Big Data 應 用 與 實 務. Jabar Liao HP Software/Big Data Platform
|
|
|
- Alvin Cross
- 10 years ago
- Views:
Transcription
1 Big Data 應 用 與 實 務 Jabar Liao HP Software/Big Data Platform Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
2 HAVEn HP 大 數 據 平 臺 HAVEn Hadoop/ HDFS Autonomy IDOL Vertica Enterprise Security n Apps 管 理 超 大 規 模 的 分 散 式 資 料 處 理 非 結 構 化 和 人 類 資 訊 資 料 極 速 高 擴 展 性 的 即 時 分 析 收 集 整 合 機 器 資 料 其 它 HP 軟 體 產 品 + 您 現 有 應 用 程 式 + 專 業 服 務 2 交 易 資 料 社 交 媒 體 影 像 聲 音 電 子 郵 件 文 字 手 機 / 平 板 文 件 IT 運 維 搜 尋 引 擎 圖 片 Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. hp.com/haven
3 高 科 技 產 業 案 例 簡 介 3 Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
4 UK based company XXX uses a HPC (high performance computing) hardware cluster in its chip manufacturing process, and previously was using a standard-rack Oracle implementation to monitor performance of their LSF (load sharing facility) and SAS front-end. They also analyze test data from their rigs used in prototype chip testing. In both use cases, they needed more speed and query performance. They realized that trying to analyze data with their 20th century Oracle technology was quite limited, especially given the massive quantities of data output in the testing process. Couldn t monitor HPC cluster load balancing: The Oracle database was too slow for monitoring the Platform LSF and SAS performance. Couldn t query test data effectively: Query performance and data loading was far too slow for the customer s needs. For more on the first use case, check out the diagrams at the following link: form/pss7.1/arm_instrumentation.pdf Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential.
5 為 何 選 擇 HP Vertica? (V) Vertica 的 效 能 無 與 倫 比 ( 列 儲 存 與 列 運 算, columnar) Vertica 可 以 與 SAS 整 合, 不 須 修 改 程 式 跟 流 程 (SAS 內 建 driver) Vertica 能 夠 一 邊 裝 載 資 料 並 同 時 運 算, 不 用 等 待 索 引 更 新 (Vertica 獨 家 技 術 ) Vertica 可 以 即 時 裝 載 資 料, 並 同 時 執 行 分 析, 使 整 體 系 統 效 能 從 資 料 裝 載 到 結 果 產 出 比 原 來 的 Oracle 快 了 1000 倍!! Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential.
6 Kokubu HP Vertica improves analysis performance by up to nine times Challenge Renovate its integrated data warehouse environment, creating faster access to sales data Solution HP Vertica Analytics Platform Results Enhanced analysis performance on 1,100,000,000 items of detailed transaction data by up to nine times Shortened loading times for daily merchandise report data using batch processing from 2.5 hours to 17 minutes Delivered a system with low administration cost, using the HP Vertica projection function rather than requiring an index Reduced the wait times for data analysis results, improving work efficiency Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential.
7 Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential. 電 信 產 業 案 例 簡 介
8 HP Vertica 電 信 產 業 案 例 客 戶 使 用 場 景 AT&T 實 驗 室 用 HP Vertica 作 為 其 6 天 內 通 話 記 錄 分 析 平 臺, 包 括 CDR 數 據 IP 統 計 等 每 天 12TB 的 數 據, 保 存 6 天, 總 共 70TB 左 右 的 數 據 量 Comcast 使 用 Vertica 作 為 其 網 路 性 能 資 料 分 析 平 臺 和 VOD 使 用 分 析 平 臺, 分 析 整 個 各 種 網 路 流 量 資 料 和 視 頻 點 播 資 料 Vertica 使 客 戶 能 夠 快 速 定 位 和 緩 存 熱 點 資 料, 提 高 客 戶 滿 意 度, 為 Comcast 節 省 了 3 億 美 金 壓 縮 比 10 倍, 性 能 提 升 10 倍, 資 料 量 40TB Level3 使 用 Vertica 來 分 析 CDR 和 網 路 錯 誤 日 誌, 以 達 到 快 速 優 化 網 路 品 質 的 目 的 Optus 使 用 Vertica 作 為 分 析 平 臺 支 持 Optus 所 有 後 付 費 和 預 付 費 用 戶 可 查 看 到 話 費 使 用 情 況, 包 括 語 音 資 料 和 漫 遊 一 些 漫 遊 資 料 的 查 詢 由 原 來 7-8 小 時 減 少 到 幾 分 鐘 數 據 量 200TB Sprint, 網 路 性 能 監 控 與 分 析 平 臺, 每 5,10,15 分 鐘 採 集 網 路 資 料, 替 換 Oracle Empirix, ASDR( 應 用 服 務 細 節 記 錄 分 析 ) 平 臺, 使 操 作 員 能 快 速 回 應 客 戶 的 網 路 投 訴, 定 位 問 題 比 之 前 MySQL 資 料 庫 性 能 提 升 3 倍 tw telecom, 有 線 網 路 容 量 與 性 能 分 析 平 臺,35TB 數 據 量 Verizon, 網 路 安 全 與 威 脅 資 料 分 析 平 臺,32 節 點 的 Vertica 資 料 庫,840 億 的 網 路 流 量 資 料 查 詢 只 需 要 10 秒, 670 億 的 DNS 日 分 析 只 需 要 2 分 半 nmetrics 網 路 性 能 分 析 平 臺, 替 換 原 有 PostgreSQL, 性 能 提 升 100x x 倍, 由 原 來 上 百 秒 的 查 詢 減 少 到 幾 秒 甚 至 不 到 一 秒
9 中 國 電 信 CDMA 流 量 分 析 (V) > 業 務 挑 戰 > VERTICA 解 決 方 案 > 優 勢 每 天 上 千 個 檔 需 要 入 庫, 每 5 到 10 分 鐘 一 個 500GB 的 檔,15 億 條 記 錄 當 前 的 Oracle + Informatica 每 天 需 要 16 小 時 載 入,12 小 時 匯 總, 資 料 分 析 幾 乎 無 法 完 成 日 間 存 儲 的 壓 力 和 歷 史 資 料 的 存 儲 壓 力 都 非 常 大 1 個 ETL 伺 服 器 + 2 個 千 兆 乙 太 網 連 接 的 Vertica 節 點 即 時 將 原 始 檔 案 FTP 到 ETL 服 務 器, 在 ETL 伺 服 器 上 保 留 3 個 月 10 多 個 執 行 緒 並 行 即 時 載 入, 達 到 300k 條 / 秒, 而 原 系 統 平 均 為 5k 條 / 秒 資 料 匯 總 2 小 時 內 完 成 資 料 壓 縮 比 8x 智 能 定 時 作 業 通 用 的 x86 硬 體 設 定 性 能 大 幅 提 升 60 倍 的 資 料 載 入 速 度 12 倍 的 資 料 匯 總 存 儲 優 化 8 倍 壓 縮 比, 大 幅 節 省 存 儲 空 間 即 時 載 入 與 分 析 即 時 載 入 與 資 料 分 析 同 步 進 行 優 異 的 擴 展 性 隨 時 添 加 節 點 動 態 資 料 再 平 衡 33 Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
10 河 南 移 動 資 料 自 助 服 務 與 行 銷 分 析 原 有 的 資 料 倉 庫 無 法 滿 足 日 益 增 長 的 資 料 自 助 服 務 和 行 銷 分 析 的 需 求 有 個 業 務 使 用 者 需 要 即 時 使 用 資 料 分 析 营 销 MASACM (500GB) 临 时 数 据 提 取 通 过 数 据 库 工 具 编 写 SQL 进 行 数 据 统 计 分 析, 规 划 100 用 户, 每 个 用 户 10 个 会 话 資 料 自 助 服 務 : 10 由 業 務 使 用 者 自 己 通 過 自 助 分 析 工 具 進 行 資 料 統 計 分 析 使 用 者 通 過 資 料 庫 開 發 工 具 編 寫 腳 本 完 成 臨 時 資 料 提 取 行 銷 大 資 料 分 析 : 各 種 行 銷 模 式 和 促 銷 手 段 的 大 資 料 分 析 客 戶 屬 性 資 料 的 關 聯 分 析, 包 括 客 戶 畫 像 查 詢 標 籤 客 戶 群 刷 新 標 籤 分 析 的 資 料 刷 新 32 節 點, 資 料 量 360TB MASAIIP(500GB) MASAMK(1.5TB) 数 据 下 发 数 据 源 DW (95TB) MK(63TB) FBI(5TB) 其 他 (3TB) ETL 数 据 抽 取 生 成 数 据 文 件 ETL 数 据 抽 取 生 成 数 据 文 件 Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 1 节 点 机 1 文 件 系 统 存 储 ( 下 发 数 据 源 ) ETL 服 务 器 2... 节 点 机 N 文 件 系 统 存 储 ( 下 发 数 据 源 ) 3 ETL 数 据 装 载 VERTICA 数 据 库 待 规 划? 自 助 分 析 营 销 管 理 平 台 通 过 华 为 自 助 分 析 工 具 在 VERTICA 数 据 库 进 行 数 据 统 计 分 析,10000 用 户 营 销 3 期 标 签 库 日 常 运 行 维 护, 规 划 50 个 用 户, 每 个 用 户 5 个 会 话
11 深 圳 移 動 全 網 智 能 監 控 平 臺 全 網 級 別 監 控 資 料 進 行 深 層 次 分 析 的 智 慧 分 析 平 臺, 為 集 團 公 司 內 部 和 省 公 司 提 供 資 料 分 析 服 務 需 求 : 能 夠 低 成 本 擴 展 已 存 儲 高 速 增 長 的 資 料 規 模 ; 能 夠 處 理 更 多 地 非 結 構 化 資 料, 如 web 日 誌 以 及 物 聯 網 的 應 用 日 誌 ; 能 夠 在 大 規 模 資 料 下 進 行 深 度 資 料 採 擷, 超 越 傳 統 的 隨 機 採 樣 分 析 的 方 法, 而 代 之 以 全 數 據 級 別 的 分 析 能 力 200GB/ 天,20TB 11 Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
12 Internet 產 業 案 例 簡 介
13 為 什 麼 選 擇 MPP 日 益 增 長 的 分 析 需 求 Map/Reduce(Hive) 太 慢, 而 且 大 多 數 分 析 需 求 安 全 性 無 法 保 證 In-memory 技 術 太 貴 而 且 不 成 熟 傳 統 行 式 DW 數 據 庫 的 先 天 缺 陷 在 數 據 量 較 小 時 速 度 還 行, 但 當 數 據 量 到 達 超 大 規 模 時 ( 比 如 100TB 以 上 ), 性 能 急 劇 下 降 擴 展 性 受 限 成 本 高 昂 需 要 一 個 大 型 的 MPP 資 料 庫 有 更 多 分 析 的 功 能 能 快 速 有 效 的 處 理 大 規 模 的 數 據 能 保 證 資 料 安 全 能 提 供 系 統 的 穩 定 性 能 夠 通 過 深 度 分 析 資 料 來 提 升 收 入 產 生 新 產 品 ( 這 些 在 現 有 平 台 無 法 實 現 ) 4 Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
14 Facebook Architecture Giraph Customer Friendship Puma HBASE Hadoop EDW Scuba In-Memory Real Time Others 14 Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
15 線 上 遊 戲 (H+V) BI Applications Online Users Social Media Analysis Reports/Dashboards/Analytics 15 Web Data Feed Social Media Real-time Data Warehouse Data Collection -> Load Distribution Game System on Cloud Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 5 > 25 > 115 > 230 節 點 集 群 線 上 擴 展 3 PB 資 料, 每 天 新 增 10T 資 料, 新 增 資 料 要 求 1 分 鐘 以 內 可 用 於 分 析 4 千 萬 在 線 使 用 者 訪 問 資 料 從 海 量 資 料 中 即 時 識 別 個 人 需 求 和 潛 在 的 購 買 需 求 實 時 分 析 社 交 關 係 去 吸 引 一 個 新 的 客 戶
16 Supercell Mobile gaming company leads with creativity supported by data Challenge Adopt real-time gaming data analytics platform Solution HP Vertica Analytics Platform Results Queries reduced from two to fourhours to minutes or seconds Solution successfully met cloud deployment requirement Expanded data capacity from a few months to whole life time of data Analytics improved customer service by augmenting player support Copyright2014Hewlett-PackardDevelopmentCompany,L.P. The informationcontained herein is subject to change without notice. HP Confidential. 16 Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
17 GSN Games Entertainment - gaming Challenge Rapid data analysis to power strategic growth Solution HP Vertica Analytics Platform Results Reduced A/B test time from up to 36 hours to under ½ second; analyze trillions of data points in real time Improved game development through rapid, iterative testing Insights into whether new features will engage users and monetize well Increase user engagement and re-engagement Improved visibility into ad spend across different platforms, from Facebook to mobile Copyright2014Hewlett-PackardDevelopmentCompany,L.P. The informationcontained herein is subject to change without notice. HP Confidential Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
18 Spil Games Captures big data prize with HP Vertica Challenge Capture and leverage enormous volumes of website data to enable both real-time website adaptability and improved business insights and decision making Solution HP Vertica Analytics Platform Results Queries faster than previous open source solution by at least two orders of magnitude Websites adapt dynamically to visitor behavior, adjusting content within 12.5 minutes based on visitor clicks Business can respond more nimbly to customer behavior, enhancing products and then observing the effects within 15 minutes of user activity Improved insight into site visitors improves value of ad p la Co c p e y r m ight e 20 n 14 t H, ew w le h tt- i P c a h ckar i d n De t ve u lo r pm n en d tc r o i m v p e an s y, L r.p ẹv Th e e n inf u orm e at a ion n c d onta p in r ed ofitability herein is subject to change without notice. HP Confidential. 18 Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
19 醫 療 產 業 案 例 簡 介
20 MZI HealthCare Improves patient health with HP Vertica in the cloud Challenge Improve patient care and safety with advanced analytics performance on the cloud Solution HP Vertica Analytics Platform Results Performance increases of 100x over legacy systems data loading reduced from days to hours and hours to minutes Equips healthcare organizations with the analytics required to meet today s new clinical, financial, and performance requirements Empowers users by tracking more than 500 healthcare quality measures, while integrating disease registries Deliver data for analysis and reporting immediately after loading, instead of in hours or days Provides a cloud-based platform capable of delivering real-time analytics at an affordable price point Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential.
21 Cerner Corporation HP Vertica helps to optimize health information solutions Challenge Improve efficiency and quality of patient care by improving the productivity of clinician users Solution Cerner Millennium health care platform HP HAVEn engines: HP Vertica Analytics Platform, Hadoop Results 6,000% faster analysis of timers helps Cerner gain insight into how physicians and other users use Millennium and make suggestions about using it more efficiently so the users become more efficient physicians Rapid analysis of 2 million alerts daily enables Cerner to know what will happen, then head off problems before they happen Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential.
22 BIG Data 與 IT 營 運 及 資 訊 安 全 22 Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
23 HP IT Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
24 惠 普 業 務 1200 億 美 金 的 銷 售 額 全 球 最 大 IT 公 司 管 理 超 過 10 億 的 產 品 全 球 超 過 30 萬 員 工 運 營 在 170 個 國 家 超 過 650 個 運 營 點 500 多 個 業 務 流 程 24 Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
25 龐 大 的 IT 基 礎 設 施 處 理 海 量 資 訊 1,500+ 企 業 級 路 由 器 4PB 日 資 料 傳 輸 量 50 億 日 安 全 事 件 900 億 月 安 全 事 件 15,000+ 網 路 switch 63 PB 部 署 在 3Par, XP 和 EVA 上 的 容 量 442,000 個 人 電 腦 被 部 署 41,000+ 伺 服 器 150,000+ 移 動 設 備 450,000 郵 箱 被 管 理 25 Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
26 HP IT 維 運 資 料 分 析 BIG DATA 解 決 方 案 - 基 於 HAVEn (V+E) Comprehensive, actionable insight into all aspects of operations for the New Style of IT IT Search Guided Troubleshooting Visual Analytics Standalone, Scalable Operations Analytics platform Performance Metrics Operational Events Topology Logs Application Mobile app Storage Network System Cloud 3 rd Party tools e.g. Splunk 26 Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential. NOTE: all product views are illustrations and might not represent actual product screen shots.
27 OpsA (Operation Analytics) 系 統 架 構 - 基 於 HAVEn PQL OM/i Tomcat, PA SiS, DB SPI Postgre NNMi, MySQL NPS, BPM, s RTSM, 3 rd party CSV, JMX Metrics Data OpsAnalytics Collector OpsAnalytics Collector OpsAnalytics Appliance Collector (CentOS) Appliance (CentOS) Virtual Appliance (CentOS) OpsA Collector JVM OpsAnalytics Collector Data Access Layers WS Vertica JDBC Admin AQL VMs OpsAnalytics App Server Virtual Appliance (CentOS) OpsA AS JVM Web Container EJB Container UI Docs Collect Admin Analytics Engine Data Access Layer Vertica JDBC Logger JAX-WS Log Tomcat files SyslogPostgre MySQL s Raw Logs Metrics Structured Logs Tomcat Tomcat Tomcat MySQL Postgres Tomcat MySQL Postgres MySQL Postgres MySQL Postgres Structured Data metrics structured logs Structured Data Tomcat Tomcat Tomcat MySQL Postgres Tomcat MySQL Postgres vertica R MySQL Postgres vertica-udx-zygote MySQL Postgres Storage Raw Logs (responses to Logger native queries) PQL - Phrased Query Language AQL - Analytics Query Language Structured Data Flow Unstructured Data Flow 27 Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential. NOTE: all product views are illustrations and might not represent actual product screen shots.
28 PQL, AQL PQL = Phrase Query Language, close to natural language search Used in Guided Troubleshooting Searches through all data including logs, metrics, events, topology For improved search capability, relies on tagging of data Built-in tags for HP collectors, such as OM, OMi, BPM, NNMi, SiteScope CPU utilization host exchange*.hp.com AQL = Analytics Query Language, advanced query language with built-in analytics verbs and functions Used to generate visualizations, graphics Combines searches into structured and unstructured data from i in (oa_sysperf_global) where i.host like bill.fc.hp.com" let analytic_window = between($starttime, $endtime) let interval = 3600 select moving_avg(i.cpu_util) 28 Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential. NOTE: all product views are illustrations and might not represent actual product screen shots.
29 NOTE: all product views are illustrations and might not represent actual product screen shots. Business Service Management (BSM) Software Sakes Onboarding Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 29
30 NOTE: all product views are illustrations and might not represent actual product screen shots. Business Service Management (BSM) Software Sakes Onboarding Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 30
31 NOTE: all product views are illustrations and might not represent actual product screen shots. Business Service Management (BSM) Software Sakes Onboarding Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 31
32 NOTE: all product views are illustrations and might not represent actual product screen shots. Business Service Management (BSM) Software Sakes Onboarding Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 32
33 NOTE: all product views are illustrations and might not represent actual product screen shots. Business Service Management (BSM) Software Sakes Onboarding Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 33
34 NOTE: all product views are illustrations and might not represent actual product screen shots. Business Service Management (BSM) Software Sakes Onboarding Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 34
35 NOTE: all product views are illustrations and might not represent actual product screen shots. Business Service Management (BSM) Software Sakes Onboarding Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 35
36 NOTE: all product views are illustrations and might not represent actual product screen shots. Business Service Management (BSM) Software Sakes Onboarding Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 36
37 Machine Data for Warranty Impact HP IT Challenge at HP IT Current data warehouses could not provide iterative or predictive analytics in a timely, costeffective manner HP Gen8 servers call-out feature provide telemetry data 24x7, generating massive amounts of data HP would like to be proactive about notifying server customers before a warranty event, increasing satisfaction and reducing support costs HP Vertica Solution Speed and compression allow HP to load and query on the massive amounts of telemetry data provided by Gen8 servers Discovered a memory change followed quickly by a processor change leads to a warranty event 24.5% of the time HP was proactive with customers to fix issues before problems Determined for every 1% improvement in quality for their servers provides $4.5 million in potential benefit for HP 37 Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
38 Analyzing Billions of Clicks Challenge at HP.com Millions of visitors generate billion clicks per month Must store 5 years worth of data to get full value of year-overyear clickstream analysis Oracle database had sluggish performance queries took 48 hours after each day s transactions Extremely complex website many pages are generated dynamically creating complex clickstream trails HP Vertica Solution Queries run in hours or even minutes; 48x 100x faster Industry-standard SQL accelerated acceptance and proficiency Speed of HP Vertica allows iterative and recursive analysis for deeper dives HP can build functionality tailored to individual interactions based on nuanced understanding of user behavior at an individual level 38 Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
39 金 融 業 案 例 簡 介 39 Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential. NOTE: all product views are illustrations and might not represent actual product screen shots.
40 Vertica 典 型 案 例 全 球 最 大 銀 行 之 一 全 球 歷 史 最 長 規 模 最 大 的 金 融 服 務 集 團 之 一 全 球 五 大 對 沖 基 金 公 司 之 一 中 國 第 三 大 第 三 方 交 易 公 司, B2C 支 付, 航 空 公 司 與 旅 遊, 基 金 投 資 分 析 信 用 卡 交 易 資 料 和 使 用 者 行 為, 即 時 偵 測 欺 詐 行 為 等 (88 節 點,1.5PB 數 據 ) 根 據 使 用 者 的 投 資 記 錄 進 行 風 險 分 析 和 管 理 以 前 Oracle 系 統 生 成 一 份 報 告 需 要 37 分 鐘, 一 天 只 能 生 產 30 多 份 Vertica 生 成 一 份 報 告 只 需 要 9 秒, 每 天 能 生 成 數 千 份 (15 節 點,50TB 數 據 ) 股 票 交 易 資 料 即 時 處 理 和 模 型 驗 證 即 時 裝 載 股 票 交 易 資 料 ( 間 隔 10 秒 ),3 秒 完 成 處 理 (20 節 點,700TB 數 據,1TB / day, 壓 縮 率 6:1) 理 財 基 金 交 易 和 POS 交 易 使 用 者 行 為 分 析 替 代 Oracle, 生 成 報 表 時 間 從 2 小 時 降 到 5 分 鐘, 批 量 處 理 過 程 從 10 小 時 降 到 40 分 鐘, 總 體 性 能 提 升 10x # Copyright 2012 Hewlett-Packard Development Company, L.P. 本 文 信 息 如 有 更 改, 恕 不 另 行 通 知
41 準 即 時 消 費 行 為 分 析 (V) 當 日 銷 售 分 析 : 每 日 成 交, 取 消, 退 款, 交 換 手 續 費, 票 面 價 值 3.6 倍 快 歷 史 分 析 : YoY, MoM 2.25 倍 快 即 時 異 常 交 易 偵 測 130 倍 快 利 潤 分 析 : YTD 利 潤, 交 換 手 續 費 衝 擊 - 16 倍 快 中 國 第 一 個 R 語 言 案 例 (Vertica 可 運 行 平 行 R 分 析 ) 匯 付 天 下 為 中 國 第 三 大 第 三 方 支 付 公 司
42 國 防 及 警 察 案 例 簡 介 42 Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential. NOTE: all product views are illustrations and might not represent actual product screen shots.
43 Face Analysis: Human information from images Face Detection Face Recognition Found President Obama Face Face Analysis Body Analysis Primary clothing color = white Not nude Primary clothing color = white Not nude Primary clothing color = black Not nude 43 HP Confidential Copyright 2013 Autonomy Inc., an HP Company. All rights reserved. Other trademarks are registered trademarks and the properties of their respective owners.
44 Analyze Scene Analysis (Base Protection) 44 Copyright 2013 Autonomy Inc., an HP Company. All rights reserved. Other trademarks are registered trademarks and the properties of their respective owners.
45 Analyze Scene Analysis (Prisons) 45 Copyright 2013 Autonomy Inc., an HP Company. All rights reserved. Other trademarks are registered trademarks and the properties of their respective owners.
46 Case Study: License Plate Recognition 46 Copyright 2013 Autonomy Inc., an HP Company. All rights reserved. Other trademarks are registered trademarks and the properties of their respective owners.
47 Case Study: License Plate Recognition 47 Copyright 2013 Autonomy Inc., an HP Company. All rights reserved. Other trademarks are registered trademarks and the properties of their respective owners.
48 Thank you! 48 Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential For Training Purposes Only.
Turning Data Into Answers With HP Vertica
Turning Data Into Answers With HP Vertica Sekher Seshadri March, 2014 Agenda Big Data Challenges and Opportunities HP Vertica Overview Customer Use Cases Q&A 2 Big Data Challenges & Opportunities Completing
Big Data Analytics: Today's Gold Rush November 20, 2013
Copyright 2013 Vivit Worldwide Big Data Analytics: Today's Gold Rush November 20, 2013 Brought to you by Copyright 2013 Vivit Worldwide Hosted by Bernard Szymczak Vivit Leader Ohio Chapter TQA SIG Copyright
Actionable insight for IT BIG Data - HP Operations Analytics August 22, 2013
Copyright 2013 Vivit Worldwide Actionable insight for IT BIG Data - HP Operations Analytics August 22, 2013 Brought to you by Vivit Business Service Management Special Interest Group (SIG) Leaders: Jim
Digitization of Enterprise - New Style of IT
Digitization of Enterprise - New Style of IT Neeraj Tolmare Oct 2014 What happens in an Internet Minute? 20 identity thefts 20 million photo views 1.3 million video views 6 million Facebook views 100,000
Il mondo dei DB Cambia : Tecnologie e opportunita`
Il mondo dei DB Cambia : Tecnologie e opportunita` Giorgio Raico Pre-Sales Consultant Hewlett-Packard Italiana 2011 Hewlett-Packard Development Company, L.P. The information contained herein is subject
How To Use Hp Vertica Ondemand
Data sheet HP Vertica OnDemand Enterprise-class Big Data analytics in the cloud Enterprise-class Big Data analytics for any size organization Vertica OnDemand Organizations today are experiencing a greater
End to End Solution to Accelerate Data Warehouse Optimization. Franco Flore Alliance Sales Director - APJ
End to End Solution to Accelerate Data Warehouse Optimization Franco Flore Alliance Sales Director - APJ Big Data Is Driving Key Business Initiatives Increase profitability, innovation, customer satisfaction,
Zynga Analytics Leveraging Big Data to Make Games More Fun and Social
Connecting the World Through Games Zynga Analytics Leveraging Big Data to Make Games More Fun and Social Daniel McCaffrey General Manager, Platform and Analytics Engineering World s leading social game
The Future of Data Management
The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah (@awadallah) Cofounder and CTO Cloudera Snapshot Founded 2008, by former employees of Employees Today ~ 800 World Class
BB2798 How Playtech uses predictive analytics to prevent business outages
BB2798 How Playtech uses predictive analytics to prevent business outages Eli Eyal, Playtech Udi Shagal, HP June 13, 2013 Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained
HP SiteScope software
HP SiteScope software When you can see availability and performance, you can improve it. Improve the availability and performance of your IT environment HP SiteScope software helps you to agentlessly monitor
Interactive data analytics drive insights
Big data Interactive data analytics drive insights Daniel Davis/Invodo/S&P. Screen images courtesy of Landmark Software and Services By Armando Acosta and Joey Jablonski The Apache Hadoop Big data has
HP HAVEn: See the big picture in Big Data
HP HAVEn: See the big picture in Big Data Table of contents The HAVEn vision All Big Data matters Profit from 100 percent of your data with HP HAVEn The HP HAVEn engines The Haven ecosystem Big Data usage
Hadoop and Relational Database The Best of Both Worlds for Analytics Greg Battas Hewlett Packard
Hadoop and Relational base The Best of Both Worlds for Analytics Greg Battas Hewlett Packard The Evolution of Analytics Mainframe EDW Proprietary MPP Unix SMP MPP Appliance Hadoop? Questions Is Hadoop
HDP Enabling the Modern Data Architecture
HDP Enabling the Modern Data Architecture Herb Cunitz President, Hortonworks Page 1 Hortonworks enables adoption of Apache Hadoop through HDP (Hortonworks Data Platform) Founded in 2011 Original 24 architects,
Parallel Data Warehouse
MICROSOFT S ANALYTICS SOLUTIONS WITH PARALLEL DATA WAREHOUSE Parallel Data Warehouse Stefan Cronjaeger Microsoft May 2013 AGENDA PDW overview Columnstore and Big Data Business Intellignece Project Ability
HP OO 10.X - SiteScope Monitoring Templates
HP OO Community Guides HP OO 10.X - SiteScope Monitoring Templates As with any application continuous automated monitoring is key. Monitoring is important in order to quickly identify potential issues,
Big Data Analytics Platform @ Nokia
Big Data Analytics Platform @ Nokia 1 Selecting the Right Tool for the Right Workload Yekesa Kosuru Nokia Location & Commerce Strata + Hadoop World NY - Oct 25, 2012 Agenda Big Data Analytics Platform
How to make BIG DATA work for you. Faster results with Microsoft SQL Server PDW
How to make BIG DATA work for you. Faster results with Microsoft SQL Server PDW Roger Breu PDW Solution Specialist Microsoft Western Europe Marcus Gullberg PDW Partner Account Manager Microsoft Sweden
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
Using Hadoop to Expand Data Warehousing
Using Hadoop to Expand Data Warehousing Mike Peterson VP of Platforms and Data Architecture, Neustar Feb 28, 2013 1 Copyright Think Big Analytics and Neustar Inc. Why do this? Transforming to an Information
Achieving Business Value through Big Data Analytics Philip Russom
Achieving Business Value through Big Data Analytics Philip Russom TDWI Research Director for Data Management October 3, 2012 Sponsor 2 Speakers Philip Russom Research Director, Data Management, TDWI Brian
Big Data Analytics. with EMC Greenplum and Hadoop. Big Data Analytics. Ofir Manor Pre Sales Technical Architect EMC Greenplum
Big Data Analytics with EMC Greenplum and Hadoop Big Data Analytics with EMC Greenplum and Hadoop Ofir Manor Pre Sales Technical Architect EMC Greenplum 1 Big Data and the Data Warehouse Potential All
Innovative technology for big data analytics
Technical white paper Innovative technology for big data analytics The HP Vertica Analytics Platform database provides price/performance, scalability, availability, and ease of administration Table of
Performance and Scalability Overview
Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics platform. PENTAHO PERFORMANCE ENGINEERING
HDP Hadoop From concept to deployment.
HDP Hadoop From concept to deployment. Ankur Gupta Senior Solutions Engineer Rackspace: Page 41 27 th Jan 2015 Where are you in your Hadoop Journey? A. Researching our options B. Currently evaluating some
SQL Server 2012 Performance White Paper
Published: April 2012 Applies to: SQL Server 2012 Copyright The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication.
SEIZE THE DATA. 2015 SEIZE THE DATA. 2015
1 Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. BIG DATA CONFERENCE 2015 Boston August 10-13 Predicting and reducing deforestation
Hortonworks & SAS. Analytics everywhere. Page 1. Hortonworks Inc. 2011 2014. All Rights Reserved
Hortonworks & SAS Analytics everywhere. Page 1 A change in focus. A shift in Advertising From mass branding A shift in Financial Services From Educated Investing A shift in Healthcare From mass treatment
Introducing Oracle Exalytics In-Memory Machine
Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle
Cost-Effective Business Intelligence with Red Hat and Open Source
Cost-Effective Business Intelligence with Red Hat and Open Source Sherman Wood Director, Business Intelligence, Jaspersoft September 3, 2009 1 Agenda Introductions Quick survey What is BI?: reporting,
A New Era Of Analytic
Penang egovernment Seminar 2014 A New Era Of Analytic Megat Anuar Idris Head, Project Delivery, Business Analytics & Big Data Agenda Overview of Big Data Case Studies on Big Data Big Data Technology Readiness
Understanding the Value of In-Memory in the IT Landscape
February 2012 Understing the Value of In-Memory in Sponsored by QlikView Contents The Many Faces of In-Memory 1 The Meaning of In-Memory 2 The Data Analysis Value Chain Your Goals 3 Mapping Vendors to
Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence
Augmented Search for Web Applications New frontier in big log data analysis and application intelligence Business white paper May 2015 Web applications are the most common business applications today.
How the Information Tidal Wave is
How the Information Tidal Wave is Di Driving i New Business Opportunities Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HP Vertica. Echtzeit-Analyse extremer Datenmengen und Einbindung von Hadoop. Helmut Schmitt Sales Manager DACH
HP Vertica Echtzeit-Analyse extremer Datenmengen und Einbindung von Hadoop Helmut Schmitt Sales Manager DACH Big Data is a Massive Disruptor 2 A 100 fold multiplication in the amount of data is a 10,000
Big Data Analytics- Innovations at the Edge
Big Data Analytics- Innovations at the Edge Brian Reed Chief Technologist Healthcare Four Dimensions of Big Data 2 The changing Big Data landscape Annual Growth ~100% Machine Data 90% of Information Human
Deploy. Friction-free self-service BI solutions for everyone Scalable analytics on a modern architecture
Friction-free self-service BI solutions for everyone Scalable analytics on a modern architecture Apps and data source extensions with APIs Future white label, embed or integrate Power BI Deploy Intelligent
Page 2 of 5. Big Data = Data Literacy: HP Vertica and IIS
Enterprises should never lose sight of the end game of Big Data: improving business decisions based on actionable, data-driven intelligence. Today s analytics platforms, low-cost storage and powerful in-memory
Datenverwaltung im Wandel - Building an Enterprise Data Hub with
Datenverwaltung im Wandel - Building an Enterprise Data Hub with Cloudera Bernard Doering Regional Director, Central EMEA, Cloudera Cloudera Your Hadoop Experts Founded 2008, by former employees of Employees
HP SiteScope. HP Vertica Solution Template Best Practices. For the Windows, Solaris, and Linux operating systems. Software Version: 11.
HP SiteScope For the Windows, Solaris, and Linux operating systems Software Version: 11.23 HP Vertica Solution Template Best Practices Document Release Date: December 2013 Software Release Date: December
Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities
Technology Insight Paper Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities By John Webster February 2015 Enabling you to make the best technology decisions Enabling
AGENDA. What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story. Our BIG DATA Roadmap. Hadoop PDW
AGENDA What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story Hadoop PDW Our BIG DATA Roadmap BIG DATA? Volume 59% growth in annual WW information 1.2M Zetabytes (10 21 bytes) this
SQream Technologies Ltd - Confiden7al
SQream Technologies Ltd - Confiden7al 1 Ge#ng Big Data Done On a GPU- Based Database Ori Netzer VP Product 26- Mar- 14 Analy7cs Performance - 3 TB, 18 Billion records SQream Database 400x More Cost Efficient!
A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY
A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY Analytics for Enterprise Data Warehouse Management and Optimization Executive Summary Successful enterprise data management is an important initiative for growing
Einsatzfelder von IBM PureData Systems und Ihre Vorteile.
Einsatzfelder von IBM PureData Systems und Ihre Vorteile [email protected] Agenda Information technology challenges PureSystems and PureData introduction PureData for Transactions PureData for Analytics
Why Big Data in the Cloud?
Have 40 Why Big Data in the Cloud? Colin White, BI Research January 2014 Sponsored by Treasure Data TABLE OF CONTENTS Introduction The Importance of Big Data The Role of Cloud Computing Using Big Data
QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM
QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM QlikView Technical Case Study Series Big Data June 2012 qlikview.com Introduction This QlikView technical case study focuses on the QlikView deployment
Oracle BI Roadmap & Visual Analyzer Ljiljana Perica, Oracle Business Solution Leader [email protected]
Oracle BI Roadmap & Visual Analyzer Ljiljana Perica, Oracle Business Solution Leader [email protected] Copyright 2015, Oracle and/or its affiliates. All rights reserved. 1 Safe Harbor Statement
HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics
HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics ESSENTIALS EMC ISILON Use the industry's first and only scale-out NAS solution with native Hadoop
HP Vertica at MIT Sloan Sports Analytics Conference March 1, 2013 Will Cairns, Senior Data Scientist, HP Vertica
HP Vertica at MIT Sloan Sports Analytics Conference March 1, 2013 Will Cairns, Senior Data Scientist, HP Vertica So What s the market s definition of Big Data? Datasets whose volume, velocity, variety
Aligning Your Strategic Initiatives with a Realistic Big Data Analytics Roadmap
Aligning Your Strategic Initiatives with a Realistic Big Data Analytics Roadmap 3 key strategic advantages, and a realistic roadmap for what you really need, and when 2012, Cognizant Topics to be discussed
Big Data & QlikView. Democratizing Big Data Analytics. David Freriks Principal Solution Architect
Big Data & QlikView Democratizing Big Data Analytics David Freriks Principal Solution Architect TDWI Vancouver Agenda What really is Big Data? How do we separate hype from reality? How does that relate
Simplifying Big Data Analytics: Unifying Batch and Stream Processing. John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!!
Simplifying Big Data Analytics: Unifying Batch and Stream Processing John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!! Streaming Analy.cs S S S Scale- up Database Data And Compute Grid
Luncheon Webinar Series May 13, 2013
Luncheon Webinar Series May 13, 2013 InfoSphere DataStage is Big Data Integration Sponsored By: Presented by : Tony Curcio, InfoSphere Product Management 0 InfoSphere DataStage is Big Data Integration
The 4 Pillars of Technosoft s Big Data Practice
beyond possible Big Use End-user applications Big Analytics Visualisation tools Big Analytical tools Big management systems The 4 Pillars of Technosoft s Big Practice Overview Businesses have long managed
Oracle Big Data Strategy Simplified Infrastrcuture
Big Data Oracle Big Data Strategy Simplified Infrastrcuture Selim Burduroğlu Global Innovation Evangelist & Architect Education & Research Industry Business Unit Oracle Confidential Internal/Restricted/Highly
SQL Server 2012 Parallel Data Warehouse. Solution Brief
SQL Server 2012 Parallel Data Warehouse Solution Brief Published February 22, 2013 Contents Introduction... 1 Microsoft Platform: Windows Server and SQL Server... 2 SQL Server 2012 Parallel Data Warehouse...
Tapping Into Hadoop and NoSQL Data Sources with MicroStrategy. Presented by: Jeffrey Zhang and Trishla Maru
Tapping Into Hadoop and NoSQL Data Sources with MicroStrategy Presented by: Jeffrey Zhang and Trishla Maru Agenda Big Data Overview All About Hadoop What is Hadoop? How does MicroStrategy connects to Hadoop?
News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren
News and trends in Data Warehouse Automation, Big Data and BI Johan Hendrickx & Dirk Vermeiren Extreme Agility from Source to Analysis DWH Appliances & DWH Automation Typical Architecture 3 What Business
Testing Big data is one of the biggest
Infosys Labs Briefings VOL 11 NO 1 2013 Big Data: Testing Approach to Overcome Quality Challenges By Mahesh Gudipati, Shanthi Rao, Naju D. Mohan and Naveen Kumar Gajja Validate data quality by employing
Extend your analytic capabilities with SAP Predictive Analysis
September 9 11, 2013 Anaheim, California Extend your analytic capabilities with SAP Predictive Analysis Charles Gadalla Learning Points Advanced analytics strategy at SAP Simplifying predictive analytics
HP Business Service Management (BSM) George Leschener BSM Solution Lead, MEMA
HP Business Service Management (BSM) George Leschener BSM Solution Lead, MEMA SaaS Packaged applications Employees IT metrics/analytics Storage Public cloud Security Challenges for IT Environments are
HP Business Service Management
HP Business Service Management for the Windows/Linux operating system Software Version: 9.20 Effective Modeling for BSM Best Practices Document Release Date: August 2012 Software Release Date: August 2012
#mstrworld. Tapping into Hadoop and NoSQL Data Sources in MicroStrategy. Presented by: Trishla Maru. #mstrworld
Tapping into Hadoop and NoSQL Data Sources in MicroStrategy Presented by: Trishla Maru Agenda Big Data Overview All About Hadoop What is Hadoop? How does MicroStrategy connects to Hadoop? Customer Case
Big Data Use Case. How Rackspace is using Private Cloud for Big Data. Bryan Thompson. May 8th, 2013
Big Data Use Case How Rackspace is using Private Cloud for Big Data Bryan Thompson May 8th, 2013 Our Big Data Problem Consolidate all monitoring data for reporting and analytical purposes. Every device
Server & Application Monitor
Server & Application Monitor agentless application & server monitoring SolarWinds Server & Application Monitor provides predictive insight to pinpoint app performance issues. This product contains a rich
Big Data at Cloud Scale
Big Data at Cloud Scale Pushing the limits of flexible & powerful analytics Copyright 2015 Pentaho Corporation. Redistribution permitted. All trademarks are the property of their respective owners. For
In-Memory Analytics for Big Data
In-Memory Analytics for Big Data Game-changing technology for faster, better insights WHITE PAPER SAS White Paper Table of Contents Introduction: A New Breed of Analytics... 1 SAS In-Memory Overview...
Big Data on the Open Cloud
Big Data on the Open Cloud Rackspace Private Cloud, Powered by OpenStack, Helps Reduce Costs and Improve Operational Efficiency Written by Niki Acosta, Cloud Evangelist, Rackspace Big Data on the Open
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing Wayne W. Eckerson Director of Research, TechTarget Founder, BI Leadership Forum Business Analytics
BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014
BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014 Ralph Kimball Associates 2014 The Data Warehouse Mission Identify all possible enterprise data assets Select those assets
The Future of Data Management with Hadoop and the Enterprise Data Hub
The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah Cofounder & CTO, Cloudera, Inc. Twitter: @awadallah 1 2 Cloudera Snapshot Founded 2008, by former employees of Employees
Oracle Big Data Discovery Unlock Potential in Big Data Reservoir
Oracle Big Data Discovery Unlock Potential in Big Data Reservoir Gokula Mishra Premjith Balakrishnan Business Analytics Product Group September 29, 2014 Copyright 2014, Oracle and/or its affiliates. All
Towards Smart and Intelligent SDN Controller
Towards Smart and Intelligent SDN Controller - Through the Generic, Extensible, and Elastic Time Series Data Repository (TSDR) YuLing Chen, Dell Inc. Rajesh Narayanan, Dell Inc. Sharon Aicler, Cisco Systems
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani Technical Architect - Big Data Syntel Agenda Welcome to the Zoo! Evolution Timeline Traditional BI/DW Architecture Where Hadoop Fits In 2 Welcome to
IBM Analytics. Just the facts: Four critical concepts for planning the logical data warehouse
IBM Analytics Just the facts: Four critical concepts for planning the logical data warehouse 1 2 3 4 5 6 Introduction Complexity Speed is businessfriendly Cost reduction is crucial Analytics: The key to
Cisco Data Preparation
Data Sheet Cisco Data Preparation Unleash your business analysts to develop the insights that drive better business outcomes, sooner, from all your data. As self-service business intelligence (BI) and
Traditional BI vs. Business Data Lake A comparison
Traditional BI vs. Business Data Lake A comparison The need for new thinking around data storage and analysis Traditional Business Intelligence (BI) systems provide various levels and kinds of analyses
High Performance Data Management Use of Standards in Commercial Product Development
v2 High Performance Data Management Use of Standards in Commercial Product Development Jay Hollingsworth: Director Oil & Gas Business Unit Standards Leadership Council Forum 28 June 2012 1 The following
Performance and Scalability Overview
Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics Platform. Contents Pentaho Scalability and
Modernizing Your Data Warehouse for Hadoop
Modernizing Your Data Warehouse for Hadoop Big data. Small data. All data. Audie Wright, DW & Big Data Specialist [email protected] O 425-538-0044, C 303-324-2860 Unlock Insights on Any Data Taking
Please give me your feedback
Please give me your feedback Session BB4089 Speaker Claude Lorenson, Ph. D and Wendy Harms Use the mobile app to complete a session survey 1. Access My schedule 2. Click on this session 3. Go to Rate &
Native Connectivity to Big Data Sources in MSTR 10
Native Connectivity to Big Data Sources in MSTR 10 Bring All Relevant Data to Decision Makers Support for More Big Data Sources Optimized Access to Your Entire Big Data Ecosystem as If It Were a Single
Making Sense of Big Data in Insurance
Making Sense of Big Data in Insurance Amir Halfon, CTO, Financial Services, MarkLogic Corporation BIG DATA?.. SLIDE: 2 The Evolution of Data Management For your application data! Application- and hardware-specific
Big Data and the Data Lake. February 2015
Big Data and the Data Lake February 2015 My Vision: Our Mission Data Intelligence is a broad term that describes the real, meaningful insights that can be extracted from your data truths that you can act
