CloudTops: Latency aware placement of Virtual Desktops in Distributed Cloud Infrastructures

Size: px
Start display at page:

Download "CloudTops: Latency aware placement of Virtual Desktops in Distributed Cloud Infrastructures"

Transcription

1 CloudTops: Latency aware placement of Virtual Desktops in Distributed Cloud Infrastructures Keywords: Abstract: Cloud, Virtual Machine, Response Time, Latency, VM Placement, Desktop Latency sensitive interactive applications such as virtual desktops for enterprise workers are slated to be important driving applications for next generation cloud infrastructures. Determining where to geographically place desktop VMs in a globally distributed cloud so as to optimize user-percieved performance is an important and challenging problem. Historically, the performance of thin-client-based systems has been predominantly characterized in terms of the front-end network link between the thin client and the desktop. In this paper, we show that for typical enterprise applications, back-end network connectivity to the filesystems and applications that support the desktop can be equally important, and that the optimal balance between the front-end and back-end links depends on the precise workload. To help make dynamic decisions about desktop VM placement, we propose a per-user model that can be used to automatically construct user profiles, and to predict the optimal location for a user s desktop based on their past and current usage patterns. Using experimental evaluation of several typical Enterprise applications, we show that our methodology can accurately predict which of many distributed data centers to use for a particular user s workload even if details of the precise applications being used are not known. 1 INTRODUCTION The Infrastructure as a Service (IaaS) model of cloud computing has led to revolutionary changes in the ease with which users can access compute cycles located anywhere in the world. While this revolution has thus far been focussed on compute intensive server and batch workloads, a new class of latency sensitive interactive applications such as gaming and virtual desktops are emerging as major future drivers of cloud adoption. Commercially available Virtual Desktop Infrastructure (VDI) solutions advocate hosting enterprise worker desktops as virtual machines on shared infrastructure and accessing them through dedicated thin client terminals as a way to consolidate management, reduce the high costs of periodic hardware refreshes, and to improve on-premise power consumption. While most of today s VDI solutions advocate running desktop VMs in private corporate data centers, the day is not far away when VDI services hosted by public cloud providers will provide corporate and personal users anytime, anywhere access to their desktops through a variety of endpoints such as thin clients, ultrabooks, or even tablets. However, unlike server and batch processing workloads that can be tucked away in remote data centers, cloud hosted virtual desktops (or as we call them: Cloudtops), are extremely latency and bandwidth sensitive. There exists a rich history of experiments in the literature, e.g. (Lai and Nieh, 2006; Tolia et al., 2006), that demonstrate that user satisfaction drops significantly as the network latency between the thin client front-end the and the remote desktop backend increases. This is because this front-end link transports what is usually the most data and interaction sensitive portion of the user s experience: the display and input subsystems. Consequently, placing backends as close as possible to the thin client+ so as to optimize the quality of the front-end network link has been a primary focus of both academic (Malet and Pietzuch, 2010; Calyam et al., 2011) and commercial efforts (e.g., OnLive.com). In this paper, we show that such a singular focus on the front-end is not sufficient, and that to get a more accurate picture of user experience, a more holistic view is required that examines not only the front-end network link between the thin client and the desktop, but also the back-end network links between the desktop and any remote services (e.g., file servers) that are accessed by desktop applications. This holistic view is especially important for VDI s primary demographic - enterprise workers working in a workgroup setting in which they use their desktops to work with data and applications shared with colleagues who may be geographically dispersed over wide distances. Such scenarios are increasing common: they are commonplace in large enterprises with workers in many different locations, in the increas-

2 ing number of companies that promote telecommuting and flexible working arrangements, and in corporate units with a large population of mobile employees, e.g., sales divisions. In such settings, we argue that the availability of a geographically distributed cloud infrastructure allows an addition lever to control the user experience that was not available before - while common backend servers and services can continue to reside in the enterprise s data centers, the virtual desktops themselves can be placed in data centers in different geographical locations, with varying front-end and back-end network link qualities so as to optimize overall user experience. However, choosing optimal desktop VM placements is not easy. Desktop users often work a wide range of applications many of which may not be known in advance, and each of which may have a different front-end/back-end ratio that is desirable. Moreover, because different users may use their environments differently, the best location for VM placement can be different even for members of the same workgroup. Therefore, what is needed is a model that can be automatically constructed for each individual user based on system-level measurement data, and which can be used to predict the optimal location for that users desktop VM from a selection of cloud data centers with different front-end/back-end latencies and bandwidths. In this paper, we propose, for the first time, precisely such a model, and make the following contributions: a) First, we experimentally measure the user perceived performance of several typical enterprise workloads, and demonstrate that in addition to the quality of the front-end link, the quality of the backend link has significant impact on performance, and this impact can vary significantly and qualitatively for different applications, b) Next, we propose a model and an algorithm to predict the end-to-end performance of a user s desktop VM running an unknown application workload. This model can be automatically constructed using OS level data measured from a user s desktop VM without any knowledge of the applications involved, and can thus be used to build a historical profile for each user, and finally, c) we use the model to predict which one of several geographically distributed cloud sites with differing front-end latency (to the thin client) and back-end latency (to the backend fileservers and applications) is the optimal choice for a given user, and show experimentally that the model produces accurate predictions in all the workloads considered. 2 RESPONSE TIME MEASUREMENT In this section, we describe the measurement environment we use to quantify the impact of VM placement on the user-observable application response times. We evaluate a number of workloads and show that no single placement is optimal for all workloads. The goal of the measurements is to identify the characteristics of the application workload that dictate userobservable response time and these factors are then used to build the VM placement estimation model that we describe in Section Measurement Measurement Environment Our measurement environment emulates a corporate use scenario, where users may be located around the world (either permanently or temporarily due to business travel), while the corporate data is stored centrally at the corporate file servers for security reasons (at the corporate head quarters, for example). While running applications that access the corporate data remotely is possible, the latency for interactive applications (e.g., typing) can become unsatisfactory. Therefore, we evaluate scenarios where a VM placed somewhere in the cloud runs the applications, the VM is accessed by the user using a thin-client software (VNC) and the applications access the corporate data using appropriate file access protocols (e.g., NFS). Figure 1 shows the configuration of the measurement environment, which consists of three machines: thin-client (machine a), VM (machine b) and file server (machine c). Microsoft Windows 7 is installed as a guest OS on the Xen hypervisor on the VM machine (b). Machines (a) and (b) are set up as a thinclient/server system using VNC software. The user executes the application workloads on the VM from VNC Client on machine (a) via the VNC Server on machine (b). On the file server (c), files accessed by the VM are placed on the Samba server and accessed using the SMB2 protocol. The VM s OS disk image is also located on the file server machine (c) and is accessed via the NFS protocol. The network emulator software is configured on the VM machine to control both the network latency and bandwidth between the thin-client (a) and the VM machine (b) as well as the VM machine (b) and the file server (c). We use one physical 100Mbps Ethernet network interface card (NIC) running netem, a network emulation software installed in the Linux kernel and controlled by the command line tc (traffic con-

3 Figure 1: Measurement Environment. trol command), which is part of iptable2 package. We configure four pseudo NICs using the one physical NIC, one each for incoming and outgoing traffic to the thin-client machine (a) and to the file server machine (c). Both the latency and the available bandwidth can be set separately for all these four connections. Two packet monitors are used in the measurement configuration. One on the thin-client machine (a) is used to capture all packet traffic on the front-end network and measures the response time for the packets on the thin client side. The other in the VM machine (b) is used to record all packets sent in both directions between the VM machine (b) and the file server (b). The Wireshark tool is utilized as the packet monitor. Note that since packet monitoring is done below the VNC client, the response time measured does not include the time from when the user executes an action (e.g., press key) and when the VNC client actually sends the corresponding event from the thin-client machine to the VM machine. Similarly, it does not include the time from when the screen update message is received at the thin-client machine and the image is drawn to the screen for the user to see Application Workload Scenarios The application workloads (see Table 1) are executed by a user manually at the thin-client machine (a) using the normal Windows 7 graphical user interface and applications that are presented to the user as a virtual desktop by the VNC client software. The application software actually executes on the VM machine (b) and accesses files located on the file server machine (c). Our goal is to measure some typical business use scenarios. The Typing workload involves typing 150 characters in to a MS Word file located on the Samba file server. The response time is measured for each key stroke separately and thus the user think time between key strokes will not affect the measurement. The File Download workload copies a 18 MB Power- Point (PPT) file from the Samba file server to the VM. The File Open workload opens a 20 MB PowerPoint file located on the file server (Samba server). The File Search workload involves searching for all files with letter a in their file name on the Samba file server. In our experiment, there are 3109 files that match this criteria out of a total of 7000 files. Finally, the Play Movie workload downloads a 16 MB Windows Media Video (wmv) from the Samba file server and plays it to completion on the Windows Media Player Measurement Procedure Each workload scenario is repeated and measured five times following the procedure described below and the average response time is computed and reported. 1. Reboot VM and hypervisor on machine (b) to ensure identical initial system status. 2. Set the chosen emulated network configuration using netem at machine (b). 3. Start packet capture using Wireshark at machines (a) and (b). 4. Execute the workload manually via the thin-client application. 5. Stop packet capture and network emulation. 6. Analyze response time from captured packets.

4 Table 1: Application Workload Scenarios. Case Workload Overview 1 Typing Typing 150 characters on a MS Word file on the file server. 2 File Download Open Samba directory, copy a PPT file from the directory and paste it on VM. 3 File Open Open a PPT file on Samba directory. 4 File Search Search files which include a in the file name. 5 Play Movie Play movie stored on the Samba directory We use two measurement approaches depending on the workload. For quick interactive workloads like typing, we measure the response time to individual events (key press, mouse click) from the time the event message is sent from the thin-client to the VM to the time the first response message is received at the thin-client from the VM. For workloads involving long duration actions (e.g., file open or search), we measure the whole duration of the action, that is, we measure the time difference between the user event (e.g., user clicking the OK button) and the last packet received from the VM at the thin-client. The response time is analyzed from the packets captured with Wireshark at the thin-client side. The user event such as a key press and the first received packet are identified as the VNC packet corresponding to the event and the first packet from the VM that is captured by Wireshark after the user event packet was sent. The last received packet is the first packet sent from the VM to the thin-client such that the payload size is less than the maximum packet size. The explicit assumption being that the VNC protocol will send only full packets (maximum allowed size) while it still has data to send and thus only the last packet would be not full size. The back-end bandwidth is fixed at 100Mbps for all of the measurements assuming that the back-end bandwidth is always sufficiently high between the cloud sites and the corporate data centers where the file servers are located. The front-end bandwidth is varied among 256Kbps, 1Mbps, and 100Mbps to emulate different connection speeds between the user and the cloud sites. For all of the measurements, the resolution of VNC thin-client is set to 1024 x Measurement Results In this section, we present the measurement results and explain their implications for VM placement Case 1: Typing The response time is measured as the time difference between the user event (key press) and the first packet received from the VM machine. This means that we get 150 response time measurements for each execution of the workload. Figure 2 shows the results of executing the typing workload on the VM. The different emulated cloud locations are shown using different colors that are labeled as x ms - y ms which denotes that the one-way front end latency (between the thin-client machine (a) and the VM machine (b)) is x ms and the back-end latency (between the VM machine (b) and the file server machine (c)) is y ms. Here we consider the scenario where the user is 50 ms network latency away from the corporate data center (with the file server) and we have cloud locations within 10 ms, 20 ms, 30 ms, and 40 ms available to choose from between the user and the file server. The x-axis denotes the response time and the y-axis denotes how often that response time is observed in the set of 150 measurements for the experiment. Figure 3 shows the average response time for each user event (type character) in the different emulated cloud locations under different network emulation conditions. The separate lines denote the different bandwidth allocations for the front and back end links. Figure 2: Typing Response Time. The results show that for this workload, the closer the VM is to the thin-client, the better the response time obtained. For example, in the case where the front-end latency is 0 ms (and the back-end latency is 50ms, respectively), meaning the VM is co-located with the thin-client, the mean response time is around 0.03s. Note that some response times differ significantly from the mean for the experiment. Some of the

5 exceptionally short response times are due to the fact that the next user event occurs before the previous response is received resulting in mismatching of events and responses. However, the correct matchings dominate as shown by the tall spikes in the response time histogram. The figure shows that the response time is dictated solely by the front-end latency. Specifically, the difference between the graphs for the different experiments matches the increase in round trip latency at the front end. For example, the mean for the experiment is around 0.06 s, while the mean for the experiment is around 0.08 s and the front end network roundtrip latency difference between these experiments is 0.02 s (20 ms), The result is not unexpected given that the backend link is not used during the workload execution (except for potential autosave). The results of this workload are similar to most interactive workloads where the user interacts with the application and the application state is maintained in the memory of the VM. For example, developing a presentation, entering numbers in a spreadsheet, drawing, reading a document, or viewing a presentation. Figure 4: File Download Response Time Case 3: File Open The response time is measured as the time difference between the enter key press event to open the file after the file has been selected, and the last packet received from the VM machine (file open and presented on the screen). Figure 4 shows the mean response times out of 5 experiments for each point in the graph. As can be expected by the nature of the workload scenarios, lower backend latency results in a lower total response time (= from click to file open on the screen). Thus, the closer to the file server the VM is located, the better the response time. Note that reducing the available front end bandwidth has a significant impact on the response time especially when the front-end latency is large. This is because the opened file is presented on the screen when the open is completed. The behavior of this workload scenario would be typical for any operation involving file copying, moving, or saving large files to/from the file server. Figure 3: Average Typing Response Time Case 2: File Download The response time is measured as the time difference between the mouse click user event to select the paste item in the menu displayed on the screen and the last received packet. Screen updates are sent by the OS running on the VM for the update of the progressive bar, which shows the status of the file download. Figure 3 shows the mean response times out of 5 experiments for each point in the graph. As expected, the back-end latency dictates the end-to-end completion time for this workload. The unexpected spike at can be likely contributed to measurement noise. Logically, the response time improvement should be contiguous while the VM is moved closer to the file server. Figure 5: File Open Response Time Case 4: File Search The response time is measured as the time difference between the mouse click event to start the search and the last received packet. The files found to match the search criteria are shown on the screen and thus result

6 in screen update messages from the VM machine to the thin-client machine. Figure 6 show the response time of file search case. Unsurprisingly the end-to-end completion time decreases when the VM is placed closer to the file server. Note that the front-end bandwidth does not make any significant difference in the response time either because the workload does not utilize the frontend link heavily or the screen updates are performed asynchronously. Figure 7: Movie download and play time we only presented one use case with this characteristic, majority of typical user-computer interactions (e.g., typing, data entry, drawing, reading) match this pattern. Figure 6: Desktop Search Response Time Case 5: Play Movie The response time is measured as the time difference between the enter key press event to start playing the movie file after the file has been selected, and the last received packet from the VM machine (file downloaded and played on the screen). Figure 7 shows the mean response times out of 5 experiments for each point in the graph. All experiments use 100Mbps links for the front-end and back-end communication. We observed that the total number of bytes transmitted from the VM to the thin-client was up to times larger than the number of bytes transmitted from the file server to the VM. This difference was due to the fact that the video file is stored in more compact form that the screen updates that need to be transmitted to the thin client. However, we also observed that the VNC player is adaptive to the frontend latency and when the latency is large, it sends fewer screen updates. The overall result is that lowering the back-end latency (i.e., placing VM close to the file server) results in a lower total completion time. If there is a lot of communication between the VM and the back-end and much less communication between the VM and the thin-client (cases 2,3, and 4), placing the VM closer to the backend improves completion time significantly. As expected, file operations (open, save,download) match this pattern. However, we also found that simply looking at the number of bytes transmitted on the front-end and back-end links is not sufficient to determine the optimal location (case 5) and sometime the bandwidth on the front-end link makes a difference (case 3) while it sometimes does not (case 4). As mentioned in Case 5, VNC exhibits significant adaptive behavior with regard to the front-end link latency and bandwidth. Figure 8 illustrates this in the use case 2 (File download). The figure shows the number of bytes transmitted from the VM to the thin-client under different network settings. Note that when the VM is close to the thin-client and there is a lot of available bandwidth, VNC transmits orders of magnitude more data than when the latency is high or the bandwidth is limited. 2.3 Discussion Overall, our measurement results match with intuition: If there is only communication between the frontend and the VM (case 1), the closer the VM is to the thin-client the better. Note that even though Figure 8: VNC adapts to available front-end latency and bandwidth

7 When combined, these measurements imply that there are a number of workload characteristics that have implications on the user-observable end-to-end performance of the system under different VM placement conditions. These characteristics can be estimated by using a number of I/O metrics, in particular, the total amount of data transmitted on the front-end and back-end links as well as the number of requests issued from the thin-client to the VM and from the VM to the back-end. In real usage, the user will perform operations that will fall into both patterns (e.g., open file, edit, save) and the placement has to be optimized in a holistic manner. In the next section, we will propose a VM placement estimation model that considers these I/O metrics and gives a ranking of possible VM placements locations. 3 VM PLACEMENT ESTIMATION MODEL In this section, we explain a scenario using our proposed VM placement estimation model and describe the model. 3.1 Scenario We assume the user (running the thin-client software) travel extensively around the world while needing access to the VM to run his applications and the backend server to access corporate files and other data sources. We assume a number of cloud locations are available for the system to place the VM so that the performance as observed by the user is optimized. The challenge for the system is to choose the best location out of the available locations when the user logs on with his thin-client software. Our VM Placement Estimation (VPE) model provides the ranking of the available locations using the user s workload history. The workload history is collected and updated every time the user is connected from the thin-client software to the VM. Specifically, we assume the typical use scenario consists of the following steps: 1. The user travels to a new location. 2. The user launches the thin-client terminal. 3. The system determines the user s location, available cloud locations for his VM, determines the best location using the VPE model, and moves the VM to the chosen optimal location. 4. The user executes his applications and workloads on the VM. Furthermore, if the user s workload pattern changes from the historical one enough that a new location becomes more optimal than the current one, the VM may be migrated live while the user is using it. 3.2 VPE Model The VPE model considers four metrics user metrics and four location metrics for each possible cloud location. The user metrics are continuously collected for the user and thus characterize his normal usage behavior. Specifically, they are E f : Number of requests from the thin-client to the VM in a time unit. B f : Number of bytes transmitted from the VM to the thin-client in a time unit. E b : Number of requests from the VM to the file server in a time unit. B b : Number of bytes transmitted from the file server to the VM in a time unit. The location metrics can be measured for each cloud location. They are L f : Roundtrip latency between the thin-client and the cloud location. BW f : Bandwidth between the thin-client and the cloud location. L b : Roundtrip latency between the cloud location and the back-end server. BW b : Bandwidth between the cloud location and the back-end server. The latter two metrics for available cloud locations can be measured ahead of time. The first two may need to be measured when the user starts the thinclient software. Our ranking model reflects the typical communication pattern when a thin-client accesses the VM that accesses the file server. This access consists of two phases of request-response computation: the first phase is between the thin-client and the VM, and second is between the VM and the file server. Therefore, the response time observed by the user is a combination of the response times at the front-end and back-end links and thus, the total score S T i(i) for a cloud location i is a combination of the score for the front end link between the user and cloud location i, S f (i) and the score for the back-end link between the cloud location i and the file server, S b (i). Our simple model uses simple summation of these scores and the smaller the score, the better. S T (i)=s f (i)+s b (i)

8 The front-end score S f (i) is calculated using the observation that the thin-client typically sends user events (e.g., key press or mouse click) sequentially and synchronously and therefore transmitting E f events takes order of E f L f time units. The screen updates (e.g., resulting from the events) are typically larger and may be limited by network bandwidth (B f /BW f ). Thus, we calculate S f (i) using the following formula: S f (i)=e f L f + B f /BW f Similarly, we calculate the back-end score using formula: S b (i)=e b L b + B b /BW b Note that the goal of the ranking formula is not to estimate the actual response time but to generate a score that considers the factors that affect the end-toend response time given the user and location metrics. There are multiple factors that are not considered by the model including processing time at the VM and file server, adaptive behavior exhibited by VNC, and any asynchrony in communication over the front-end link and back-end link. 3.3 Evaluation We evaluated the VPE scoring formula by using the 5 case studies reported above. For each of the executions, we recorded the total numbers of requests from the thin-client to the VM (E f ), total number of requests from the VM to the file server (E b ), total number of bytes from the VM to the thin-client (B f ) and total number of bytes from the file server to the VM (B b ) for the duration of the experiment. Table 2: Ranking accuracy: Case 1 (typing), 100M-100M Location RT(s) VPE RT rank VPE rank Table 2 presents the accuracy of the VPE ranking for use case 1 (typing) with front-end link bandwidth set at 100 Mbps. The first column represents the cloud location. For example, 0-50 denotes a location where the VM is co-located with the thin-client (0 ms latency between them) but the file server is 50 ms away from the VM. The second column ( RT(ms) ) gives the measured end-to-end response time in ms, the third column ( VPE ) gives the raw VPE score for the location, the fourth column gives the rank based on the measured response time, and the final column gives the rank based on the VPE score. As we can see, the VPE based ranking matches the measurement based ranking for all locations. The other bandwidth settings behaved similarly with the VPE rank matching the measurement rank perfectly. Table 3 presents the results for use case 2 (download). Note that the VPE score ranks correctly the last location (with 50 front-end latency and 0 back-end latency) as the best location out of the given 6, matching the ranking based on the actual measurement. Similarly, the VPE rank matches the measurements in all the locations except the first two, where the VPE score considers location 1-40 better than location 0-50, while the RT measurements rank these locations in the opposite order. We suspect that the measurement for the first two locations may have experienced some noise and it is likely that the VPE based ranking is actually more correct than the measurement based ranking for these two locations. Table 3: Ranking accuracy: Case 2 (download) Location RT(s) VPE RT rank VPE rank Table 4 presents the results for use case 3 (open). The results for all the network bandwidth configurations are similar in terms of ranking accuracy but for brevity, we only present the results for the case where front-end link is limited to 256K. In these experiments, the VPE ranking perfectly matches the ranking based on actual measurements with all the network bandwidth configurations. Table 4: Ranking accuracy: Case 3 (open), 256K-100M Location RT(s) VPE RT rank VPE rank

9 Table 5 presents the results for use case 4 (search). For brevity, we only present the results for the case where front-end link is limited to 1M. Similar to use case 2, the VPE ranking is perfect except for the 5 th and 6 th ranked cloud locations. In the bandwidth configurations, the VPE rank matched the measured ranking perfectly. Table 5: Ranking accuracy: Case 4 (search), 1M-100M Location RT(s) VPE RT rank VPE rank Finally, Table 6 presents the results for use case 5 (movie). Note that again the VPE ranking matches the measurement based ranking perfectly. Table 6: Ranking accuracy: Case 5 (movie) Location RT(s) VPE RT rank VPE rank Overall, the results indicate that the VPE score based rank accurate matches the ranking we would get by measuring the use case end-to-end response time in the different cloud locations except for a couple of cases where the two worst locations are reversed. While the simple VPE model does not capture all aspects of the system response time and thus, the raw VPE score does not match the actual measured response time, it matches the trend and thus provides an accurate ranking. Therefore, the simple VPE score based ranking can be used to choose the best cloud location for the VM running the Virtual Desktop software. sectionrelated WORK There are two groups of existing work related to our work as presented in this paper. The first group is related to the measurement of response times for thin clients. The second group deal with VM placement estimation models. Many analyses of thin-client performance are conducted in wide area network. (Lai and Nieh, 2006) performs the measurement to examine the impact of latency with thin-client in a WAN environment. (Tolia et al., 2006) also measures the performance of GNU image manipulation, typing, and other workloads using the VNC thin-client. The VDBench tool for benchmarking thin-client environments is presented in (Berryman et al., 2010), a resource allocation model based on the benchmarking tool is presented in (Calyam et al., 2011), and a virtual desktop cloud defraqmentation algorithm based on VD migration is presented in (Shridharan et al., 2011). However these works focus on latency and bandwidth between the thin-client and thin-server, as well as the resource allocations for the VM running the virtual desktop server, but they assume the back-end file server is co-located with the thin-server and thus do not consider the backend latency or the challenge of placing the VM optimally between the thin-client and the file server. A number of research projects consider VM placement models but not in the context of virtual desktops and separate file servers. For example, (Malet and Pietzuch, 2010) proposes a VM placement algorithm that optimizes response time for multi-tier web services by placing the application components close to where most of the users are located at a given time. Thus, this work addresses VMs that are running web services shared by numerous users rather than one user s virtual desktop. The work also assumes that the data can also be relocated. (Mohammadi et al., 2011) and (Piao and Yan, 2010) propose a VM placement model to minimize the data transfer time between multiple VMs targeting mainly data-intensive applications run on the VMs. (Sonnek et al., 2010) focuses on reducing communication overhead between VMs by monitoring network affinity between pairs of VMs. (Sato et al., 2009) propose a VM migration model based on I/O performance optimization between VMs for data-intensive applications, which minimizes the expected file access time. However, none of the above works consider balancing the frontend and back-end latencies based on user-profiles for virtual desktops. 4 CONCLUSIONS Due to security reasons, traveling employees are often not allowed to bring the corporate data and applications with them on their laptops. However, remote access to applications and data at corporate data center potentially across the world is very slow and inconvenient. Therefore, we propose locating a VM running Virtual Desktop software (e.g., VNC)

10 in some cloud location between the user and the corporate data center in order to improve the userobservable end-to-end response time. Given the plurality of cloud providers and locations they provide, the choice of the optimal location for the VM becomes challenging. By using representative small use-cases, we demonstrated in this paper that no single location is ideal for all use cases. We have developed an approach that requires only very basic measurements of 4 network usage parameters at the VM site to allow us to characterize the user s behavior. We show that we can use these parameters and a simple model to rank correctly the alternative cloud locations with regard to the best end-to-end response time as observed by the user. We validated the model using our small use cases. Our future work has multiple possible directions. First, we can refine the VPE model not only to rank the cloud locations but also to more accurate predict the response time at each location. Second, we need to implement a real system that continuously measures these parameters and chooses VM locations. Shridharan, M., Calyam, P., Venkataraman, A., and Berryman, A. (2011). Defragmentation of resources in virtual desktop clouds for cost-aware utility optimal allocation. In Fourth IEEE International Conference on Utility and Cloud Computing, pages IEEE. Sonnek, J., Greensky, J., Reutiman, R., and Chandra, A. (2010). Starling:minimizing communication overhead in virtualized computing platforms using decentralized affinity-aware migration. In The 39th International Conference on Parallel Processing (ICPP), pages IEEE. Tolia, N., Andersen, D. G., and Satyanarayanan, M. (2006). Quantifying interactive user experience on thin clients. In IEEE Computer, volume 39, pages IEEE. REFERENCES Berryman, A., Calyam, P., Lai, A., and Honigford, M. (2010). Vdbench: A benchmarking toolkit for thinclient based virtual desktop environments. In The 2nd IEEE International Conference on Cloud Computing Technology and Science (CloudCom), pages IEEE. Calyam, P., Patali, R., Berryman, A., Lai, A. M., and Ramnath, R. (2011). Utility-directed resource allocation in virtual desktop clouds. In The International Journal of Computer and Telecommunications Networking, volume 55, pages Lai, A. and Nieh, J. (2006). On the performance of widearea thin-client computing. In ACM Transactions on Computer Systems, pages ACM. Malet, B. and Pietzuch, P. (2010). Resource allocation across multiple cloud data centres. In 8th International Workshop on Middleware for Grids, Clouds and e-science (MGC). IEEE. Mohammadi, E., Karimi, M., and Heikalabad, S. (2011). A novel virtual machine placement in cloud computing. In Australian Journal of Basic and Applied Sciences, volume 5, pages Piao, J. T. and Yan, J. (2010). A network-aware virtual machine placement and migration approach in cloud computing. In Ninth International Conference on Grid and Cloud Computing, pages IEEE. Sato, K., Sato, H., and Matsuoka, S. (2009). A model-based algorithm for optimizing i/o intensive applications in clouds using vm-based migration. In IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID), pages IEEE/ACM.

Benchmarking the Performance of XenDesktop Virtual DeskTop Infrastructure (VDI) Platform

Benchmarking the Performance of XenDesktop Virtual DeskTop Infrastructure (VDI) Platform Benchmarking the Performance of XenDesktop Virtual DeskTop Infrastructure (VDI) Platform Shie-Yuan Wang Department of Computer Science National Chiao Tung University, Taiwan Email: shieyuan@cs.nctu.edu.tw

More information

IMPACT OF NETWORK QUALITY DETERIORATION ON USER S PERCEIVED OPERABILITY AND LIVE-MIGRATION OF VIRTUAL MACHINES IN REMOTE DESKTOP ENVIRONMENTS

IMPACT OF NETWORK QUALITY DETERIORATION ON USER S PERCEIVED OPERABILITY AND LIVE-MIGRATION OF VIRTUAL MACHINES IN REMOTE DESKTOP ENVIRONMENTS IMPACT OF NETWORK QUALITY DETERIORATION ON USER S PERCEIVED OPERABILITY AND LIVE-MIGRATION OF VIRTUAL MACHINES IN REMOTE DESKTOP ENVIRONMENTS Shin-ichi Kuribayashi Department of Computer and Information

More information

Affinity Aware VM Colocation Mechanism for Cloud

Affinity Aware VM Colocation Mechanism for Cloud Affinity Aware VM Colocation Mechanism for Cloud Nilesh Pachorkar 1* and Rajesh Ingle 2 Received: 24-December-2014; Revised: 12-January-2015; Accepted: 12-January-2015 2014 ACCENTS Abstract The most of

More information

Windows Server 2008 R2 Hyper-V Live Migration

Windows Server 2008 R2 Hyper-V Live Migration Windows Server 2008 R2 Hyper-V Live Migration Table of Contents Overview of Windows Server 2008 R2 Hyper-V Features... 3 Dynamic VM storage... 3 Enhanced Processor Support... 3 Enhanced Networking Support...

More information

Performance of VMware vcenter (VC) Operations in a ROBO Environment TECHNICAL WHITE PAPER

Performance of VMware vcenter (VC) Operations in a ROBO Environment TECHNICAL WHITE PAPER Performance of VMware vcenter (VC) Operations in a ROBO Environment TECHNICAL WHITE PAPER Introduction Many VMware customers have virtualized their ROBO (Remote Office Branch Office) offices in order to

More information

Amazon EC2 Product Details Page 1 of 5

Amazon EC2 Product Details Page 1 of 5 Amazon EC2 Product Details Page 1 of 5 Amazon EC2 Functionality Amazon EC2 presents a true virtual computing environment, allowing you to use web service interfaces to launch instances with a variety of

More information

Windows Server 2008 R2 Hyper-V Live Migration

Windows Server 2008 R2 Hyper-V Live Migration Windows Server 2008 R2 Hyper-V Live Migration White Paper Published: August 09 This is a preliminary document and may be changed substantially prior to final commercial release of the software described

More information

Remote PC Guide Series - Volume 1

Remote PC Guide Series - Volume 1 Introduction and Planning for Remote PC Implementation with NETLAB+ Document Version: 2016-02-01 What is a remote PC and how does it work with NETLAB+? This educational guide will introduce the concepts

More information

Source Traffic Characterization for Thin Client Based Office Applications

Source Traffic Characterization for Thin Client Based Office Applications Source Traffic Characterization for Thin Client Based Office Applications Barbara Emmert, Andreas Binzenhöfer, Daniel Schlosser, and Markus Weiß University of Würzburg, Institute of Computer Science, Würzburg

More information

Dell Compellent Storage Center SAN & VMware View 1,000 Desktop Reference Architecture. Dell Compellent Product Specialist Team

Dell Compellent Storage Center SAN & VMware View 1,000 Desktop Reference Architecture. Dell Compellent Product Specialist Team Dell Compellent Storage Center SAN & VMware View 1,000 Desktop Reference Architecture Dell Compellent Product Specialist Team THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL

More information

Mike Canney Principal Network Analyst getpackets.com

Mike Canney Principal Network Analyst getpackets.com Mike Canney Principal Network Analyst getpackets.com 1 My contact info contact Mike Canney, Principal Network Analyst, getpackets.com canney@getpackets.com 319.389.1137 2 Capture Strategies capture Capture

More information

VDI FIT and VDI UX: Composite Metrics Track Good, Fair, Poor Desktop Performance

VDI FIT and VDI UX: Composite Metrics Track Good, Fair, Poor Desktop Performance VDI FIT and VDI UX: Composite Metrics Track Good, Fair, Poor Desktop Performance Key indicators and classification capabilities in Stratusphere FIT and Stratusphere UX Whitepaper INTRODUCTION This whitepaper

More information

WHITE PAPER Optimizing Virtual Platform Disk Performance

WHITE PAPER Optimizing Virtual Platform Disk Performance WHITE PAPER Optimizing Virtual Platform Disk Performance Think Faster. Visit us at Condusiv.com Optimizing Virtual Platform Disk Performance 1 The intensified demand for IT network efficiency and lower

More information

VMLab: A Desktop Virtualization Testbed for Research and Education

VMLab: A Desktop Virtualization Testbed for Research and Education VMLab: A Desktop Virtualization Testbed for Research and Education Prasad Calyam, Ph.D. (Principal Investigator) pcalyam@osc.edu Alex Berryman (Student Research Assistant) berryman@oar.net Rohit Patali

More information

Optimizing Cloud Performance Using Veloxum Testing Report on experiments run to show Veloxum s optimization software effects on Terremark s vcloud

Optimizing Cloud Performance Using Veloxum Testing Report on experiments run to show Veloxum s optimization software effects on Terremark s vcloud Optimizing Cloud Performance Using Veloxum Testing Report on experiments run to show Veloxum s optimization software effects on Terremark s vcloud infrastructure Contents Introduction... 3 Veloxum Overview...

More information

Technical Investigation of Computational Resource Interdependencies

Technical Investigation of Computational Resource Interdependencies Technical Investigation of Computational Resource Interdependencies By Lars-Eric Windhab Table of Contents 1. Introduction and Motivation... 2 2. Problem to be solved... 2 3. Discussion of design choices...

More information

Hyper-converged Solutions for ROBO, VDI and Transactional Databases Using Microsoft Hyper-V and DataCore Hyper-converged Virtual SAN

Hyper-converged Solutions for ROBO, VDI and Transactional Databases Using Microsoft Hyper-V and DataCore Hyper-converged Virtual SAN Hyper-converged Solutions for ROBO, VDI and Transactional Databases Using Microsoft Hyper-V and DataCore Hyper-converged Virtual SAN EXECUTIVE SUMMARY By Dan Kusnetzky Microsoft Hyper-V together with DataCore

More information

Maximizing VMware ESX Performance Through Defragmentation of Guest Systems. Presented by

Maximizing VMware ESX Performance Through Defragmentation of Guest Systems. Presented by Maximizing VMware ESX Performance Through Defragmentation of Guest Systems Presented by July, 2010 Table of Contents EXECUTIVE OVERVIEW 3 TEST EQUIPMENT AND METHODS 4 TESTING OVERVIEW 5 Fragmentation in

More information

IOmark- VDI. HP HP ConvergedSystem 242- HC StoreVirtual Test Report: VDI- HC- 150427- b Test Report Date: 27, April 2015. www.iomark.

IOmark- VDI. HP HP ConvergedSystem 242- HC StoreVirtual Test Report: VDI- HC- 150427- b Test Report Date: 27, April 2015. www.iomark. IOmark- VDI HP HP ConvergedSystem 242- HC StoreVirtual Test Report: VDI- HC- 150427- b Test Copyright 2010-2014 Evaluator Group, Inc. All rights reserved. IOmark- VDI, IOmark- VM, VDI- IOmark, and IOmark

More information

Product Brief SysTrack VMP

Product Brief SysTrack VMP for VMware View Product Brief SysTrack VMP Benefits Optimize VMware View desktop and server virtualization and terminal server projects Anticipate and handle problems in the planning stage instead of postimplementation

More information

Multi-dimensional Affinity Aware VM Placement Algorithm in Cloud Computing

Multi-dimensional Affinity Aware VM Placement Algorithm in Cloud Computing Multi-dimensional Affinity Aware VM Placement Algorithm in Cloud Computing Nilesh Pachorkar 1, Rajesh Ingle 2 Abstract One of the challenging problems in cloud computing is the efficient placement of virtual

More information

DELL. Virtual Desktop Infrastructure Study END-TO-END COMPUTING. Dell Enterprise Solutions Engineering

DELL. Virtual Desktop Infrastructure Study END-TO-END COMPUTING. Dell Enterprise Solutions Engineering DELL Virtual Desktop Infrastructure Study END-TO-END COMPUTING Dell Enterprise Solutions Engineering 1 THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL

More information

IOmark- VDI. Nimbus Data Gemini Test Report: VDI- 130906- a Test Report Date: 6, September 2013. www.iomark.org

IOmark- VDI. Nimbus Data Gemini Test Report: VDI- 130906- a Test Report Date: 6, September 2013. www.iomark.org IOmark- VDI Nimbus Data Gemini Test Report: VDI- 130906- a Test Copyright 2010-2013 Evaluator Group, Inc. All rights reserved. IOmark- VDI, IOmark- VDI, VDI- IOmark, and IOmark are trademarks of Evaluator

More information

Introducing. Markus Erlacher Technical Solution Professional Microsoft Switzerland

Introducing. Markus Erlacher Technical Solution Professional Microsoft Switzerland Introducing Markus Erlacher Technical Solution Professional Microsoft Switzerland Overarching Release Principles Strong emphasis on hardware, driver and application compatibility Goal to support Windows

More information

WHITE PAPER 1 WWW.FUSIONIO.COM

WHITE PAPER 1 WWW.FUSIONIO.COM 1 WWW.FUSIONIO.COM WHITE PAPER WHITE PAPER Executive Summary Fusion iovdi is the first desktop- aware solution to virtual desktop infrastructure. Its software- defined approach uniquely combines the economics

More information

Cloud Optimize Your IT

Cloud Optimize Your IT Cloud Optimize Your IT Windows Server 2012 The information contained in this presentation relates to a pre-release product which may be substantially modified before it is commercially released. This pre-release

More information

VMware vrealize Operations for Horizon Administration

VMware vrealize Operations for Horizon Administration VMware vrealize Operations for Horizon Administration vrealize Operations for Horizon 6.1 This document supports the version of each product listed and supports all subsequent versions until the document

More information

Cloud Computing for Control Systems CERN Openlab Summer Student Program 9/9/2011 ARSALAAN AHMED SHAIKH

Cloud Computing for Control Systems CERN Openlab Summer Student Program 9/9/2011 ARSALAAN AHMED SHAIKH Cloud Computing for Control Systems CERN Openlab Summer Student Program 9/9/2011 ARSALAAN AHMED SHAIKH CONTENTS Introduction... 4 System Components... 4 OpenNebula Cloud Management Toolkit... 4 VMware

More information

Handling Multimedia Under Desktop Virtualization for Knowledge Workers

Handling Multimedia Under Desktop Virtualization for Knowledge Workers Handling Multimedia Under Desktop Virtualization for Knowledge Workers Wyse TCX Multimedia capabilities deliver the applications and performance required, for less A white paper by Wyse Technology Inc.

More information

Dynamic Load Balancing of Virtual Machines using QEMU-KVM

Dynamic Load Balancing of Virtual Machines using QEMU-KVM Dynamic Load Balancing of Virtual Machines using QEMU-KVM Akshay Chandak Krishnakant Jaju Technology, College of Engineering, Pune. Maharashtra, India. Akshay Kanfade Pushkar Lohiya Technology, College

More information

Hyper-V R2: What's New?

Hyper-V R2: What's New? ASPE IT Training Hyper-V R2: What's New? A WHITE PAPER PREPARED FOR ASPE BY TOM CARPENTER www.aspe-it.com toll-free: 877-800-5221 Hyper-V R2: What s New? Executive Summary This white paper provides an

More information

Detailed Lab Report DR101115D. Citrix XenDesktop 4 vs. VMware View 4 using Citrix Branch Repeater and Riverbed Steelhead

Detailed Lab Report DR101115D. Citrix XenDesktop 4 vs. VMware View 4 using Citrix Branch Repeater and Riverbed Steelhead Detailed Lab Report Citrix XenDesktop 4 vs. VMware View 4 using Citrix Branch Repeater and Riverbed Steelhead February 11, 2011 Miercom www.miercom.com Table of Contents 1.0 Executive Summary... 3 2.0

More information

Citrix EdgeSight User s Guide. Citrix EdgeSight for Endpoints 5.4 Citrix EdgeSight for XenApp 5.4

Citrix EdgeSight User s Guide. Citrix EdgeSight for Endpoints 5.4 Citrix EdgeSight for XenApp 5.4 Citrix EdgeSight User s Guide Citrix EdgeSight for Endpoints 5.4 Citrix EdgeSight for XenApp 5.4 Copyright and Trademark Notice Use of the product documented in this guide is subject to your prior acceptance

More information

Monitoring Databases on VMware

Monitoring Databases on VMware Monitoring Databases on VMware Ensure Optimum Performance with the Correct Metrics By Dean Richards, Manager, Sales Engineering Confio Software 4772 Walnut Street, Suite 100 Boulder, CO 80301 www.confio.com

More information

Overview... 2. Customer Login... 2. Main Page... 2. VM Management... 4. Creation... 4 Editing a Virtual Machine... 6

Overview... 2. Customer Login... 2. Main Page... 2. VM Management... 4. Creation... 4 Editing a Virtual Machine... 6 July 2013 Contents Overview... 2 Customer Login... 2 Main Page... 2 VM Management... 4 Creation... 4 Editing a Virtual Machine... 6 Disk Management... 7 Deletion... 7 Power On / Off... 8 Network Management...

More information

Infor Web UI Sizing and Deployment for a Thin Client Solution

Infor Web UI Sizing and Deployment for a Thin Client Solution Infor Web UI Sizing and Deployment for a Thin Client Solution Copyright 2012 Infor Important Notices The material contained in this publication (including any supplementary information) constitutes and

More information

Xen Live Migration. Networks and Distributed Systems Seminar, 24 April 2006. Matúš Harvan Xen Live Migration 1

Xen Live Migration. Networks and Distributed Systems Seminar, 24 April 2006. Matúš Harvan Xen Live Migration 1 Xen Live Migration Matúš Harvan Networks and Distributed Systems Seminar, 24 April 2006 Matúš Harvan Xen Live Migration 1 Outline 1 Xen Overview 2 Live migration General Memory, Network, Storage Migration

More information

Guideline for setting up a functional VPN

Guideline for setting up a functional VPN Guideline for setting up a functional VPN Why do I want a VPN? VPN by definition creates a private, trusted network across an untrusted medium. It allows you to connect offices and people from around the

More information

IaaS Cloud Architectures: Virtualized Data Centers to Federated Cloud Infrastructures

IaaS Cloud Architectures: Virtualized Data Centers to Federated Cloud Infrastructures IaaS Cloud Architectures: Virtualized Data Centers to Federated Cloud Infrastructures Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF Introduction

More information

Citrix & Terminal Services Considerations (Ascent Capture 7.5 Enterprise with Citrix & Terminal Services FAQs)

Citrix & Terminal Services Considerations (Ascent Capture 7.5 Enterprise with Citrix & Terminal Services FAQs) (Ascent Capture 7.5 Enterprise with Citrix & Terminal Services FAQs) Date March 17, 2008 Applies To Ascent Capture Enterprise (Only), Version 7.5. This version of Ascent Capture has been certified with:

More information

PERFORMANCE ANALYSIS OF KERNEL-BASED VIRTUAL MACHINE

PERFORMANCE ANALYSIS OF KERNEL-BASED VIRTUAL MACHINE PERFORMANCE ANALYSIS OF KERNEL-BASED VIRTUAL MACHINE Sudha M 1, Harish G M 2, Nandan A 3, Usha J 4 1 Department of MCA, R V College of Engineering, Bangalore : 560059, India sudha.mooki@gmail.com 2 Department

More information

Transport and Security Specification

Transport and Security Specification Transport and Security Specification 15 July 2015 Version: 5.9 Contents Overview 3 Standard network requirements 3 Source and Destination Ports 3 Configuring the Connection Wizard 4 Private Bloomberg Network

More information

Cloud computing an insight

Cloud computing an insight Cloud computing an insight Overview IT infrastructure is changing according the fast-paced world s needs. People in the world want to stay connected with Work / Family-Friends. The data needs to be available

More information

Windows 2003 Performance Monitor. System Monitor. Adding a counter

Windows 2003 Performance Monitor. System Monitor. Adding a counter Windows 2003 Performance Monitor The performance monitor, or system monitor, is a utility used to track a range of processes and give a real time graphical display of the results, on a Windows 2003 system.

More information

Assignment # 1 (Cloud Computing Security)

Assignment # 1 (Cloud Computing Security) Assignment # 1 (Cloud Computing Security) Group Members: Abdullah Abid Zeeshan Qaiser M. Umar Hayat Table of Contents Windows Azure Introduction... 4 Windows Azure Services... 4 1. Compute... 4 a) Virtual

More information

Efficient Load Balancing using VM Migration by QEMU-KVM

Efficient Load Balancing using VM Migration by QEMU-KVM International Journal of Computer Science and Telecommunications [Volume 5, Issue 8, August 2014] 49 ISSN 2047-3338 Efficient Load Balancing using VM Migration by QEMU-KVM Sharang Telkikar 1, Shreyas Talele

More information

BridgeWays Management Pack for VMware ESX

BridgeWays Management Pack for VMware ESX Bridgeways White Paper: Management Pack for VMware ESX BridgeWays Management Pack for VMware ESX Ensuring smooth virtual operations while maximizing your ROI. Published: July 2009 For the latest information,

More information

An Oracle White Paper August 2011. Oracle VM 3: Server Pool Deployment Planning Considerations for Scalability and Availability

An Oracle White Paper August 2011. Oracle VM 3: Server Pool Deployment Planning Considerations for Scalability and Availability An Oracle White Paper August 2011 Oracle VM 3: Server Pool Deployment Planning Considerations for Scalability and Availability Note This whitepaper discusses a number of considerations to be made when

More information

Windows Server 2008 R2 Hyper V. Public FAQ

Windows Server 2008 R2 Hyper V. Public FAQ Windows Server 2008 R2 Hyper V Public FAQ Contents New Functionality in Windows Server 2008 R2 Hyper V...3 Windows Server 2008 R2 Hyper V Questions...4 Clustering and Live Migration...5 Supported Guests...6

More information

8 NETWORK SERVERS AND SERVICES FUNDAMENTALS

8 NETWORK SERVERS AND SERVICES FUNDAMENTALS 8 NETWORK SERVERS AND SERVICES FUNDAMENTALS PROJECTS Project 8.1 Project 8.2 Project 8.3 Project 8.4 Project 8.5 Understanding Key Concepts Comparing Network Operating Systems Understanding Basic Services

More information

vrealize Operations Management Pack for vcloud Air 2.0

vrealize Operations Management Pack for vcloud Air 2.0 vrealize Operations Management Pack for vcloud Air 2.0 This document supports the version of each product listed and supports all subsequent versions until the document is replaced by a new edition. To

More information

Features Overview Guide About new features in WhatsUp Gold v12

Features Overview Guide About new features in WhatsUp Gold v12 Features Overview Guide About new features in WhatsUp Gold v12 Contents CHAPTER 1 Learning about new features in Ipswitch WhatsUp Gold v12 Welcome to WhatsUp Gold... 1 What's new in WhatsUp Gold v12...

More information

Performance Evaluation of VMXNET3 Virtual Network Device VMware vsphere 4 build 164009

Performance Evaluation of VMXNET3 Virtual Network Device VMware vsphere 4 build 164009 Performance Study Performance Evaluation of VMXNET3 Virtual Network Device VMware vsphere 4 build 164009 Introduction With more and more mission critical networking intensive workloads being virtualized

More information

Maximizing Your Desktop and Application Virtualization Implementation

Maximizing Your Desktop and Application Virtualization Implementation Maximizing Your Desktop and Application Virtualization Implementation The Essentials Series sponsored by David Davis Article 1: Using Hosted Applications with Desktop Virtualization... 1 The State of Desktop

More information

Small is Better: Avoiding Latency Traps in Virtualized DataCenters

Small is Better: Avoiding Latency Traps in Virtualized DataCenters Small is Better: Avoiding Latency Traps in Virtualized DataCenters SOCC 2013 Yunjing Xu, Michael Bailey, Brian Noble, Farnam Jahanian University of Michigan 1 Outline Introduction Related Work Source of

More information

IBM Tivoli Composite Application Manager for Microsoft Applications: Microsoft Hyper-V Server Agent Version 6.3.1 Fix Pack 2.

IBM Tivoli Composite Application Manager for Microsoft Applications: Microsoft Hyper-V Server Agent Version 6.3.1 Fix Pack 2. IBM Tivoli Composite Application Manager for Microsoft Applications: Microsoft Hyper-V Server Agent Version 6.3.1 Fix Pack 2 Reference IBM Tivoli Composite Application Manager for Microsoft Applications:

More information

Server-centric client virtualization model reduces costs while improving security and flexibility.

Server-centric client virtualization model reduces costs while improving security and flexibility. BUSINESS SOLUTIONS Desktop Demystified Server-centric client virtualization model reduces costs while improving security and flexibility. Virtualization is transforming the data center. It s eliminating

More information

Installing & Using KVM with Virtual Machine Manager COSC 495

Installing & Using KVM with Virtual Machine Manager COSC 495 Installing & Using KVM with Virtual Machine Manager COSC 495 1 Abstract:. There are many different hypervisors and virtualization software available for use. One commonly use hypervisor in the Linux system

More information

Mike Canney. Application Performance Analysis

Mike Canney. Application Performance Analysis Mike Canney Application Performance Analysis 1 Welcome to Sharkfest 12 contact Mike Canney, Principal Network Analyst, Tektivity, Inc. canney@getpackets.com 319-365-3336 www.getpackets.com 2 Agenda agenda

More information

Networking for Caribbean Development

Networking for Caribbean Development Networking for Caribbean Development BELIZE NOV 2 NOV 6, 2015 w w w. c a r i b n o g. o r g Virtualization: Architectural Considerations and Implementation Options Virtualization Virtualization is the

More information

Virtual Switching Without a Hypervisor for a More Secure Cloud

Virtual Switching Without a Hypervisor for a More Secure Cloud ing Without a for a More Secure Cloud Xin Jin Princeton University Joint work with Eric Keller(UPenn) and Jennifer Rexford(Princeton) 1 Public Cloud Infrastructure Cloud providers offer computing resources

More information

Cloud Optimize Your IT

Cloud Optimize Your IT Cloud Optimize Your IT Windows Server 2012 Michael Faden Partner Technology Advisor Microsoft Schweiz 1 Beyond Virtualization virtualization The power of many servers, the simplicity of one Every app,

More information

Performance Characteristics of VMFS and RDM VMware ESX Server 3.0.1

Performance Characteristics of VMFS and RDM VMware ESX Server 3.0.1 Performance Study Performance Characteristics of and RDM VMware ESX Server 3.0.1 VMware ESX Server offers three choices for managing disk access in a virtual machine VMware Virtual Machine File System

More information

Hypervisor Software and Virtual Machines. Professor Howard Burpee SMCC Computer Technology Dept.

Hypervisor Software and Virtual Machines. Professor Howard Burpee SMCC Computer Technology Dept. Hypervisor Software and Virtual Machines Learning Objectives Understand the common features of today s desktop virtualization products Select and implement a desktop virtualization option on a Linux, Mac,

More information

Best Practices for Monitoring Databases on VMware. Dean Richards Senior DBA, Confio Software

Best Practices for Monitoring Databases on VMware. Dean Richards Senior DBA, Confio Software Best Practices for Monitoring Databases on VMware Dean Richards Senior DBA, Confio Software 1 Who Am I? 20+ Years in Oracle & SQL Server DBA and Developer Worked for Oracle Consulting Specialize in Performance

More information

Windows Server 2012 2,500-user pooled VDI deployment guide

Windows Server 2012 2,500-user pooled VDI deployment guide Windows Server 2012 2,500-user pooled VDI deployment guide Microsoft Corporation Published: August 2013 Abstract Microsoft Virtual Desktop Infrastructure (VDI) is a centralized desktop delivery solution

More information

VON/K: A Fast Virtual Overlay Network Embedded in KVM Hypervisor for High Performance Computing

VON/K: A Fast Virtual Overlay Network Embedded in KVM Hypervisor for High Performance Computing Journal of Information & Computational Science 9: 5 (2012) 1273 1280 Available at http://www.joics.com VON/K: A Fast Virtual Overlay Network Embedded in KVM Hypervisor for High Performance Computing Yuan

More information

RECENTLY, cloud computing [1] services have become

RECENTLY, cloud computing [1] services have become 1 Cloud-based Desktop Services for Thin Clients Lien Deboosere, Bert Vankeirsbilck, Pieter Simoens, Filip De Turck, Bart Dhoedt and Piet Demeester Abstract Cloud computing and ubiquitous network availability

More information

Operating Systems and Networks Sample Solution 1

Operating Systems and Networks Sample Solution 1 Spring Term 2014 Operating Systems and Networks Sample Solution 1 1 byte = 8 bits 1 kilobyte = 1024 bytes 10 3 bytes 1 Network Performance 1.1 Delays Given a 1Gbps point to point copper wire (propagation

More information

Cisco WAAS 4.4.1 Context-Aware DRE, the Adaptive Cache Architecture

Cisco WAAS 4.4.1 Context-Aware DRE, the Adaptive Cache Architecture White Paper Cisco WAAS 4.4.1 Context-Aware DRE, the Adaptive Cache Architecture What You Will Learn Enterprises face numerous challenges in the delivery of applications and critical business data to the

More information

Elastic Calculator : A Mobile Application for windows mobile using Mobile Cloud Services

Elastic Calculator : A Mobile Application for windows mobile using Mobile Cloud Services Elastic Calculator : A Mobile Application for windows mobile using Mobile Cloud Services K.Lakshmi Narayanan* & Nadesh R.K # School of Information Technology and Engineering, VIT University Vellore, India

More information

Virtual Machine Monitors. Dr. Marc E. Fiuczynski Research Scholar Princeton University

Virtual Machine Monitors. Dr. Marc E. Fiuczynski Research Scholar Princeton University Virtual Machine Monitors Dr. Marc E. Fiuczynski Research Scholar Princeton University Introduction Have been around since 1960 s on mainframes used for multitasking Good example VM/370 Have resurfaced

More information

Deploying Business Virtual Appliances on Open Source Cloud Computing

Deploying Business Virtual Appliances on Open Source Cloud Computing International Journal of Computer Science and Telecommunications [Volume 3, Issue 4, April 2012] 26 ISSN 2047-3338 Deploying Business Virtual Appliances on Open Source Cloud Computing Tran Van Lang 1 and

More information

VIRTUAL DESKTOP PERFORMANCE AND QUALITY OF EXPERIENCE UNDERSTANDING THE IMPORTANCE OF A DISTRIBUTED DATA CENTER ARCHITECTURE

VIRTUAL DESKTOP PERFORMANCE AND QUALITY OF EXPERIENCE UNDERSTANDING THE IMPORTANCE OF A DISTRIBUTED DATA CENTER ARCHITECTURE VIRTUAL DESKTOP PERFORMANCE AND QUALITY OF EXPERIENCE UNDERSTANDING THE IMPORTANCE OF A DISTRIBUTED DATA CENTER ARCHITECTURE EXECUTIVE SUMMARY Cloud services, such as virtual desktop infrastructure (VDI),

More information

Scyld Cloud Manager User Guide

Scyld Cloud Manager User Guide Scyld Cloud Manager User Guide Preface This guide describes how to use the Scyld Cloud Manager (SCM) web portal application. Contacting Penguin Computing 45800 Northport Loop West Fremont, CA 94538 1-888-PENGUIN

More information

Table of Contents. Considering Terminal services. Considering Citrix on Terminal srvices. Considering Equipment. Installing the Application

Table of Contents. Considering Terminal services. Considering Citrix on Terminal srvices. Considering Equipment. Installing the Application Software Table of Contents Topic Table of Contents Considering Terminal services Considering Citrix on Terminal srvices Considering Equipment Installing the Application MiTek.ini Considerations Setting

More information

VIRTUALIZATION 101. Brainstorm Conference 2013 PRESENTER INTRODUCTIONS

VIRTUALIZATION 101. Brainstorm Conference 2013 PRESENTER INTRODUCTIONS VIRTUALIZATION 101 Brainstorm Conference 2013 PRESENTER INTRODUCTIONS Timothy Leerhoff Senior Consultant TIES 21+ years experience IT consulting 12+ years consulting in Education experience 1 THE QUESTION

More information

Parallels Virtuozzo Containers

Parallels Virtuozzo Containers Parallels Virtuozzo Containers White Paper Virtual Desktop Infrastructure www.parallels.com Version 1.0 Table of Contents Table of Contents... 2 Enterprise Desktop Computing Challenges... 3 What is Virtual

More information

DOCUMENT REFERENCE: SQ309-002-EN. SAMKNOWS TEST METHODOLOGY Web-based Broadband Performance White Paper. July 2015

DOCUMENT REFERENCE: SQ309-002-EN. SAMKNOWS TEST METHODOLOGY Web-based Broadband Performance White Paper. July 2015 DOCUMENT REFERENCE: SQ309-002-EN SAMKNOWS TEST METHODOLOGY Web-based Broadband Performance White Paper July 2015 SAMKNOWS QUALITY CONTROLLED DOCUMENT. SQ REV LANG STATUS OWNER DATED 309 03 EN FINAL SC

More information

If you re the unofficial administrator of your home or small

If you re the unofficial administrator of your home or small C H A P T E R Monitoring Your Network If you re the unofficial administrator of your home or small office network, I imagine you re already saddled with a fairly long to-do list of network chores: adding

More information

Chapter 14 Virtual Machines

Chapter 14 Virtual Machines Operating Systems: Internals and Design Principles Chapter 14 Virtual Machines Eighth Edition By William Stallings Virtual Machines (VM) Virtualization technology enables a single PC or server to simultaneously

More information

Chapter 15 Windows Operating Systems

Chapter 15 Windows Operating Systems Understanding Operating Systems, Fifth Edition 15-1 Chapter 15 Windows Operating Systems At a Glance Instructor s Manual Table of Contents Overview Objectives s Quick Quizzes Class Discussion Topics Additional

More information

CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT

CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT 81 CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT 5.1 INTRODUCTION Distributed Web servers on the Internet require high scalability and availability to provide efficient services to

More information

Enterprise-class desktop virtualization with NComputing. Clear the hurdles that block you from getting ahead. Whitepaper

Enterprise-class desktop virtualization with NComputing. Clear the hurdles that block you from getting ahead. Whitepaper Enterprise-class desktop virtualization with NComputing Clear the hurdles that block you from getting ahead Whitepaper Introduction Enterprise IT departments are realizing virtualization is not just for

More information

Medical 360 Network Edition and Citrix

Medical 360 Network Edition and Citrix WHITE PAPER Dragon Medical 360 Network Edition and Citrix A White Paper from Nuance Healthcare HEALTHCARE DRAGON MEDICAL 360 AND CITRIX Contents Introduction... 3 Citrix Overview... 4 Dragon Medical 360

More information

13 Managing Devices. Your computer is an assembly of many components from different manufacturers. LESSON OBJECTIVES

13 Managing Devices. Your computer is an assembly of many components from different manufacturers. LESSON OBJECTIVES LESSON 13 Managing Devices OBJECTIVES After completing this lesson, you will be able to: 1. Open System Properties. 2. Use Device Manager. 3. Understand hardware profiles. 4. Set performance options. Estimated

More information

Desktop Virtualization. The back-end

Desktop Virtualization. The back-end Desktop Virtualization The back-end Will desktop virtualization really fit every user? Cost? Scalability? User Experience? Beyond VDI with FlexCast Mobile users Guest workers Office workers Remote workers

More information

Performance characterization report for Microsoft Hyper-V R2 on HP StorageWorks P4500 SAN storage

Performance characterization report for Microsoft Hyper-V R2 on HP StorageWorks P4500 SAN storage Performance characterization report for Microsoft Hyper-V R2 on HP StorageWorks P4500 SAN storage Technical white paper Table of contents Executive summary... 2 Introduction... 2 Test methodology... 3

More information

9/26/2011. What is Virtualization? What are the different types of virtualization.

9/26/2011. What is Virtualization? What are the different types of virtualization. CSE 501 Monday, September 26, 2011 Kevin Cleary kpcleary@buffalo.edu What is Virtualization? What are the different types of virtualization. Practical Uses Popular virtualization products Demo Question,

More information

Applications. Network Application Performance Analysis. Laboratory. Objective. Overview

Applications. Network Application Performance Analysis. Laboratory. Objective. Overview Laboratory 12 Applications Network Application Performance Analysis Objective The objective of this lab is to analyze the performance of an Internet application protocol and its relation to the underlying

More information

VMware View 4 with PCoIP I N F O R M AT I O N G U I D E

VMware View 4 with PCoIP I N F O R M AT I O N G U I D E VMware View 4 with PCoIP I N F O R M AT I O N G U I D E Table of Contents VMware View 4 with PCoIP................................................... 3 About This Guide........................................................

More information

VMware Server 2.0 Essentials. Virtualization Deployment and Management

VMware Server 2.0 Essentials. Virtualization Deployment and Management VMware Server 2.0 Essentials Virtualization Deployment and Management . This PDF is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly prohibited. All rights reserved.

More information

Closing The Application Performance Visibility Gap Inherent To Citrix Environments

Closing The Application Performance Visibility Gap Inherent To Citrix Environments Closing The Application Performance Visibility Gap Inherent To Citrix Environments WHITE PAPER: DYNATRACE FOR CITRIX XENAPP/XENDESKTOP Many companies have invested in Citrix XenApp and XenDesktop environments

More information

VMWARE WHITE PAPER 1

VMWARE WHITE PAPER 1 1 VMWARE WHITE PAPER Introduction This paper outlines the considerations that affect network throughput. The paper examines the applications deployed on top of a virtual infrastructure and discusses the

More information

Mobile Cloud Computing T-110.5121 Open Source IaaS

Mobile Cloud Computing T-110.5121 Open Source IaaS Mobile Cloud Computing T-110.5121 Open Source IaaS Tommi Mäkelä, Otaniemi Evolution Mainframe Centralized computation and storage, thin clients Dedicated hardware, software, experienced staff High capital

More information

Cloud Computing through Virtualization and HPC technologies

Cloud Computing through Virtualization and HPC technologies Cloud Computing through Virtualization and HPC technologies William Lu, Ph.D. 1 Agenda Cloud Computing & HPC A Case of HPC Implementation Application Performance in VM Summary 2 Cloud Computing & HPC HPC

More information

ServerPronto Cloud User Guide

ServerPronto Cloud User Guide ServerPronto Cloud User Guide Virtual machines Virtual machines are based on templates and are deployed on hypervisors. Hypervisors give them access to CPU, disk and network resources. The ServerPronto

More information

IOS110. Virtualization 5/27/2014 1

IOS110. Virtualization 5/27/2014 1 IOS110 Virtualization 5/27/2014 1 Agenda What is Virtualization? Types of Virtualization. Advantages and Disadvantages. Virtualization software Hyper V What is Virtualization? Virtualization Refers to

More information

RED HAT ENTERPRISE VIRTUALIZATION FOR SERVERS: COMPETITIVE FEATURES

RED HAT ENTERPRISE VIRTUALIZATION FOR SERVERS: COMPETITIVE FEATURES RED HAT ENTERPRISE VIRTUALIZATION FOR SERVERS: COMPETITIVE FEATURES RED HAT ENTERPRISE VIRTUALIZATION FOR SERVERS Server virtualization offers tremendous benefits for enterprise IT organizations server

More information

Enterprise Application Performance Management: An End-to-End Perspective

Enterprise Application Performance Management: An End-to-End Perspective SETLabs Briefings VOL 4 NO 2 Oct - Dec 2006 Enterprise Application Performance Management: An End-to-End Perspective By Vishy Narayan With rapidly evolving technology, continued improvements in performance

More information