accumulates the cues of poselet-level person recognizers trained by deep convolutional networks to discount for the pose variations, combined with a face recognizer and a global recognizer. Experiments on three different settings confirm that in our unconstrained setup PIPER significantly improves on the performance of DeepFace, which is one of the best face recognizers as measured on the LFW dataset. 1. Introduction Recognizing people we know from unusual poses is easy for us, as illustrated on Figure 1. In the absence of a clear, high-resolution frontal face, we rely on a variety of subtle cues from other body parts, such as hair style, clothes, glasses, pose and other context. We can easily picture Charlie Chaplin s mustache, hat and cane or Oprah Winfrey s curly volume hair. Yet, examples like these are beyond the capabilities of even the most advanced face recognizers. While a lot of progress has been made recently in recognition from a frontal face, non-frontal views are a lot more common in photo albums than people might suspect. For example, in our dataset which exhibits personal photo album bias, we see that only 52% of the people have high resolution frontal faces suitable for recognition. Thus the problem of recognizing people from any viewpoint and without the presence of a frontal face or canonical pedestrian pose is important, and yet it has received much less attention than it deserves. We believe this is due to two reasons: first, there is no high quality large-scale dataset for unconstrained recog- Figure 1: We are able to easily recognize people we know in unusual poses, and even if their face is not visible. In this paper we explore the subtle cues necessary for such robust viewpoint-independent recognition. nition, and second, it is not clear how to go beyond a frontal face and leverage these subtle cues. In this paper we address both of these problems. We introduce the People In Photo Albums (PIPA) dataset, a large-scale recognition dataset collected from Flickr photos with creative commons licenses. It consists of 37,107 photos containing 63,188 instances of 2,356 identities and examples are shown in Figure 2. We tried carefully to preserve the bias of people in real photo albums by instructing annotators to mark every instance of the same identity regardless of pose and resolution. Our dataset is challenging due to occlusion with other people, viewpoint, pose and variations in clothes. While clothes are a good cue, they are not always reliable, especially when the same person appears in multiple albums, or for albums where many people wear similar clothes (sports, military events), as shown in Figure 3. As an indication of the difficulty of our dataset, the DeepFace system [32], which is one of the state-of-theart recognizers on LFW [18], was able to register only 52% of the instances in our test set and, because of that, its overall accuracy on our test set is 46.66%. We plan to make the dataset publicly available. We propose a Pose Invariant PErson Recognition (PIPER) method, which uses part-level person recognizers to account for pose variations. We use poselets [2] as our part models and train identity classifiers for each poselet. Poselets are classifiers that detect common pose patterns. A frontal face detector is a special case of a poselet. Other 1
2 (a) While clothing can be discriminative it does not help for military or busi- (b) The same individual may appear in multiple albums wearness activities, for example, where people dress similarly. ing different clothes. Figure 3: Challenges of our dataset. Besides significant variations in pose and viewpoint, clothing is not always a reliable cue for person recognition in our dataset. Facebook Co-Identification Dataset (in progress) system. We are inspired by the work of Zhang et al. [38], which uses deep convolutional networks trained on poselet detected patches for attribute classification. However our problem is significantly harder than attribute classification since we have many more classes with significantly fewer training examples per class. We found that combining parts by concatenating their feature in the manner of [38] is not effective for our task. It results in feature vectors that are very large and overfit easily when the number of classes is large and training examples are few. Instead, we found training each part to do identity recognition and combining theirwith predictions achieves better performance. Unlike [3], Collected from Flickr public photos Creative Commons License we propose a new way to handle the sparsity from poselet detections which boosts the performance team by a large margin. Annotated as same / not-same by Facebook annotations We demonstrate the effectiveness of PIPER by using three different experimental settings on our dataset. Our Includes people / cats / dogs method can achieve 83.05% accuracy over 581 identities on the test set. Moreover when a frontal face is available, it improves the accuracy over DeepFace from 89.3% to 93.4%, Figure 2: Example photos from our dataset. These are which is 40% decrease in relative error. taken from a single album and show the associated identicollected from FlickrLicense public photos with Creative Commons License with Creative Commons ties. Each person is annotated with a ground truth bound2. Related ing box around theteam hear, with each color Annotated as same / not-same by representing Facebookone annotations teamwork Facebook annotations identity. If the head is occluded, the expected position is Face recognition There has been dramatic progress made annotated. Includes people / cats / dogs in face recognition in the past few decades from EigenFace Facebook Co-Identification Dataset (in progress) n Dataset (in progress) examples are a hand next to a hip or head-and-shoulders in a back-facing view, or legs of a person walking sideways. A small and complementary subset of such salient patterns is automatically selected as described in [2]. Examples of poselets are shown in Figure 4. While each poselet is not as powerful as a custom designed face recognizer, it leverages weak signals from specific pose pattern that is hard to capture otherwise. By combining their predictions we accumulate the subtle discriminative information coming from each part into a robust pose-independent person recognition [34] to the state-of-art face recognition system [32] by using deep convolutional nets. Most of the existing face recognition systems require constrained setting of frontal faces and explicit 3D face alignments or facial keypoint localizations. Some other works [36, 5] have addressed robust face recognition systems to deal with varying illumination, occlusion and disguise. Due to our unconstrained setting, most of conventional face recognition systems have limited performance on our dataset. Person identification in photo albums Tagging of personal photo albums is an active research topic. To ad-
3 Person re-identification in videos The task of person reidentification is to match pedestrian images from different cameras and it has important applications in video and there are some related work for this topic. Existing work is mainly focused on metric learning [27, 17, 22], mid-level feature learning [16, 39, 40, 10, 20, 26]. Li et al. [23] propose a deep network using pairs of people to encode photometric transformation. Yi et al. [37] used a siamese deep network to learn the similarity metric between pairs of images. Figure 4: Example of poselet activations. These are the top 4 poselet detections ranked by part weight w i mentioned in Sec 4.3. dress the limitation of face recognition systems, various approaches have been proposed to incorporate contexts. For examples, the authors in [1, 25] proposed methods to incorporate contextual cues including clothing appearance and meta data from photos for person identification in photo collections. Sivic et al. [30] proposed a simple pictorial structure model to retrieve all the occurrences of the same individual in a sequence of photographs. Lin et al. [24] presented a generative probabilistic approach to model crossdomain relationships to jointly tag people, events and locations. In [13], the authors try to find all images of each person in the scene on a set of photos from a crowed public event by integrating multiple cues including timestamps, camera pose and co-occurrence of people. There is also some related work to discover the social connection between people in the photo collections. Wang et al. [35] proposed a model to represent the relationship between the social relationships, position and pose of people and their identities. In [12], the authors investigated the different factors that are related to the positions of people in a group image. Another interesting direction is to name characters in TV series. In [9, 29, 8], the authors proposed approach to automatically label the characters by using aligned subtitle and script text. Tapaswi et al. [33] proposed a Markov Random Field (MRF) method to combine face recognition and clothing features and they tried to name all the appearance of characters in TV series including non frontal face appearance. Later they presented another semi-supervised learning method [4] for the same task. Deep convolutional networks In the past few years, deep convolutional networks originally pioneered by LeCun et al. [21] have been a tremendous success by achieving the state-of-art performance in image classification [19], object detection [14], face recognition [32] and other computer vision tasks. The strength of the deep nets is its ability to learn discriminative features from raw image input unlike handengineered features. DeCAF [7] showed the deep features extracted from the network pretrained on large datasets can be generalized to other recognition problems. 3. People In Photo Albums Dataset To our knowledge, there is no existing large scale dataset for the task of person recognition. The existing datasets for person re-identification, such as VIPeR [15] and CUHK01 [22], come mostly from videos and they are low resolution images taken from different cameras from different viewpoints. The Gallagher Collection Person Dataset [11] is the closest to what we need, however the released subset has only 931 instances of 32 identities which is approximately 1.5% of the size of our dataset. Furthermore, [11] have only labeled the frontal faces. The Buffy dataset used in [29, 9] is a video dataset and it only has less than 20 different characters. Our problem setting is to identify person in the wild without any assumption of frontal face appearance or straight pedestrian pose. We don t assume that the person is detected by a detector; our instruction to annotators is to mark the head (even if occluded) for any people they can co-identify, regardless of their pose, and the image resolution General statistics We collected our dataset, People In Photo Albums (PIPA) Dataset, from public photo albums uploaded to Flickr 1 and we plan to make it publicly available. All of our photos have Creative Commons Attributions License. Those albums were uploaded from 111 users. Photos of the same person have been labeled with the same identity but no other identifying information is preserved. Table 1 shows statistics of our dataset Collection Method Our data collection consists of the following steps: 1. Album Filtering. After downloading thousands of albums from Flickr, we first show the annotators a set 1
4 Split All Train Val Test Leftover Photos 37,107 17,000 5,684 7,868 6,555 Albums 1, Instances 63,188 29,223 9,642 12,886 11,437 Identities 2,356 1, Avg/identity Min/identity Max/identity Table 1: Statistics of our dataset. of photos from the album and ask them to filter out albums which are not of people albums, such as landscape, flowers, or photos where person co-occurrence is very low. 2. Person Tagging. Then given each album, we ask the annotators to select all the individuals that appear at least twice in that album and draw a bounding box around their heads with different color indicating different identity. If the head is partially/fully occluded, we mark the region of where the head should be. The head bounds may also be partially/fully outside the image. Not every person is tagged. In a crowd scene we ask the annotators to tag no more than 10 people. The interface of person tagging is shown in Fig 5a. 3. Cross-Album Merging. Often the same identities appear in multiple albums, in which case their identities should be merged. While it is not feasible to do so across all albums, we consider the set of albums uploaded by the same uploader and we try to find the same identities appearing in multiple albums and merge them. Showing all identities from all albums is a challenging UI task for uploaders that have dozens of large albums. We show our annotation interface in Figure 5b. 4. Instance Frequency Normalization. After merging, we count the number of instances for each individual and discard individuals that have less than 10 instances. In addition, a few individuals have a very large number of instances which could bias our dataset. To prevent such bias, we restrict the maximum number of instances per individual to be 99. We randomly sample 99 instances and move the remaining ones into a leftover set. Our leftover set consists of 11,437 instances of 54 individuals. 5. Dataset Split. We split the annotations randomly into three sets training, validation and test. To ensure complete separation between the sets, all the photos of the same uploader fall in the same set. That ensures that the set of photos, identities and instances across the three sets is disjoint. We do a random permutation of the uploaders and we pick the first K of them so that the number of person instances reaches about 50% and we assign those to the training set. We assign the next 25% to validation and the remaining 25% to test. While we target split we cannot assure that the instances will be partitioned precisely due to the constraints we impose. See Table 1 for more details about the splits. 4. Pose Invariant Person Recognition (PIPER) We introduce a novel view invariant approach to combine information of different classifiers for the task of person recognition. It consists of three components: The global classifier, a CNN trained on the full body of the person. A set of 107 poselet classifiers, each is a CNN trained on the specific poselet pattern using [2]. 2 An SVM trained on the 256 dimensional features from DeepFace [32]. In total we have 109 part classifiers. The identity prediction of PIPER is a linear combination of the predicted probabilities of all classifiers: s(x, y) = i w i P i (y X) (1) Here P i (y X) is the normalized probability of identity label y given by part i for feature X and w i is the associated weight of the part. The final identity prediction is y (X) = argmax y s(x, y). Here is an overview of the training steps. The next sections provide a more detailed description. 1. We run poselets [2] over our dataset and match the person predictions coming from poselets to our ground truths (see Section 4.1). 2. Using the poselet patches of step 1, we train a CNN for each poselet to recognize the identities on our training set. In addition, we train a CNN for the global classifier using the patches corresponding to the full body images. In all cases we use the Convolutional Neural Net architecture by Krizhevsky et al. [19]. We fine-tune the network pre-trained on ImageNet on the task of identity recognition. While recent architectures have improved the state-of-the art [28, 31] and might further improve our performance, we decided to use the Krizhevsky architecture because its performance is well studied on a number of visual tasks [7]. We 2 The original set of poselets is 150 but some of them did not train well.
5 (a) Interface for annotating identities in one album. (b) Interface for merging identities across albums. Figure 5: Interfaces for our annotation system. The interface for annotating identities in one album in shown in (a) where the annotator can scroll over the faces on the left. If clicking on one individual, it will show all the instances of that person. The original images and head annotations are shown on the right where the annotators draw all the heads of different individuals. If the person s head is occluded, the annotator will draw a bounding box around the expected position of the head. We show the interface for merging in (b). The top row shows a set of merged individuals. Each column in the bottom section corresponds to an album from the same uploader. Each face is an example face of a different individual. Merging is done by selecting a set of faces across albums, optionally selecting an individual from the top row to merge into, and clicking the merge button. then discard the final FC8 layer and treat the activations from the FC7 layer as a generic feature on which we train SVMs in the next steps. 3. We partition the validation set into two halves. We train an SVM for each part using the FC7 layer feature from Step 2 on the first half of validation and use it to compute the identity predictions Pi (y X) on the second half, and vice versa (see Section 4.2). 4. We use the identity predictions of all parts on the validation set to estimate the mixing components wi (see Section 4.3). 5. We split the test set in half and train SVMs on top of the FC7 features on the first half of the test set and use them to compute the identity predictions Pi (y X) on the second half, and vice versa. 6. We use the identity predictions on the test set for each part Pi (y X) as well as the mixing components wi to compute the combined identity prediction S(X, y) using equation 1. In the next sections we will describe the training steps, and way we compute Pi (y X) and wi Computing Part Activations Our groundtruth annotations consist of bounding boxes of heads. From the head boxes, we estimate the bounding box locations by setting approximate offset and scaling factor. We run poselets [2] on the images, which returns bounding boxes of detected people in the images, each of which comes with a score and locations of associated poselet activations. Examples of poselet detections are shown in Figure 4. We use a bipartite graph matching algorithm to match the ground truth bounds to the ones predicted by the poselets. This algorithm performs globally optimal matching by preferring detections with higher score and higher overlap to truths. The output of the algorithm is a set of poselet activations associated with each ground truth person instance. We extract the image patches at each poselet and use them to train part-based classifiers Training the Part Classifiers Pi (y X) Global classifier P0 (y X) Using the FC7 layer of the CNN trained for the full body area of each instance, we train a multi-class SVM to predict each identity y. We refer to its prediction as P0 (y X).
6 4.2.2 Part-level SVM classifier ˆP i (y X) Given the FC7 layer features X extracted from detected part i patch and identity labels y, we train a multi-class SVM on X to predict y and we denote the softmax of the output score as ˆP i (y X). Notice that ˆP i is sparse in two ways: Each poselet activates only on instances that exhibit the specific pose of that poselet. Some poselets may activate on 50% while others on as few as 5% of the data. Not all identities have examples for all poselets and thus each poselet level SVM classifier for part i is only trained on a subset F i of all identities. Thus ˆP i (y X) is inflated when y F i and is zero otherwise. The sparsity pattern is correlated with the pose of the person and has almost no correlation to the identity that we are trying to estimate. Thus properly accounting for the sparsity is important in order to get high accuracy identity recognition Sparsity filling We address both of these sparsity issues by using the probability distribution of our global model P 0 which is defined for all identities and activates on all instances: { P 0 (y X), if part i doesn t activate, or P i (y X) = P (y F i ) ˆP i (y X) + P (y / F i )P 0 (y X) P (y F i ) = (2) y F i P 0 (y X) (3) In Figure 6 we give a visual intuition behind this formula Computing the part weights w i We use the validation set to compute w. We split the validation set into two equal subsets. We train the part-based SVMs on one subset and use them to compute P i (y X) on all instances of the second subset, and vice versa. Let P j i (y X) denote the probability that the classifier for part i assigns to instance j being of class y given feature X. We formulate a binary classification problem which has one training example per pair of instance j and label y. If we have K parts its feature vector is K + 1 dimensional: [P j 0 (y X); P j 1 (y X);... P j k (y X)]. Its label is 1 if instance j s label is y and -1 otherwise. We solve this by training a linear SVM. The weights w are the weights of the trained SVM. We use the first split of validation to do a grid search for the C parameter of the SVM and test on the second half. Once we find the optimal C we retrain on the entire validation set to obtain the final vector w. All instances All identities All instances Identities not trained for part i Replacing with global model Part i doesn t activate on these instances Figure 6: Example of sparsity filling. On the left we show missing identities the predictions of the global model for every identity and every instance. The poselet classifier in the middle does not activate for two instances (the white rows) and is not trained to recognize two identities (the white columns). On the right we show how in the normalized probability we fill-in missing rows from the global model acc as in the top of Equation 2. In addition, (not shown in the figure) we account for the missing columns by linearly interpolating each row with the global model based on the likelihood that the identity is not coming from one of the missing columns. 5. Experiments We report results of our proposed method on our PIPA dataset and compare it with baselines. Specifically, we conduct experiments in three different settings: 1) Person recognition, 2) One-shot person identification, and 3) Unsupervised identity retrieval. In all experiments we use the training split of our dataset to train the deep networks for our global model and each poselet and we use the validation set to compute the mixing weights w and tune the hyper-parameters. All of our results are evaluated on the test split Person Recognition We first present experimental results on the person recognition task with our PIPA dataset. It is a standard supervised classification task as we train and test on same set of identities. Since the set of identities between training and test sets is disjoint, we split our test set in two equal subsets. We train an SVM on the first, use it to compute P i (y X) on the second and vice versa. We then use the weights w trained on the validation set to get our final prediction as the identity that maximizes the score in equation 1 and we average the accuracy from both halves of the test set. Qualitative examples are shown on Figure Overall Performance Table 2 shows the accuracy in this setting compared to some standard baselines. We compared it against DeepFace [32], which is one of the state-of-the-art face recognizers. Although it is very accurate, it is a frontal face recognizer, so it doesn t trigger on 48% of our test set and we use chance All instances
7 cropped'bounding'box' cropped'bounding'box' (a) Body falls outside image (b) Unusual pose (c) Same clothing similar pose (d) Confusion with other person Figure 7: Examples that the combination of the Global model and DeepFace misclassify and are recovered by using all of PIPER. (a) In a closeup shot the full body falls outside the image and the extracted full-body patch, shown on the right, is severely misaligned. A profile-face poselet should handle this case without misalignment. (b) In unusual pose the full body patch may fall on the background or (d) on another person which will further confuse the classifier. In (c) people have the same clothes and similar pose which will confuse the global model. performance for those instances. As a second baseline we trained an SVM using the FC7 features of the CNN proposed by Krizhevsky et al. and pretrained on ImageNet[6]. We use its activations after showing it the full body image patch for each instance. The Global Model baseline is the same CNN, except it was fine-tuned for the task of identity recognition on our training set. We also tested the performance of our model by combining the sparse part predictions, i.e. using P i (y X) instead of Pi (y X) in equation 1. The performance gap of more than 7% shows that sparsity filling is essential to achieve high recognition accuracy Ablation Study Our method consists of three components the fine-tuned Krizhevsky CNN (the Global Model), the DeepFace recognizer, and a collection of 108 Poselet-based recognizers. In Method Chance Performance DeepFace [32] FC7 of Krizhevsky et al. [19] Global Model PIPER w/out sparsity filling PIPER Classification accuracy 0.17% 46.66% 56.07% 67.60% 75.35% 83.05% Table 2: Person recognition results on PIPA test set using 6442 training examples over 581 identities this section we explore using all combinations of these three components3. For each combination we retrain the mixture 3 Since our method relies on sparsity filling from a global model P0 (y X), to remove the effect of the global model we simply set P0 (y X) to be uniform distribution.
8 Global Model DeepFace[32] Poselets Accuracy 67.60% 46.66% 72.18% 79.95% 78.79% 78.08% 83.05% Table 3: Person recognition performance on the PIPA test set using 6442 training examples over 581 identities as we disable some of the components of our method. PIPER gets more than 3% gain over the very strong baseline of using the fine-tuned CNN combined with the DeepFace model. DeepFace s score is low because it only fires on 52% of the test images and we use chance performance for the rest. Figure 8: Recognition accuracy as a function of number of training examples per identity, with σ = 1 error bar. As we increase the number of training examples our system s accuracy grows faster than the full-body baseline. Chance performance is Method Non-faces subset Faces subset Global Model 64.3% 70.6% DeepFace[32] 0.17% 89.3% PIPER 71.8% 93.4% Table 4: Performance on the test set when split into the subset where frontal face is visible (52%) and when it is not (48%). weights w and re-tune the hyper parameters. Table 3 shows the performance of each combination of these components. As the table shows, the three parts PIPER are complementary and combining them is necessary to achieve the best performance Performance on face and non-face instances Since the presence of a high resolution frontal face provides a strong cue for identity recognition and allows us to use the face recognizer, it is important to consider the performance when a frontal face is present and when it is not. Table 4 shows the performance on the face and nonface part of our test set. We considered the instances for which DeepFace generated a signature as the face subset. As the figure shows, when the face is not present we can significantly outperform a fine-tuned CNN on the full image. More importantly, the contextual cues and combinations of many classifiers allow us to significantly boost the recognition performance even when a frontal face is present One-Shot Learning Figure 8 shows the performance of our system when the training set is tiny. We randomly pick one, two or three instances of each identity in our test set, train on those and report results on the rest of the test set. Our system performs very well even with a single training example per Figure 9: Performance of our method on identity retrieval. identity, achieving 28.1% accuracy for our test set of 581 identities. This result illustrates the powerful generalization capability of our method. The generalization capabilities of deep features are well studied, but we believe here we are also helped by the mixture of multiple part-based classifiers, since our system improves faster than the global method of fine-tuned Krizhevsky s CNN Unsupervised identity retrieval We evaluate our method on the task of retrieval: Given an instance, we measure the likelihood that one of the K nearest neighbors will have the same identity. To do this we used the SVMs trained on split 0 of the validation set to predict the 366 identities in the validation set. We applied them to the instances in the test set to obtain a 366-dimensional feature vector for each part and we combine the part predictions using equation 1 with w trained on the validation set to obtain a single 366-dimensional feature for each instance in the test set. We then, for each instance of the test set, compute the K nearest neighbors using Eucledian distance and we consider retrieval as successful if at least one of them is of the same identity. This has the effect
9 Query Top 1 Top 2 Top 3 Top 4 Top 5 We described PIPER, our method for viewpoint and pose independent person recognition. We showed that PIPER significantly outperforms our very strong baseline combining a state-of-the-art CNN system fine-tuned on our dataset with a state-of-the-art frontal face recognizer. PIPER can learn effectively even with a single training example and performs surprisingly well at the task of image retrieval. While we have used PIPER for person recognition, the algorithm readily applies to generic instance coidentification, such as finding instances of the same car or the same dog. We introduced the People In Photo Albums dataset, the first of its kind large scale data set for person coidentification in photo albums. We hope our dataset will steer the vision community towards the very important and largely unsolved problem of person recognition in the wild. Acknowledgments We would like to thank Nikhil Johri for collecting dataset and developing the annotation interfaces. We also would like to thank Trevor Darrell for useful discussions on the ideas of the paper. Copyrights The copyright references of all the images shown in the paper are in http: // nzhang/piper_ image_license.pdf. References Figure 10: Example of PIPER results on unsupervised identity retrieval. For each row, the left one is the query image, then the top 5 ranked retrieval images. Those are cropped bounding box images on test split. of using the identities in the validation set as exemplars and projecting new instances based on their similarities to those identities. As Figure 9 shows our method is quite effective on this task despite the low dimensional feature and without any metric learning, the nearest neighbor of 64% of the examples is of the same identity as the query. If we use the predictions of the Krizhevsky s CNN trained on ImageNet and fine-tuned on our training set, which is known to be a very powerful baseline, the nearest neighbor is of the same class in only 50% of the examples. This suggests that our model is capable of building a powerful and compact identity vector independent of pose and viewpoint. Examples of our method are shown in Figure Conclusion [1] D. Anguelov, K. chih Lee, S. B. Gktrk, and B. Sumengen. Contextual identity recognition in personal photo albums. In CVPR, [2] L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3D human pose annotations. In International Conference on Computer Vision (ICCV), , 2, 4, 5 [3] L. D. Bourdev, S. Maji, and J. Malik. Describing people: A poselet-based approach to attribute classification. In ICCV, [4] M. Buml, M. Tapaswi, and R. Stiefelhagen. Semi-supervised learning with constraints for person identification in multimedia data. In CVPR 13, [5] Z. Cui, W. Li, D. Xu, S. Shan, and X. Chen. Fusing robust face region descriptors via multiple metric learning for face recognition in the wild. In CVPR, [6] J. Deng, W. Dong, R. Socher, L. jia Li, K. Li, and L. Fei-fei. Imagenet: A large-scale hierarchical image database. In In CVPR, [7] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition, , 4 [8] M. Everingham, J. Sivic, and A. Zisserman. Hello! My name is... Buffy automatic naming of characters in TV video. In Proceedings of the British Machine Vision Conference, [9] M. Everingham, J. Sivic, and A. Zisserman. Taking the bite out of automated naming of characters in tv video. Image Vision Comput., 27(5): , Apr [10] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani. Person re-identification by symmetry-driven accumulation of local features. In CVPR, [11] A. Gallagher and T. Chen. Clothing cosegmentation for recognizing people. In Proc. CVPR,
10 [12] A. C. Gallagher and T. Chen. Understanding images of groups of people. In CVPR, [13] R. Garg, D. Ramanan, S. Seitz, and N. Snavely. Where s waldo: Matching people in images of crowds. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), [14] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. arxiv preprint: [15] D. Gray, S. Brennan, and H. Tao. Evaluating appearance models for recognition, reacquisition, and tracking. In In IEEE International Workshop on Performance Evaluation for Tracking and Surveillance, Rio de Janeiro, [16] D. Gray and H. Tao. Viewpoint invariant pedestrian recognition with an ensemble of localized features. In Proceedings of the 10th European Conference on Computer Vision: Part I, ECCV 08, pages , [17] M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? metric learning approaches for face identification. In ICCV, Kyoto, Japan, Sept [18] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, October [19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Neural Information Processing Systems (NIPS), , 4, 7 [20] R. Layne, T. Hospedales, and S. Gong. Person reidentification by attributes. In BMVC 12, [21] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Comput., 1(4): , Dec [22] W. Li, R. Zhao, and X. Wang. Human reidentification with transferred metric learning. In ACCV, volume 7724 of Lecture Notes in Computer Science, pages Springer, [23] W. Li, R. Zhao, T. Xiao, and X. Wang. Deepreid: Deep filter pairing neural network for person re-identification. In CVPR 14, [24] D. Lin, A. Kapoor, G. Hua, and S. Baker. Joint people, event, and location recognition in personal photo collections using cross-domain context. In Proceedings of the 11th European Conference on Computer Vision: Part I, ECCV 10, pages , [25] M. Naaman, H. Garcia-Monlina, A. Paepcke, and R. B. Yeh. Leveraging context to resolve identity in photo albums. In JCDL 05, [26] O. Oreifej, R. Mehran, and M. Shah. Human identity recognition in aerial images. In CVPR, pages , [27] B. Prosser, W. shi Zheng, S. Gong, and T. Xiang. Person reidentification by support vector ranking. In BMVC 10, [28] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition, [29] J. Sivic, M. Everingham, and A. Zisserman. Who are you? learning person specific classifiers from video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, [30] J. Sivic, C. L. Zitnick, and R. Szeliski. Finding people in repeated shots of the same scene. In BMVC 06, [31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions, [32] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In Conference on Computer Vision and Pattern Recognition (CVPR), , 2, 3, 4, 6, 7, 8 [33] M. Tapaswi, M. Buml, and R. Stiefelhagen. Knock! knock! who is it? probabilistic person identification in tv-series. In CVPR 12, [34] M. Turk and A. Pentland. Eigenfaces for recognition. J. Cognitive Neuroscience, 3(1):71 86, Jan [35] G. Wang, A. Gallagher, J. Luo, and D. Forsyth. Seeing people in social context: Recognizing people and social relationships. In Proceedings of the 11th European Conference on Computer Vision: Part V, ECCV 10, pages , [36] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell., 31(2): , Feb [37] D. Yi, Z. Lei, and S. Z. Li. Deep metric learning for practical person re-identification, [38] N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. D. Bourdev. PANDA: pose aligned networks for deep attribute modeling. CVPR, [39] R. Zhao, W. Ouyang, and X. Wang. Unsupervised salience learning for person re-identification. In CVPR 13, [40] R. Zhao, W. Ouyang, and X. Wang. Learning mid-level filters for person re-identification. In CVPR 14,
Beyond Frontal Faces: Improving Person Recognition Using Multiple Cues
Beyond Frontal Faces: Improving Person Recognition Using Multiple Cues Ning Zhang 1, Manohar Paluri 2, Yaniv Taigman 2, Rob Fergus 2, Lubomir Bourdev 2 1 UC Berkeley 2 Facebook AI Research {nzhang}@eecs.berkeley.edu
Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?
Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not? Erjin Zhou [email protected] Zhimin Cao [email protected] Qi Yin [email protected] Abstract Face recognition performance improves rapidly
Lecture 6: CNNs for Detection, Tracking, and Segmentation Object Detection
CSED703R: Deep Learning for Visual Recognition (206S) Lecture 6: CNNs for Detection, Tracking, and Segmentation Object Detection Bohyung Han Computer Vision Lab. [email protected] 2 3 Object detection
Pedestrian Detection with RCNN
Pedestrian Detection with RCNN Matthew Chen Department of Computer Science Stanford University [email protected] Abstract In this paper we evaluate the effectiveness of using a Region-based Convolutional
PANDA: Pose Aligned Networks for Deep Attribute Modeling
PANDA: Pose Aligned Networks for Deep Attribute Modeling Ning Zhang 1,2, Manohar Paluri 1, Marc Aurelio Ranzato 1, Trevor Darrell 2, Lubomir Bourdev 1 1 Facebook AI Research 2 EECS, UC Berkeley {nzhang,
Interactive person re-identification in TV series
Interactive person re-identification in TV series Mika Fischer Hazım Kemal Ekenel Rainer Stiefelhagen CV:HCI lab, Karlsruhe Institute of Technology Adenauerring 2, 76131 Karlsruhe, Germany E-mail: {mika.fischer,ekenel,rainer.stiefelhagen}@kit.edu
arxiv:1506.03365v2 [cs.cv] 19 Jun 2015
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop Fisher Yu Yinda Zhang Shuran Song Ari Seff Jianxiong Xiao arxiv:1506.03365v2 [cs.cv] 19 Jun 2015 Princeton
Image Classification for Dogs and Cats
Image Classification for Dogs and Cats Bang Liu, Yan Liu Department of Electrical and Computer Engineering {bang3,yan10}@ualberta.ca Kai Zhou Department of Computing Science [email protected] Abstract
Transform-based Domain Adaptation for Big Data
Transform-based Domain Adaptation for Big Data Erik Rodner University of Jena Judy Hoffman Jeff Donahue Trevor Darrell Kate Saenko UMass Lowell Abstract Images seen during test time are often not from
Deformable Part Models with CNN Features
Deformable Part Models with CNN Features Pierre-André Savalle 1, Stavros Tsogkas 1,2, George Papandreou 3, Iasonas Kokkinos 1,2 1 Ecole Centrale Paris, 2 INRIA, 3 TTI-Chicago Abstract. In this work we
The Delicate Art of Flower Classification
The Delicate Art of Flower Classification Paul Vicol Simon Fraser University University Burnaby, BC [email protected] Note: The following is my contribution to a group project for a graduate machine learning
Who are you? Learning person specific classifiers from video
Who are you? Learning person specific classifiers from video Josef Sivic, Mark Everingham 2 and Andrew Zisserman 3 INRIA, WILLOW Project, Laboratoire d Informatique de l Ecole Normale Superieure, Paris,
CS 1699: Intro to Computer Vision. Deep Learning. Prof. Adriana Kovashka University of Pittsburgh December 1, 2015
CS 1699: Intro to Computer Vision Deep Learning Prof. Adriana Kovashka University of Pittsburgh December 1, 2015 Today: Deep neural networks Background Architectures and basic operations Applications Visualizing
Local features and matching. Image classification & object localization
Overview Instance level search Local features and matching Efficient visual recognition Image classification & object localization Category recognition Image classification: assigning a class label to
Administrivia. Traditional Recognition Approach. Overview. CMPSCI 370: Intro. to Computer Vision Deep learning
: Intro. to Computer Vision Deep learning University of Massachusetts, Amherst April 19/21, 2016 Instructor: Subhransu Maji Finals (everyone) Thursday, May 5, 1-3pm, Hasbrouck 113 Final exam Tuesday, May
Character Image Patterns as Big Data
22 International Conference on Frontiers in Handwriting Recognition Character Image Patterns as Big Data Seiichi Uchida, Ryosuke Ishida, Akira Yoshida, Wenjie Cai, Yaokai Feng Kyushu University, Fukuoka,
Finding people in repeated shots of the same scene
Finding people in repeated shots of the same scene Josef Sivic 1 C. Lawrence Zitnick Richard Szeliski 1 University of Oxford Microsoft Research Abstract The goal of this work is to find all occurrences
Convolutional Feature Maps
Convolutional Feature Maps Elements of efficient (and accurate) CNN-based object detection Kaiming He Microsoft Research Asia (MSRA) ICCV 2015 Tutorial on Tools for Efficient Object Detection Overview
Relaxed Pairwise Learned Metric for Person Re-Identification
Relaxed Pairwise Learned Metric for Person Re-Identification Martin Hirzer, Peter M. Roth, Martin Köstinger, and Horst Bischof Institute for Computer Graphics and Vision Graz University of Technology Abstract.
Object Recognition. Selim Aksoy. Bilkent University [email protected]
Image Classification and Object Recognition Selim Aksoy Department of Computer Engineering Bilkent University [email protected] Image classification Image (scene) classification is a fundamental
The Role of Size Normalization on the Recognition Rate of Handwritten Numerals
The Role of Size Normalization on the Recognition Rate of Handwritten Numerals Chun Lei He, Ping Zhang, Jianxiong Dong, Ching Y. Suen, Tien D. Bui Centre for Pattern Recognition and Machine Intelligence,
Learning and transferring mid-level image representions using convolutional neural networks
Willow project-team Learning and transferring mid-level image representions using convolutional neural networks Maxime Oquab, Léon Bottou, Ivan Laptev, Josef Sivic 1 Image classification (easy) Is there
Tattoo Detection for Soft Biometric De-Identification Based on Convolutional NeuralNetworks
1 Tattoo Detection for Soft Biometric De-Identification Based on Convolutional NeuralNetworks Tomislav Hrkać, Karla Brkić, Zoran Kalafatić Faculty of Electrical Engineering and Computing University of
Recognizing Cats and Dogs with Shape and Appearance based Models. Group Member: Chu Wang, Landu Jiang
Recognizing Cats and Dogs with Shape and Appearance based Models Group Member: Chu Wang, Landu Jiang Abstract Recognizing cats and dogs from images is a challenging competition raised by Kaggle platform
Clustering Big Data. Anil K. Jain. (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012
Clustering Big Data Anil K. Jain (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012 Outline Big Data How to extract information? Data clustering
Cees Snoek. Machine. Humans. Multimedia Archives. Euvision Technologies The Netherlands. University of Amsterdam The Netherlands. Tree.
Visual search: what's next? Cees Snoek University of Amsterdam The Netherlands Euvision Technologies The Netherlands Problem statement US flag Tree Aircraft Humans Dog Smoking Building Basketball Table
Bert Huang Department of Computer Science Virginia Tech
This paper was submitted as a final project report for CS6424/ECE6424 Probabilistic Graphical Models and Structured Prediction in the spring semester of 2016. The work presented here is done by students
3D Model based Object Class Detection in An Arbitrary View
3D Model based Object Class Detection in An Arbitrary View Pingkun Yan, Saad M. Khan, Mubarak Shah School of Electrical Engineering and Computer Science University of Central Florida http://www.eecs.ucf.edu/
Task-driven Progressive Part Localization for Fine-grained Recognition
Task-driven Progressive Part Localization for Fine-grained Recognition Chen Huang Zhihai He [email protected] University of Missouri [email protected] Abstract In this paper we propose a task-driven
Image and Video Understanding
Image and Video Understanding 2VO 710.095 WS Christoph Feichtenhofer, Axel Pinz Slide credits: Many thanks to all the great computer vision researchers on which this presentation relies on. Most material
Creating a Big Data Resource from the Faces of Wikipedia
Creating a Big Data Resource from the Faces of Wikipedia Md. Kamrul Hasan Génie informatique et génie logiciel École Polytechnique de Montreal Québec, Canada [email protected] Christopher J. Pal
Learning Detectors from Large Datasets for Object Retrieval in Video Surveillance
2012 IEEE International Conference on Multimedia and Expo Learning Detectors from Large Datasets for Object Retrieval in Video Surveillance Rogerio Feris, Sharath Pankanti IBM T. J. Watson Research Center
Do Convnets Learn Correspondence?
Do Convnets Learn Correspondence? Jonathan Long Ning Zhang Trevor Darrell University of California Berkeley {jonlong, nzhang, trevor}@cs.berkeley.edu Abstract Convolutional neural nets (convnets) trained
Steven C.H. Hoi School of Information Systems Singapore Management University Email: [email protected]
Steven C.H. Hoi School of Information Systems Singapore Management University Email: [email protected] Introduction http://stevenhoi.org/ Finance Recommender Systems Cyber Security Machine Learning Visual
Pixels Description of scene contents. Rob Fergus (NYU) Antonio Torralba (MIT) Yair Weiss (Hebrew U.) William T. Freeman (MIT) Banksy, 2006
Object Recognition Large Image Databases and Small Codes for Object Recognition Pixels Description of scene contents Rob Fergus (NYU) Antonio Torralba (MIT) Yair Weiss (Hebrew U.) William T. Freeman (MIT)
AN IMPROVED DOUBLE CODING LOCAL BINARY PATTERN ALGORITHM FOR FACE RECOGNITION
AN IMPROVED DOUBLE CODING LOCAL BINARY PATTERN ALGORITHM FOR FACE RECOGNITION Saurabh Asija 1, Rakesh Singh 2 1 Research Scholar (Computer Engineering Department), Punjabi University, Patiala. 2 Asst.
DeepFace: Closing the Gap to Human-Level Performance in Face Verification
DeepFace: Closing the Gap to Human-Level Performance in Face Verification Yaniv Taigman Ming Yang Marc Aurelio Ranzato Facebook AI Research Menlo Park, CA, USA {yaniv, mingyang, ranzato}@fb.com Lior Wolf
Scalable Object Detection by Filter Compression with Regularized Sparse Coding
Scalable Object Detection by Filter Compression with Regularized Sparse Coding Ting-Hsuan Chao, Yen-Liang Lin, Yin-Hsi Kuo, and Winston H Hsu National Taiwan University, Taipei, Taiwan Abstract For practical
Semantic Recognition: Object Detection and Scene Segmentation
Semantic Recognition: Object Detection and Scene Segmentation Xuming He [email protected] Computer Vision Research Group NICTA Robotic Vision Summer School 2015 Acknowledgement: Slides from Fei-Fei
A Learning Based Method for Super-Resolution of Low Resolution Images
A Learning Based Method for Super-Resolution of Low Resolution Images Emre Ugur June 1, 2004 [email protected] Abstract The main objective of this project is the study of a learning based method
Module 5. Deep Convnets for Local Recognition Joost van de Weijer 4 April 2016
Module 5 Deep Convnets for Local Recognition Joost van de Weijer 4 April 2016 Previously, end-to-end.. Dog Slide credit: Jose M 2 Previously, end-to-end.. Dog Learned Representation Slide credit: Jose
Face Recognition in Low-resolution Images by Using Local Zernike Moments
Proceedings of the International Conference on Machine Vision and Machine Learning Prague, Czech Republic, August14-15, 014 Paper No. 15 Face Recognition in Low-resolution Images by Using Local Zernie
Lecture 6: Classification & Localization. boris. [email protected]
Lecture 6: Classification & Localization boris. [email protected] 1 Agenda ILSVRC 2014 Overfeat: integrated classification, localization, and detection Classification with Localization Detection. 2 ILSVRC-2014
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
Machine Learning for Data Science (CS4786) Lecture 1
Machine Learning for Data Science (CS4786) Lecture 1 Tu-Th 10:10 to 11:25 AM Hollister B14 Instructors : Lillian Lee and Karthik Sridharan ROUGH DETAILS ABOUT THE COURSE Diagnostic assignment 0 is out:
The Visual Internet of Things System Based on Depth Camera
The Visual Internet of Things System Based on Depth Camera Xucong Zhang 1, Xiaoyun Wang and Yingmin Jia Abstract The Visual Internet of Things is an important part of information technology. It is proposed
Simultaneous Deep Transfer Across Domains and Tasks
Simultaneous Deep Transfer Across Domains and Tasks Eric Tzeng, Judy Hoffman, Trevor Darrell UC Berkeley, EECS & ICSI {etzeng,jhoffman,trevor}@eecs.berkeley.edu Kate Saenko UMass Lowell, CS [email protected]
Behavior Analysis in Crowded Environments. XiaogangWang Department of Electronic Engineering The Chinese University of Hong Kong June 25, 2011
Behavior Analysis in Crowded Environments XiaogangWang Department of Electronic Engineering The Chinese University of Hong Kong June 25, 2011 Behavior Analysis in Sparse Scenes Zelnik-Manor & Irani CVPR
Applications of Deep Learning to the GEOINT mission. June 2015
Applications of Deep Learning to the GEOINT mission June 2015 Overview Motivation Deep Learning Recap GEOINT applications: Imagery exploitation OSINT exploitation Geospatial and activity based analytics
An Automatic and Accurate Segmentation for High Resolution Satellite Image S.Saumya 1, D.V.Jiji Thanka Ligoshia 2
An Automatic and Accurate Segmentation for High Resolution Satellite Image S.Saumya 1, D.V.Jiji Thanka Ligoshia 2 Assistant Professor, Dept of ECE, Bethlahem Institute of Engineering, Karungal, Tamilnadu,
InstaNet: Object Classification Applied to Instagram Image Streams
InstaNet: Object Classification Applied to Instagram Image Streams Clifford Huang Stanford University [email protected] Mikhail Sushkov Stanford University [email protected] Abstract The growing
Mean-Shift Tracking with Random Sampling
1 Mean-Shift Tracking with Random Sampling Alex Po Leung, Shaogang Gong Department of Computer Science Queen Mary, University of London, London, E1 4NS Abstract In this work, boosting the efficiency of
High Level Describable Attributes for Predicting Aesthetics and Interestingness
High Level Describable Attributes for Predicting Aesthetics and Interestingness Sagnik Dhar Vicente Ordonez Tamara L Berg Stony Brook University Stony Brook, NY 11794, USA [email protected] Abstract
DeepFace: Closing the Gap to Human-Level Performance in Face Verification
DeepFace: Closing the Gap to Human-Level Performance in Face Verification Yaniv Taigman Ming Yang Marc Aurelio Ranzato Facebook AI Group Menlo Park, CA, USA {yaniv, mingyang, ranzato}@fb.com Lior Wolf
Introduction to Machine Learning CMU-10701
Introduction to Machine Learning CMU-10701 Deep Learning Barnabás Póczos & Aarti Singh Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio Geoffrey
Classifying Manipulation Primitives from Visual Data
Classifying Manipulation Primitives from Visual Data Sandy Huang and Dylan Hadfield-Menell Abstract One approach to learning from demonstrations in robotics is to make use of a classifier to predict if
Document Image Retrieval using Signatures as Queries
Document Image Retrieval using Signatures as Queries Sargur N. Srihari, Shravya Shetty, Siyuan Chen, Harish Srinivasan, Chen Huang CEDAR, University at Buffalo(SUNY) Amherst, New York 14228 Gady Agam and
Fast Matching of Binary Features
Fast Matching of Binary Features Marius Muja and David G. Lowe Laboratory for Computational Intelligence University of British Columbia, Vancouver, Canada {mariusm,lowe}@cs.ubc.ca Abstract There has been
Ensemble Methods. Knowledge Discovery and Data Mining 2 (VU) (707.004) Roman Kern. KTI, TU Graz 2015-03-05
Ensemble Methods Knowledge Discovery and Data Mining 2 (VU) (707004) Roman Kern KTI, TU Graz 2015-03-05 Roman Kern (KTI, TU Graz) Ensemble Methods 2015-03-05 1 / 38 Outline 1 Introduction 2 Classification
Learning Motion Categories using both Semantic and Structural Information
Learning Motion Categories using both Semantic and Structural Information Shu-Fai Wong, Tae-Kyun Kim and Roberto Cipolla Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK {sfw26,
Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data
CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear
TouchPaper - An Augmented Reality Application with Cloud-Based Image Recognition Service
TouchPaper - An Augmented Reality Application with Cloud-Based Image Recognition Service Feng Tang, Daniel R. Tretter, Qian Lin HP Laboratories HPL-2012-131R1 Keyword(s): image recognition; cloud service;
Compacting ConvNets for end to end Learning
Compacting ConvNets for end to end Learning Jose M. Alvarez Joint work with Lars Pertersson, Hao Zhou, Fatih Porikli. Success of CNN Image Classification Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton,
Supporting Online Material for
www.sciencemag.org/cgi/content/full/313/5786/504/dc1 Supporting Online Material for Reducing the Dimensionality of Data with Neural Networks G. E. Hinton* and R. R. Salakhutdinov *To whom correspondence
How does Person Identity Recognition Help Multi-Person Tracking?
How does Person Identity Recognition Help Multi-Person Tracking? Cheng-Hao Kuo and Ram Nevatia University of Southern California, Institute for Robotics and Intelligent Systems Los Angeles, CA 90089, USA
Taking Inverse Graphics Seriously
CSC2535: 2013 Advanced Machine Learning Taking Inverse Graphics Seriously Geoffrey Hinton Department of Computer Science University of Toronto The representation used by the neural nets that work best
Deep Learning Face Representation by Joint Identification-Verification
Deep Learning Face Representation by Joint Identification-Verification Yi Sun 1 Yuheng Chen 2 Xiaogang Wang 3,4 Xiaoou Tang 1,4 1 Department of Information Engineering, The Chinese University of Hong Kong
Is that you? Metric Learning Approaches for Face Identification
Is that you? Metric Learning Approaches for Face Identification Matthieu Guillaumin, Jakob Verbeek and Cordelia Schmid LEAR, INRIA Grenoble Laboratoire Jean Kuntzmann [email protected] Abstract
Probabilistic Latent Semantic Analysis (plsa)
Probabilistic Latent Semantic Analysis (plsa) SS 2008 Bayesian Networks Multimedia Computing, Universität Augsburg [email protected] www.multimedia-computing.{de,org} References
Multi-view Face Detection Using Deep Convolutional Neural Networks
Multi-view Face Detection Using Deep Convolutional Neural Networks Sachin Sudhakar Farfade Yahoo [email protected] Mohammad Saberian Yahoo [email protected] Li-Jia Li Yahoo [email protected]
arxiv:1409.1556v6 [cs.cv] 10 Apr 2015
VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION Karen Simonyan & Andrew Zisserman + Visual Geometry Group, Department of Engineering Science, University of Oxford {karen,az}@robots.ox.ac.uk
Recognition. Sanja Fidler CSC420: Intro to Image Understanding 1 / 28
Recognition Topics that we will try to cover: Indexing for fast retrieval (we still owe this one) History of recognition techniques Object classification Bag-of-words Spatial pyramids Neural Networks Object
CNN Based Object Detection in Large Video Images. WangTao, [email protected] IQIYI ltd. 2016.4
CNN Based Object Detection in Large Video Images WangTao, [email protected] IQIYI ltd. 2016.4 Outline Introduction Background Challenge Our approach System framework Object detection Scene recognition Body
Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report
Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 69 Class Project Report Junhua Mao and Lunbo Xu University of California, Los Angeles [email protected] and lunbo
Learning to Process Natural Language in Big Data Environment
CCF ADL 2015 Nanchang Oct 11, 2015 Learning to Process Natural Language in Big Data Environment Hang Li Noah s Ark Lab Huawei Technologies Part 1: Deep Learning - Present and Future Talk Outline Overview
Image Normalization for Illumination Compensation in Facial Images
Image Normalization for Illumination Compensation in Facial Images by Martin D. Levine, Maulin R. Gandhi, Jisnu Bhattacharyya Department of Electrical & Computer Engineering & Center for Intelligent Machines
Big Data: Image & Video Analytics
Big Data: Image & Video Analytics How it could support Archiving & Indexing & Searching Dieter Haas, IBM Deutschland GmbH The Big Data Wave 60% of internet traffic is multimedia content (images and videos)
Introduction. Selim Aksoy. Bilkent University [email protected]
Introduction Selim Aksoy Department of Computer Engineering Bilkent University [email protected] What is computer vision? What does it mean, to see? The plain man's answer (and Aristotle's, too)
MusicGuide: Album Reviews on the Go Serdar Sali
MusicGuide: Album Reviews on the Go Serdar Sali Abstract The cameras on mobile phones have untapped potential as input devices. In this paper, we present MusicGuide, an application that can be used to
Search Taxonomy. Web Search. Search Engine Optimization. Information Retrieval
Information Retrieval INFO 4300 / CS 4300! Retrieval models Older models» Boolean retrieval» Vector Space model Probabilistic Models» BM25» Language models Web search» Learning to Rank Search Taxonomy!
Forecasting Trade Direction and Size of Future Contracts Using Deep Belief Network
Forecasting Trade Direction and Size of Future Contracts Using Deep Belief Network Anthony Lai (aslai), MK Li (lilemon), Foon Wang Pong (ppong) Abstract Algorithmic trading, high frequency trading (HFT)
Human Pose Estimation from RGB Input Using Synthetic Training Data
Human Pose Estimation from RGB Input Using Synthetic Training Data Oscar Danielsson and Omid Aghazadeh School of Computer Science and Communication KTH, Stockholm, Sweden {osda02, omida}@kth.se arxiv:1405.1213v2
Speed Performance Improvement of Vehicle Blob Tracking System
Speed Performance Improvement of Vehicle Blob Tracking System Sung Chun Lee and Ram Nevatia University of Southern California, Los Angeles, CA 90089, USA [email protected], [email protected] Abstract. A speed
LOGISTIC SIMILARITY METRIC LEARNING FOR FACE VERIFICATION
LOGISIC SIMILARIY MERIC LEARNING FOR FACE VERIFICAION Lilei Zheng, Khalid Idrissi, Christophe Garcia, Stefan Duffner and Atilla Baskurt Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, France
Making Sense of the Mayhem: Machine Learning and March Madness
Making Sense of the Mayhem: Machine Learning and March Madness Alex Tran and Adam Ginzberg Stanford University [email protected] [email protected] I. Introduction III. Model The goal of our research
Object Detection from Video Tubelets with Convolutional Neural Networks
Object Detection from Video Tubelets with Convolutional Neural Networks Kai Kang Wanli Ouyang Hongsheng Li Xiaogang Wang Department of Electronic Engineering, The Chinese University of Hong Kong {kkang,wlouyang,hsli,xgwang}@ee.cuhk.edu.hk
Programming Exercise 3: Multi-class Classification and Neural Networks
Programming Exercise 3: Multi-class Classification and Neural Networks Machine Learning November 4, 2011 Introduction In this exercise, you will implement one-vs-all logistic regression and neural networks
A Genetic Algorithm-Evolved 3D Point Cloud Descriptor
A Genetic Algorithm-Evolved 3D Point Cloud Descriptor Dominik Wȩgrzyn and Luís A. Alexandre IT - Instituto de Telecomunicações Dept. of Computer Science, Univ. Beira Interior, 6200-001 Covilhã, Portugal
FAST APPROXIMATE NEAREST NEIGHBORS WITH AUTOMATIC ALGORITHM CONFIGURATION
FAST APPROXIMATE NEAREST NEIGHBORS WITH AUTOMATIC ALGORITHM CONFIGURATION Marius Muja, David G. Lowe Computer Science Department, University of British Columbia, Vancouver, B.C., Canada [email protected],
An Analysis of Single-Layer Networks in Unsupervised Feature Learning
An Analysis of Single-Layer Networks in Unsupervised Feature Learning Adam Coates 1, Honglak Lee 2, Andrew Y. Ng 1 1 Computer Science Department, Stanford University {acoates,ang}@cs.stanford.edu 2 Computer
CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.
Lecture Machine Learning Milos Hauskrecht [email protected] 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht [email protected] 539 Sennott
PSG College of Technology, Coimbatore-641 004 Department of Computer & Information Sciences BSc (CT) G1 & G2 Sixth Semester PROJECT DETAILS.
PSG College of Technology, Coimbatore-641 004 Department of Computer & Information Sciences BSc (CT) G1 & G2 Sixth Semester PROJECT DETAILS Project Project Title Area of Abstract No Specialization 1. Software
Automatic Labeling of Lane Markings for Autonomous Vehicles
Automatic Labeling of Lane Markings for Autonomous Vehicles Jeffrey Kiske Stanford University 450 Serra Mall, Stanford, CA 94305 [email protected] 1. Introduction As autonomous vehicles become more popular,
International Journal of Advanced Information in Arts, Science & Management Vol.2, No.2, December 2014
Efficient Attendance Management System Using Face Detection and Recognition Arun.A.V, Bhatath.S, Chethan.N, Manmohan.C.M, Hamsaveni M Department of Computer Science and Engineering, Vidya Vardhaka College
Environmental Remote Sensing GEOG 2021
Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class
Group Sparse Coding. Fernando Pereira Google Mountain View, CA [email protected]. Dennis Strelow Google Mountain View, CA strelow@google.
Group Sparse Coding Samy Bengio Google Mountain View, CA [email protected] Fernando Pereira Google Mountain View, CA [email protected] Yoram Singer Google Mountain View, CA [email protected] Dennis Strelow
Learning Deep Face Representation
Learning Deep Face Representation Haoqiang Fan Megvii Inc. [email protected] Zhimin Cao Megvii Inc. [email protected] Yuning Jiang Megvii Inc. [email protected] Qi Yin Megvii Inc. [email protected] Chinchilla Doudou
