Using DRBD over Wide Area Networks

Size: px
Start display at page:

Download "Using DRBD over Wide Area Networks"

Transcription

1 Using DRBD over Wide Area Networks Project : GigaPort3 Project Year : 2010 Project Manager : Rogier Spoor Author(s) : Arjan Peddemors, Rogier Spoor, Paul Dekkers, Christiaan den Besten Completion Date : Version : 1.1 Summary This document describes our experiences with using the Distributed Replicated Block Device (DRBD) open-source technology in a Wide Area Network (WAN). It focuses on two aspects: data replication (the basic DRBD functionality) and virtual machine migration (using DRBD as a supporting technology). We provide an overview of existing literature and describe our own experiments with using DRBD in the SURFnet WAN environment, showing that DRBD is a versatile product that can be applied to a range of different applications. The experiments give administrators and users of DRBD a clear impression of what can be expected from this technology when nodes are far apart and show that opensource technology can be successfully applied to build sophisticated environments. This publication is licensed under Creative Commons Attribution 3.0 Unported. More information on this license can be found at

2 Colophon Programme line Part Activity Deliverable Access rights External party : Enabling Dynamic Services : Task 3 - Storage Clouds : Activity II PoC Storage Clouds : Proof of Concept on Storage Clouds report : Public : Novay, Prolocation This project was made possible by the support of SURF, the collaborative organisation for higher education institutes and research institutes aimed at breakthrough innovations in ICT. More information on SURF is available on the website

3 Contents 1 Introduction Overview of VM migration in WANs Reasons for live migration over a WAN Live migration steps Specific aspects of WAN migration VM connectivity Access to data Migration performance Overview of DRBD usage in WANs Experiences in the SURFnet WAN Test environment Data replication with DRBD Virtual machine migration using DRBD Conclusions References... 25

4 1 Introduction Online data has become within reach of many users and organizations over the last number of years. The exponential increase of Internet bandwidth is an important enabler for this trend. SURFnet is investigating various technologies that can be used to create an open architecture for higher education and research in the Netherlands, by leveraging its high-speed state-of-the-art national network infrastructure. This effort focuses primarily on providing high-performance and highly available online facilities to its participants in the SURFnet Wide Area Network (WAN). As part of this effort, SURFnet has executed a scan on existing solutions and technologies for in Wide Area Networks (WANs) (see the survey document at [13]). The Distributed Replicated Block Device (DRBD) [4] is identified as an interesting technology that may be used for WAN data replication. In this document, we focus on DRBD usage in WANs: in parallel, we are evaluating other technologies identified as interesting by the scan (GPFS and Gluster). DRBD is a Linux kernel module that synchronizes the data on two block devices installed in two distinct Linux machines. It provides functionality similar to RAID 1, using the network between those nodes. A DRBD configuration is visible as a logical block device to the operating system, and thus may be used for a wide range of purposes. Under normal operation, a DRBD configuration consists of a primary node and a secondary node, where all access goes through the primary node and data on the secondary node is not accessed directly by applications. All changes on the primary node are replicated at the secondary node, using different replication protocols: asynchronous replication (protocol A), memory synchronous replication (protocol B), and fully synchronous replication (protocol C). With protocol C, a write operation only finishes when the data is stored on disk at both nodes, and therefore is most safe. In case of failure on the primary node (e.g., due to a disk crash), the primary node redirect all read and write access to the secondary node. In a typical setup, the DRBD nodes are connected through a high-speed, lowlatency Local Area Network (LAN) or cluster network, which ensures good performance. When operating in a WAN, the performance degrades due to generally lower bandwidth and (much) higher latency. Bandwidth can be expected to rise, but latency has a lower limit imposed by the speed of light. In this document, we provide a more in-depth analysis of the various uses of DRBD in WANs (focusing on VM migration as an application) and report on our own experiences with DRBD. We consider data distribution within the SURFnet infrastructure (which is deployed in the Netherlands on a national scale) and therefore use WANs with diameters up to several hundreds of kilometres (km) and maximum latencies of around 20 milliseconds (ms). This document does not provide a general introduction into DRBD or VM migration and assumes that the reader has a basic understanding of these two technologies. 4

5 The outline of this document is as follows. Section 2 and Section 3 describe the results of a literature scan, while Section 4 summarizes our own experiences. In Section 2, we give an overview of virtual machine migration over long distances (inside a WAN) and the implication of this migration for VM access. Section 3 provides an overview of the usage of DRBD in WAN environments. In Section 4, we describe the results obtained from experiments with DRBD and DRBD-based VM migration in the SURFnet WAN environment. Section 5 discusses the conclusions. 5

6 2 Overview of VM migration in WANs Virtualization platforms have long been able to move a guest VM from one host system to another. By means of the common abstraction offered to guest operating systems by the virtualization platform, a guest can be 1) suspended on one host, 2) moved to the other host, and 3) have its operation resumed there. This type of VM migration can take considerable time which is, for many tasks, not acceptable. More recently, many virtualization platforms have added functionality for live migration, to support moving a running VM from one host to another with a very short interruption time. For example, VMware [10], Xen [3], Microsoft s Hyper-V [9], and VirtualBox [18] all now support live migration. The typical target environment for live migration is a cluster of host machines interconnected by a fast, low-latency network (such as a high-speed LAN), and in this setting VMs may be migrated with very little application level down time. In this section, we discuss various aspects and relevance of executing live VM migration beyond this target environment from one host to another over a WAN. We use existing literature and documentation as input for our discussion here: our own experiences with WAN migration are described in Section Reasons for live migration over a WAN Live WAN migration may be desirable for a number of different reasons (see also [17], section 2): Bring the computational resources to the data. Operations on (large amounts of) data may be most efficient when executed without moving the data over long distances. High availability is served by migration over a long distance. This may be the case when computational resources and data networks in a large geographical area are expected to see diminished availability or outages, for instance in case of natural disasters. Load balancing. When administering resources spread over considerable distances, for instance in case of managing machines in multiple datacenters, moving VMs from one location to another may achieve a better balance of the computational load over these locations. Maintenance. Large maintenance on a datacenter or WAN network may favor a migration to another location. All these reasons are valid in the SURFnet context, i.e., administrators of parties connected to the SURFnet infrastructure may move VMs over long distances for all the above reasons. Obviously, when migrating VMs from one location to another in the Netherlands, network distances are not very high (in the order of hundreds of kilometers), although they exceed the metropolitan area network (MAN). Even when considering these limited WAN sizes, it is likely that latency has a strong impact on migration performance. 6

7 2.2 Live migration steps The main steps involved in the live migration of a VM from a source host to a destination host (for all virtualization platforms) are the following: Initialize migration. Reserve resources on the destination host to make sure it will be able to run the VM. Pre-copy the memory state. While running the VM on the source host, transfer all memory pages from the source host to the destination host and keep track of pages that are written. Updated pages will be retransferred. Stop the VM on the source host and copy the non-memory state (CPU state, device state) and remaining dirty memory pages to the destination host. Start the VM at the destination host, transfer any pending state on the source side, and release resources at the source host. Note that the activity on the VM during the pre-copy phase determines how efficient the actual transfer of operation from one side to the other can be executed: when the VM continuously makes changes to many memory pages the fraction of dirty pages will not become very small. In that case, the interruption time between stop and start is relatively long, because many memory pages still need to be transferred. The efficiency of the migration process therefore depends on the application(s) running on the VM. Also note that the steps above concern the migration of the state of the VM itself and do not cover the VM disk image. In LANs or clusters, access to the VM disk file may be arranged through a network file system or a SAN accessible by both the source and destination host. Furthermore, the steps do not indicate how to deal with external accessed by the VM. 2.3 Specific aspects of WAN migration When executing live migration over long distances, multiple aspects require special attention. These aspects are discussed in various research papers (e.g., [17], [6], [8], [20]), product manuals ([9], [18]) and reference architecture documents ([7], [19]). So far, live migration is not widely done over long distances and little further data is available about the operational aspects of WAN migration. Also, many of the experiments done on research prototypes have been executed in simulated environments, i.e., by using WAN emulators such as NetEm [11] and Dummynet [5], not in real WAN testbeds. We now list the main aspects that make WAN migration different from regular VM migration, as arises from these documents VM connectivity To maintain the transport layer protocol state of the VM during migration (e.g., keep state information about open TCP connections), it is necessary that the VM has the same IP address before and after migration. When moving a VM inside a local network or cluster, this is straightforward to achieve: the VM may keep its MAC address (in an Ethernet network) and rely on the network switch to detect the new point of attachment, or it may send out ARP announcements to update the ARP table at the router and other hosts involved in communication with the VM [3]. 7

8 In case of WAN migration, the VM is very likely to move to a network served by a different router and a different network address range, which would result, without extra arrangements, in assignment of another IP number to the VM. As this would break protocol state and application level communication, it is necessary to have a mechanism in place to preserve the IP number. The most common proposed solution is to configure a VLAN or VPN that stretches over the different sites (e.g., [20], [19], [7], [17]). The drawback of this solution is that it leads to suboptimal routing of IP packets in case of external IP nodes communicating with the VM. The VPN router which handles all traffic between the VM and external nodes, for example, may be located close to the source host and far from the destination host. Even when external nodes are close to the destination host, the traffic goes through the VPN router. Some technologies exist that target this problem, but these have their own problems: Mobile IP, for example, has provisions for route optimization, but these rely on extra functionality at both peers. VMs with a lot of external communication are therefore less suitable to migrate in a WAN environment. Within the SURFnet backbone, a good solution is to use BGP routing (the default routing protocol for client locations). BGP supports routing packets with the same IP address to more than one physical location. The approach consists of using optical lightpaths (fixed or dynamic) [16] to create a VLAN between those locations, enabling the machines within this VLAN to use the same subnet numbering. Some applications, however, do not require external communication (for instance, because they operate on data within local networks or have local clients), or have short-lived external connections that are allowed to break (e.g., a web crawler). For some of these cases, the VM may be assigned a new IP number, which simplifies the requirements imposed on the migration functionality Access to data The VM at the destination host requires access to the VM disk file (or disk image). Also, many VMs have access to external to the own system, i.e., connect to network drives and block devices available through the LAN or SAN. When migrating locally, it is likely that access to these resources is possible at the destination host. A long-haul migration, however, makes access more problematic (although not impossible). A number of different approaches can be taken to keep external available (i.e., external to the destination host running the VM) to a VM migrated over a long distance, assuming that connectivity issues as described above have been successfully addressed: 1. No special provisions are made and access to external is over the WAN. This is easy to configure (identical to the LAN case) but obviously has serious drawbacks in the form of degraded performance. Read and write access is much slower, because in general the WAN bandwidth is low compared to clustered/lan environment, but also because the latency 8

9 between the destination host and the server is high. Even in case of a high bandwidth WAN, throughput may still be affected by the latency (i.e., throughput and latency are coupled), depending on the transport layer protocol used. The TCP protocol, for instance, uses a maximum congestion window size which is related to the buffer size allocated for a TCP socket. Default TCP buffer sizes may result in congestion windows that are too small, resulting in only partial usage of available bandwidth, for instance in case of transferring data with FTP (see also the discussion in [15] on tuning TCP parameters for GridFTP). In case of chatty protocols such as CIFS and iscsi, the latency degrades performance even more. This approach is used when running virtualization platforms with off-the-shelf regular live migration functionality. 2. The external data is copied to the destination side before and during the migration process. The data always moves with the VM, and is available locally when the VM resumes operation at the destination side, which is optimal in terms of access performance, but takes considerable time and WAN resources during migration. This approach is common for functionality focusing on live WAN migration (both research prototypes and products). 3. The external data is fetched on demand after the VM migration process and cached close to the new location of the VM. This eventually leads to accessed data being stored close to the destination host, and requires little effort prior to migration. The drawback of on-demand retrieval is the diminished performance after migration, especially directly after resuming the VM at the destination because then no data is available locally. This approach is followed by the live migration mechanism described in [6]. 4. The external data is continuously replicated at multiple sites. This allows for fast migration but may result in diminished overall access performance (especially write actions) because data must be replicated at both sides. Also, it consumes WAN resources all the time, which makes this approach expensive and only attractive in cases of high-availability requirements or in case of highly frequent back and forth migration. The Storage VMotion technology [19] of VMware is capable of supporting this approach (as well as the other approaches). Note that in this discussion there is an implicit assumption that the migration is taking place between two predefined locations. In cases where VMs may migrate to multiple sites, some external approaches may be less feasible. For instance, when data must be continuously replicated at many sites, performance and overhead may be substantially impacted, rendering the fourth approach less attractive. Also, the impact of a second migration to a third site, while data is spread over the two initial sites, is not further considered. A number of technologies exist that may support the basic operations necessary to implement the above approaches, by combining them with off-the-shelve live migration functionality of existing virtualization platforms. The different modes of DRBD (see Section 3) may be used to realize the approaches 2 and 4. A modified 9

10 version of the Network Block Device (NBD, [12]) is used in [6] to implement the third approach. The chosen migration approach has substantial impact on the time it takes to complete a full migration (including the ). Note that under no circumstances an instant migration can take place, because there is always some time needed to transfer the VM state: a sudden outage or crash leaves no time to migrate. By choosing approach 3 or approach 4, the migration time can be kept short. The choice between approach 3 and 4 depends on whether it is acceptable to have diminished performance after migration (approach 3) or to suffer the overhead of continuous replication (approach 4) Migration performance The smaller bandwidth and higher latency of WANs (compared to LANs and clustered environments) result in a longer pre-copy phase and a slower transfer of the VM state and external. Obviously, the size of VM (memory and image) as well as the size of any external (non-system) data that must be transferred influences the time to migrate considerably. The research system proposed in [20] (called CloudNet) discusses optimizations to improve these effects. VMware has set requirements for its live migration functionality (called VMotion) to work over long distances: the minimum network bandwidth must be 622 Mbps and the latency between the source host and destination host must be less than 5 ms. reserve resources at destination; prepare network clean up at source Activity Disk Memory Control asynchronous replication pause VM memory transfer synchronous replication Time Figure 1: time required for disk, memory, and control activities during WAN VM migration 1 1 Modified from Figure 2 in [20]. 10

11 The experimental results on migration times in the research papers mention in multiple cases a VM downtime of a few seconds or less ([17], [20]), which makes it only a little slower compared to local migration. The total migration takes much longer, and is especially influenced by data transfer (assuming that the capacity is well over the memory capacity). The steps taken in time to execute the migration are depicted in Figure 1. normal operation (source) disk replication disk + normal memory operation replication (destination) peak due to VM pause Application response time Time Figure 2: impact of migration activities on the VM application performance 2 (time is not to scale) During most of the migration, the VM application is up and running, although the performance of the application is negatively influenced by the migration activities. When copying data, the disks are partly used for migration, leaving less capacity for the application. Likewise, during pre-copy of the VM memory, CPU and other system resources are allocated to the migration process. These effects are indicated in Figure 2, showing that the application response time is higher during migration than under regular circumstances. 2 Modified from Figure 13a in [20] 11

12 3 Overview of DRBD usage in WANs The Linbit Distributed Replicated Block Device (DRBD) is a network block device that supports replication of data between two sites [4]. A system running a DRBD node uses the provided block device like any other block device, e.g., to create a file system. DRBD is targeted at replication in LAN environments, supporting high availability by failover. It can run in different modes, representing different types of synchronization: asynchronous replication (protocol A), memory synchronous replication (protocol B), and fully synchronous replication (protocol C). Protocol C is the safest, as it guarantees at the end of a write operation that the data is stored on disk on both sides. DRBD is able to recover from network outages and other failures. It is important to note that it is the responsibility of the functionality on top of DRBD (such as a distributed file system) to handle concurrent access (i.e., simultaneous writes at the nodes). In many configurations, DRBD runs with one primary node that handles all application requests and one secondary node that gets updates from the primary. DRBD seems less widely used in WAN environments, although Linbit offers an extension called DRBD Proxy specifically targeted at WAN replication. Contrary to the core DRBD product, DRBD Proxy is not available as an open source product. DRBD Proxy essentially works as a large buffer, to more evenly spread network load over time. As a consequence, the nodes may be considerably out of sync. Also, it is able to compress the block data, resulting in less traffic over the WAN. move VM virtual machine DRBD replicate data virtual machine DRBD LVM LVM disk network for replication and migration (wide area) disk Figure 3: typical DRBD configuration for supporting live VM migration over a WAN In this document, our objective is to summarize and share experiences with using the basic DRBD functionality (not DRBD Proxy) in WANs. When looking at the sparse use of DRBD in WAN settings, it turns out that DRBD is applied a number of times to support the live migration of VMs over long distances (as described in the previous 12

13 section). The research prototypes described in [8] and [20] do this. We have not found documents describing experiences with using DRBD Proxy. DRBD may be used to continuously synchronize data between the sites, which makes the migration process fast. It may also be used on demand, when it is necessary to migrate a VM from one node to another (i.e., data between sites is not replicated continuously). This is the case for the migration in the CloudNet prototype [20], which takes the following steps: 1. Reserve disk space at the destination host and pre-copy the data from source host to destination host in asynchronous mode. 2. Switch to synchronous mode during the VM state transfer, to make sure that all writes are propagated. 3. Just before resuming the VM at the destination, switch DRBD to dual primary mode (i.e., enable access at both sides concurrently), to allow the VM access to at the destination host. 4. Discard the DRBD node at the source host. 13

14 4 Experiences in the SURFnet WAN This section describes our experiences with running DRBD in the SURFnet WAN. It covers two experiments: 1) straightforward DRBD data replication between two sites connected through the WAN, and 2) using DRBD as a supporting technology for VM migration between two sites connected through the WAN. These two experiments both run in the same test environment, which is described first. The basic DRBD data replication test provides an indication of the performance of DRBD in our WAN test environment. The performance numbers obtained for this experiment can be used to assess the influence of different network technologies and configuration settings on the basic DRBD operation in a WAN. The VM migration experiment gives an indication of what can be expected of DRBD as an enabling technology for a sophisticated, real-world application. 4.1 Test environment To investigate DRBD WAN properties and the usage of DRBD as a building block for VM WAN migration, we have built a test environment consisting of multiple machines at two geographical locations. Data traffic over fiber optic cables between these two locations travels a distance of slightly more than 200 km. The test setup consists of two different types of machines a virtual machine server and a server connected using a number of different network technologies. This enables us to test DRBD and compare performance under different conditions. The two locations each have one server machine with capacity to run multiple virtual machines (the virtual machine server configuration). Location A has two, and location B has one server machine with powerful CPUs and fast (the server configuration). These machine configurations can be summarized as follows. Virtual machine server: - 2x Intel Xeon Duo E GHz CPU - 8 GB RAM memory - system harddisk (for host OS / virtualization software) - 1 GBit/s Ethernet RJ45 Storage server: - 2x Intel Xeon L5410 Quad Core 2.33 GHz CPU - 16 GB RAM memory - 2x 32 GB solid state harddisk - 8x 300 GB SAS disks (2.4 TB in total) - 1 GBit/s Ethernet RJ45-20 GBit/s Dolphin DXH GBit/s Ethernet optical fiber 14

15 The machines are interconnected as indicated in Figure 4. The distance between the two locations results in a minimum round trip delay of ~2 ms (considering the speed of light in fiber, not counting delays caused by repeaters, switching, etc.). The measured ping delay under Linux is approximately 3.5 ms. VM server 1 1 Gbit/s Ethernet location A server 1 server 2 20 Gbit/s Dolphin 10 Gbit/s Ethernet (Lightpath) server 3 1 Gbit/s Ethernet VM server 2 location B Figure 4: test environment consisting of two types of machines ( server and virtual machine server ) spread over two different locations (location A and location B). The machines are interconnected using different network technologies (1 GBit/s Ethernet over copper, 20 GBit/s Dolphin,!0 Gbit/s Ethernet over optical fiber). 4.2 Data replication with DRBD The basic DRBD tests provide an indication of disk read and write performance under relatively simple conditions, using a file system on top of a DRBD 15

16 configuration. They are all executed using the server machines, showing performance numbers for: native (local) disk access (single node) access to a dual-node DRBD configuration using the 1 GBit/s LAN (Ethernet) at location A access to a dual-node DRBD configuration using the 20 GBit/s LAN (Dolphin) at location A access to a dual-node DRBD configuration using the 10 GBit/s WAN (Lightpath) one node at location A and one node at location B These tests are performed using the Bonnie++ benchmark software [1]. The machines operate with the two solid-state disks in a RAID0 configuration (striped) and with the eight SAS disks in a RAID1+0 configuration (mirrored & striped). They run a Linux kernel and DRBD version 8.3.9rc1. The most interesting performance indicator is write speed, because for writing, the data must be transferred over the link between the two DRBD nodes (which are high-end server machines). Reading is less interesting because it always operates on local data (does not require communication between the two DRBD nodes). We consider the following configurations: Configuration name DRBD protocol Network / Nodes native none, no DRBD used server 1 single node, no network 1gb_local_A 1gb_local_B 1gb_local_C 10gb_remote_A 10gb_remote_B 10gb_remote_C A B C A B C server 1 server 1 server 1 server 1 server 1 server 1 1 Gbit/s Ethernet (LAN) 1 Gbit/s Ethernet (LAN) 1 Gbit/s Ethernet (LAN) 10 Gbit/s Ethernet (WAN) 10 Gbit/s Ethernet (WAN) 10 Gbit/s Ethernet (WAN) server 2 server 2 server 2 server 3 server 3 server 3 16

17 dolphin_local_a dolphin_local_b dolphin_local_c A B C server 1 server 1 server 1 20 Gbit/s Dolphin (LAN) 20 Gbit/s Dolphin (LAN) 20 Gbit/s Dolphin (LAN) server 2 server 2 server 2 The native configuration has a file system directly on top of the disks (without DRBD in between). The other 9 configurations have a file system on top of DRBD, with DRBD using disks on two server nodes connected by different kinds of interconnections. The results of the Bonnie++ v1.03 tests are depicted in Figure 5 - Figure 8. We ran the tests on the two different types of disks available on the server nodes: SAS and SSD. Additionally, we used two different file systems on top of DRBD: ext3 and xfs. We used a file size of 32GBytes and a chunk size of 64 kbytes for running Bonnie++. Most Bonnie++ runs were repeated 5 times: we observed that the standard deviation of these runs was low mostly well within 10% of the mean and therefore have not executed all test multiple times. Given this test configuration, we expect the following results. - The native performance should be highest, as no DRBD is used and all file operations are local (no replication over the network). - The raw disk performance is more than 1GBit/s, which implies that for configurations using the 1GBit/s Ethernet LAN, the network should be the bottleneck. - Comparing the Dolphin link with the fiber optic WAN link, the Dolphin link has a greater throughput and a lower latency and therefore should support the higher performance of these two. - Under otherwise equal circumstances, a DRBD configuration using protocol A should have a higher write performance than one with protocol B. Likewise, using protocol B should result in a higher performance than protocol C. The results in Figure 5 are largely in line with what is expected. The native performance is clearly highest, and the performance over 1Gbit/s Ethernet is limited by the network. Also, the write speed of the configuration using Dolphin is higher than the configuration using the WAN link. The performance of configurations with DRBD protocol B, however, is lower than the same configuration using protocol C (for 10GBit/s WAN and Dolphin). A possible explanation is that the implementation of protocol C is more fine tuned than the implementation of protocol B. Protocol C is lower than protocol A, which is expected. 17

18 Figure 5: sequential block write performance reported by Bonnie++, for configurations with an ext3 file system using DRBD on SAS disks Figure 6: sequential block write performance reported by Bonnie++, for configurations with an xfs file system using DRBD on SAS disks The results in Figure 6 are also mostly in line with what can be expected. A noticeable difference with Figure 7 is the much higher native and Dolphin write speed of the xfs file system. Again, 1 GBit/s Ethernet is the bottleneck for 1gb_local_{A, B, C} configurations and shows similar performance numbers as under ext3. Dolphin has a much better performance than the WAN configurations. When comparing DRBD protocol A, B and C, we observe that the 10gb_remote_A 18

19 performance is lower than 10gb_remote_B, which is unexpected. Configurations with the other two network types do show expected relative performance numbers in this respect. Figure 7: sequential block write performance reported by Bonnie++, for configurations with an ext3 file system using DRBD on SSD disks Figure 8: sequential block write performance reported by Bonnie++, for configurations with an xfs file system using DRBD on SSD disks In Figure 7, we show the results of writing to the ext3 file system running on top of a DRBD/SSD setup. The first result that stands out is the low native write performance, which is even lower than the distributed setup using Dolphin. We do 19

20 not have an explanation for this result. Other aspects are mostly in line with what is expected: only dolphin_local_a too low compared to dolphin_local_b. The result in Figure 8 again show that xfs is faster than ext3. Here, native performance is higher than the rest, but Dolphin configurations perform less than the WAN configuration. This could be caused by the fact that the WAN and Dolphin configuration are close to the native performance. Also, 10gb_remote_C is too high compared to 10gb_remote_B, although this may be caused variations between runs (the performance is only slightly higher). Compared with the same configurations in the other figures, 1GBit/sec Ethernet is performing under the maximum imposed by 1GBit/s Ethernet. 4.3 Virtual machine migration using DRBD For the VM migration experiments, we focus on a setup where virtual machines run on two different locations with each location using separate servers for virtual machine execution and virtual machine disk. The VM disk of each VM is synchronously replicated over the WAN to the server at the other location. This means that at any time, (almost all) the data on a virtual disk belonging to a VM is available at both locations, which supports the fast migration of that VM to the other location. DRBD is used to keep a VM disk synchronized (i.e., in this configuration, DRBD uses protocol C for fully synchronized replication). This setup is depicted in Figure 9. The virtualization layer on the VM server accesses the virtual disks on the server using iscsi over the LAN, with fallback access over the WAN to the replica disk a multipath iscsi configuration for high availability. A straightforward approach to organize the distributed iscsi is to define one iscsi logical device (LUN) which stores all the VM disks at both sides, and uses DRBD to keep VM disk replicas in sync between the two sides. DRBD must be configured to run in dual primary mode to support concurrent writes to the DRBD disk at both sides (but never concurrently to the same VM disk, because the VM is only active at a single location at any given time). Unfortunately, a problem with this approach occurs in case of a split-brain situation: when the WAN connection is unavailable for a prolonged duration and DRBD switches to a standalone mode at both sides, the sides go out-of-sync. When later the two sides reconnect, recovery from the spitbrain situation results in loss of data (i.e, recent changes at one of the locations are lost). We tackled this problem in the following way. Instead of using one LUN, we use a configuration with two LUNs, with each LUN dedicated to storing VM disks running primarily on one location. After migration of the VM, the VM disk is still on the LUN tied to the source side (remote side). Immediately after migration, however, this VM disk is migrated to the (local) destination LUN, i.e. the is migrated locally from one LUN to another LUN, while the VM keeps running on the same VM server. This situation is illustrated in Figure

21 VM server 1 VM server 2 guest guest guest guest guest guest virtualization layer virtualization layer replicate replicate server 1 server 3 location A location B Figure 9: VM migration test configuration with, at both locations, a VM server and a server. VM disks are synchronously replicated to the other location. When a VM migrates from one location to another, the virtualization software on the destination side uses the replica VM disk on the destination server. We use multipath iscsi where each VM has a primary path to the local iscsi target (the local server) and a standby path to the iscsi target at the other location (the remote server). During migration, the primary and standby paths switch roles, which lets the VM use local at the destination through the same LUN when resuming on the destination side. 21

22 The test configuration is implemented on the hardware configuration described in Section 4.1. The server machines run CentOS [2] with Linux kernel , and the iscsi target is based on SCST [14] using CentOS packages and exports two LUNs. Each LUN corresponds with a DRBD distributed block device that runs in dual primary mode. The DRBD version is 8.3.9rc1; the DRBD configuration uses SAS disks. The virtualization layer is implemented by the ESX product of VMWare. The VMs run Linux and use the ext3 file system on top of vmfs/iscsi/drbd. The size of the VM images is 40 GByte. VM server 1 guest 1a VM server 2 guest virtualization layer virtualization layer 1b 2b LUN A replicate 2a LUN B replicate server 1 server 3 location A location B Figure 10: VM migration in two steps: step 1 moves the VM from the source to the destination, and step 2 moves the from source LUN to destination LUN. 22

23 The first test considers performance of the basic, static configuration, with one VM running on the VM server on location A, without migrating the VM to the other site. We execute this test to validate the basic configuration and get an indication of its performance. Note that the setup here is quite different from the test configuration in Section 4.2: here we use separate machines and iscsi, and access through a VM. Also note that, although the VM is not migrated, DRBD is configured to replicate the virtual disk to the other location (location B) over the WAN. We test the performance in under normal network conditions, i.e., when DRBD continuously replicates the virtual disk to location B. Additionally, we test under the condition when the link between the locations is down, i.e., when DRBD is not able to replicate to location B. The test considers disk write (blocks) performance results using Bonnie++ v1.0.3 with a file size of 16GBytes and a chunk size of 64 kbytes. In connected mode, i.e., when DRBD synchronously replicates data between the two sites, the block write performance is ~110 MByte/s. In disconnected mode, when DRBD runs without replicating to the other side, the block write performance is ~100 MByte/s. This performance is roughly half of the performance of ext3 straight on DRBD and around the maximum that can be expected given the Gigabit Ethernet link between VM server and server. It is remarkable, however, that the connected mode performs slightly better than the disconnected mode. The second test is an endurance test, which concurrently migrates two VMs back and forth between the two locations, during one day. This includes the two steps as described above: migrating the VM itself and then migrating the from one LUN to the other (at a single location). The VMs run idle, i.e., do not heavily use the file system. The concurrent migration of the VMs is performed successfully during the test day. The average time for step 1 (VM migration, consisting of memory transfer and a short stop/resume) is ~15 seconds. The average time for step 2 (live migration, consisting of moving the virtual disk data locally from one LUN to the other) is ~30 minutes. Our preliminary conclusion is that, given the results from the test above, DRBD can be successfully used as an open source technology to support fast VM migration over WANs. More elaborate experiments (for instance, running with many, occasionally migrating VMs, each with high load) must be executed to support this conclusion. 23

24 5 Conclusions This report evaluated the usage of DRBD in WANs, from a perspective of existing work as well as from the perspective of our own experiences with running DRBD in the SURFnet WAN environment. We considered the basic DRBD operation in WANs as well as the usage of DRBD as enabling technology for wide-area virtual machine migration. Existing work shows that DRBD is not (yet) widely used in WANs and also not widely used for supporting VM migration in WANs (as discussed on Section 3). A number of research prototypes use DRBD for VM migration. The approach taken here is to continuously replicate VM between two locations, which should enable fast VM migration. The first experiment (Section 4.2) shows file system write performance for a number of basic DRBD configurations deployed in our WAN test environment (two sites with end-to-end delay of ~3.5 ms). DRBD performs reasonably well in our test bed, when comparing WAN performance with local network performance. A notable result is that our measurements are not always consistent with theoretically expected relative performance. For example, in some circumstances, WAN performance is better than high speed local link (Dolphin) performance. Also, for certain configurations, a higher level of DRBD synchronization provides better performance than a lower level of synchronization (which may be explained by more optimized implementation of the synchronous DRBD mode). The second experiment (Section 4.3) considers the application of DRBD to VM migration over WANs. We proposed a new setup based on multi path iscsi, and using a dedicated LUN per WAN site. A number of initial tests running under load in a static configuration, and running an endurance test with two concurrently migrating VMs provide a strong indication that DRBD can be used for fast migration in our proposed setup. Additional tests are necessary, however, to give insight in aspects we did not cover here (such as application performance under migration). Considering the results described in this report, we conclude that DRBD is a versatile basic technology, showing that an open source product may be used to support sophisticated solutions. 24

25 6 References [1] Bonnie++ benchmark suite, [2] CentOS: The Community ENTerprise Operating System, [3] C. Clark, K. Fraser, S. Hand, J.G. Hansem, E. Jul, C. Limbach, I. Pratt, and A. Warfield. Live Migration of Virtual Machines, In Proceedings of the 2 nd Symposium on Networked Systems Design and Implementation (NSDI 05), May 2005 [4] DRBD Home Page, [5] Dummynet Home Page, [6] T. Hirofuchi, H. Nakada, H. Ogawa, S. Itoh, and S. Sekiguchi, A Live Storage Migration Mechanism over WAN and its Performance Evaluation, In Proceedings of the 3rd International Workshop on Virtualization Technologies in Distributed Computing (VTDC 09), 2009 [7] Hyper-V Live Migration over Distance, Retrieved on 5/7/2010 from [8] M. van Kleij and A. de Groot, Virtual Machine WAN Migration with DRBD, OS3 report, Retrieved on 5/7/2010 from [9] Microsoft Hyper-V Server Home Page, [10] M. Nelson, B.-H. Lim, and G. Hutchins, Fast Transparent Migration for Virtual Machines, In Proceedings of the USENIX Annual Technical Conference, 2005 [11] Netem Home Page, [12] Network Block Device Home Page, [13] A. Peddemors, C. Kuun, R. Spoor, P. Dekkers, and C. den Besten, Survey of Technologies for Wide Area Distributed Storage, Retrieved on 17/8/2010 from [14] SCST: A Generic SCSI Target Subsystem for Linux, [15] H. Stockinger, A. Samar, K. Holtman, B. Allcock, I. Foster, and B. Tierney, File and Object Replication in Data Grids, Cluster Computing, Vol. 5, No. 3, pp , 2002 [16] SURFnet lightpaths, px [17] F. Travostino, P. Dasit, L. Gommans, C. Jog, C. de Laat, J. Mambretti, I. Monga, B. van Oudenaarde, S. Raghunath, and P. Wang, Seamless Live Migration of Virtual Machines over the MAN/WAN, Future Generation Computer Systems, Vol. 22, Issue 8, 2006 [18] VirtualBox Home Page, 25

26 [19] Virtual Machine Mobility with VMware VMotion and Cisco Data Center Interconnect Technologies, Retrieved on 5/7/2010 from white_paper_c pdf [20] T. Wood, K. Ramakrishnan, J. van der Merwe, and P. Shenoy. CloudNet: A Platform for Optimized WAN Migration of Virtual Machines, University of Massachusetts Technical Report TR , January

Xen Live Migration. Networks and Distributed Systems Seminar, 24 April 2006. Matúš Harvan Xen Live Migration 1

Xen Live Migration. Networks and Distributed Systems Seminar, 24 April 2006. Matúš Harvan Xen Live Migration 1 Xen Live Migration Matúš Harvan Networks and Distributed Systems Seminar, 24 April 2006 Matúš Harvan Xen Live Migration 1 Outline 1 Xen Overview 2 Live migration General Memory, Network, Storage Migration

More information

Cloud Storage. Parallels. Performance Benchmark Results. White Paper. www.parallels.com

Cloud Storage. Parallels. Performance Benchmark Results. White Paper. www.parallels.com Parallels Cloud Storage White Paper Performance Benchmark Results www.parallels.com Table of Contents Executive Summary... 3 Architecture Overview... 3 Key Features... 4 No Special Hardware Requirements...

More information

HRG Assessment: Stratus everrun Enterprise

HRG Assessment: Stratus everrun Enterprise HRG Assessment: Stratus everrun Enterprise Today IT executive decision makers and their technology recommenders are faced with escalating demands for more effective technology based solutions while at

More information

Virtual SAN Design and Deployment Guide

Virtual SAN Design and Deployment Guide Virtual SAN Design and Deployment Guide TECHNICAL MARKETING DOCUMENTATION VERSION 1.3 - November 2014 Copyright 2014 DataCore Software All Rights Reserved Table of Contents INTRODUCTION... 3 1.1 DataCore

More information

Introduction 1 Performance on Hosted Server 1. Benchmarks 2. System Requirements 7 Load Balancing 7

Introduction 1 Performance on Hosted Server 1. Benchmarks 2. System Requirements 7 Load Balancing 7 Introduction 1 Performance on Hosted Server 1 Figure 1: Real World Performance 1 Benchmarks 2 System configuration used for benchmarks 2 Figure 2a: New tickets per minute on E5440 processors 3 Figure 2b:

More information

Virtualization of the MS Exchange Server Environment

Virtualization of the MS Exchange Server Environment MS Exchange Server Acceleration Maximizing Users in a Virtualized Environment with Flash-Powered Consolidation Allon Cohen, PhD OCZ Technology Group Introduction Microsoft (MS) Exchange Server is one of

More information

EMC Business Continuity for Microsoft SQL Server Enabled by SQL DB Mirroring Celerra Unified Storage Platforms Using iscsi

EMC Business Continuity for Microsoft SQL Server Enabled by SQL DB Mirroring Celerra Unified Storage Platforms Using iscsi EMC Business Continuity for Microsoft SQL Server Enabled by SQL DB Mirroring Applied Technology Abstract Microsoft SQL Server includes a powerful capability to protect active databases by using either

More information

Using High Availability Technologies Lesson 12

Using High Availability Technologies Lesson 12 Using High Availability Technologies Lesson 12 Skills Matrix Technology Skill Objective Domain Objective # Using Virtualization Configure Windows Server Hyper-V and virtual machines 1.3 What Is High Availability?

More information

Enabling Technologies for Distributed Computing

Enabling Technologies for Distributed Computing Enabling Technologies for Distributed Computing Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS School of Computing, UNF Multi-core CPUs and Multithreading Technologies

More information

VXLAN: Scaling Data Center Capacity. White Paper

VXLAN: Scaling Data Center Capacity. White Paper VXLAN: Scaling Data Center Capacity White Paper Virtual Extensible LAN (VXLAN) Overview This document provides an overview of how VXLAN works. It also provides criteria to help determine when and where

More information

Enterprise Storage Solution for Hyper-V Private Cloud and VDI Deployments using Sanbolic s Melio Cloud Software Suite April 2011

Enterprise Storage Solution for Hyper-V Private Cloud and VDI Deployments using Sanbolic s Melio Cloud Software Suite April 2011 Enterprise Storage Solution for Hyper-V Private Cloud and VDI Deployments using Sanbolic s Melio Cloud Software Suite April 2011 Executive Summary Large enterprise Hyper-V deployments with a large number

More information

Using VMware VMotion with Oracle Database and EMC CLARiiON Storage Systems

Using VMware VMotion with Oracle Database and EMC CLARiiON Storage Systems Using VMware VMotion with Oracle Database and EMC CLARiiON Storage Systems Applied Technology Abstract By migrating VMware virtual machines from one physical environment to another, VMware VMotion can

More information

Cisco Active Network Abstraction Gateway High Availability Solution

Cisco Active Network Abstraction Gateway High Availability Solution . Cisco Active Network Abstraction Gateway High Availability Solution White Paper This white paper describes the Cisco Active Network Abstraction (ANA) Gateway High Availability solution developed and

More information

Enabling Technologies for Distributed and Cloud Computing

Enabling Technologies for Distributed and Cloud Computing Enabling Technologies for Distributed and Cloud Computing Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF Multi-core CPUs and Multithreading

More information

MS Exchange Server Acceleration

MS Exchange Server Acceleration White Paper MS Exchange Server Acceleration Using virtualization to dramatically maximize user experience for Microsoft Exchange Server Allon Cohen, PhD Scott Harlin OCZ Storage Solutions, Inc. A Toshiba

More information

Integration Guide. EMC Data Domain and Silver Peak VXOA 4.4.10 Integration Guide

Integration Guide. EMC Data Domain and Silver Peak VXOA 4.4.10 Integration Guide Integration Guide EMC Data Domain and Silver Peak VXOA 4.4.10 Integration Guide August 2013 Copyright 2013 EMC Corporation. All Rights Reserved. EMC believes the information in this publication is accurate

More information

Optimizing Dell Compellent Remote Instant Replay with Silver Peak Replication Acceleration

Optimizing Dell Compellent Remote Instant Replay with Silver Peak Replication Acceleration Optimizing Dell Compellent Remote Instant Replay with Silver Peak Replication Acceleration A Dell Technical White Paper Abstract This technical report details the benefits that Silver Peak s replication

More information

SAN Conceptual and Design Basics

SAN Conceptual and Design Basics TECHNICAL NOTE VMware Infrastructure 3 SAN Conceptual and Design Basics VMware ESX Server can be used in conjunction with a SAN (storage area network), a specialized high speed network that connects computer

More information

Pivot3 Desktop Virtualization Appliances. vstac VDI Technology Overview

Pivot3 Desktop Virtualization Appliances. vstac VDI Technology Overview Pivot3 Desktop Virtualization Appliances vstac VDI Technology Overview February 2012 Pivot3 Desktop Virtualization Technology Overview Table of Contents Executive Summary... 3 The Pivot3 VDI Appliance...

More information

Cloud Optimize Your IT

Cloud Optimize Your IT Cloud Optimize Your IT Windows Server 2012 The information contained in this presentation relates to a pre-release product which may be substantially modified before it is commercially released. This pre-release

More information

EMC VPLEX FAMILY. Continuous Availability and data Mobility Within and Across Data Centers

EMC VPLEX FAMILY. Continuous Availability and data Mobility Within and Across Data Centers EMC VPLEX FAMILY Continuous Availability and data Mobility Within and Across Data Centers DELIVERING CONTINUOUS AVAILABILITY AND DATA MOBILITY FOR MISSION CRITICAL APPLICATIONS Storage infrastructure is

More information

Best Practice of Server Virtualization Using Qsan SAN Storage System. F300Q / F400Q / F600Q Series P300Q / P400Q / P500Q / P600Q Series

Best Practice of Server Virtualization Using Qsan SAN Storage System. F300Q / F400Q / F600Q Series P300Q / P400Q / P500Q / P600Q Series Best Practice of Server Virtualization Using Qsan SAN Storage System F300Q / F400Q / F600Q Series P300Q / P400Q / P500Q / P600Q Series Version 1.0 July 2011 Copyright Copyright@2011, Qsan Technology, Inc.

More information

PARALLELS CLOUD STORAGE

PARALLELS CLOUD STORAGE PARALLELS CLOUD STORAGE Performance Benchmark Results 1 Table of Contents Executive Summary... Error! Bookmark not defined. Architecture Overview... 3 Key Features... 5 No Special Hardware Requirements...

More information

Solution Brief Availability and Recovery Options: Microsoft Exchange Solutions on VMware

Solution Brief Availability and Recovery Options: Microsoft Exchange Solutions on VMware Introduction By leveraging the inherent benefits of a virtualization based platform, a Microsoft Exchange Server 2007 deployment on VMware Infrastructure 3 offers a variety of availability and recovery

More information

Distribution One Server Requirements

Distribution One Server Requirements Distribution One Server Requirements Introduction Welcome to the Hardware Configuration Guide. The goal of this guide is to provide a practical approach to sizing your Distribution One application and

More information

Validating Long-distance VMware vmotion

Validating Long-distance VMware vmotion Technical Brief Validating Long-distance VMware vmotion with NetApp FlexCache and F5 BIG-IP F5 BIG-IP enables long distance VMware vmotion live migration and optimizes NetApp FlexCache replication. Key

More information

Windows Server 2008 R2 Hyper-V Live Migration

Windows Server 2008 R2 Hyper-V Live Migration Windows Server 2008 R2 Hyper-V Live Migration Table of Contents Overview of Windows Server 2008 R2 Hyper-V Features... 3 Dynamic VM storage... 3 Enhanced Processor Support... 3 Enhanced Networking Support...

More information

Globus Striped GridFTP Framework and Server. Raj Kettimuthu, ANL and U. Chicago

Globus Striped GridFTP Framework and Server. Raj Kettimuthu, ANL and U. Chicago Globus Striped GridFTP Framework and Server Raj Kettimuthu, ANL and U. Chicago Outline Introduction Features Motivation Architecture Globus XIO Experimental Results 3 August 2005 The Ohio State University

More information

Multiple Public IPs (virtual service IPs) are supported either to cover multiple network segments or to increase network performance.

Multiple Public IPs (virtual service IPs) are supported either to cover multiple network segments or to increase network performance. EliteNAS Cluster Mirroring Option - Introduction Real Time NAS-to-NAS Mirroring & Auto-Failover Cluster Mirroring High-Availability & Data Redundancy Option for Business Continueity Typical Cluster Mirroring

More information

Performance characterization report for Microsoft Hyper-V R2 on HP StorageWorks P4500 SAN storage

Performance characterization report for Microsoft Hyper-V R2 on HP StorageWorks P4500 SAN storage Performance characterization report for Microsoft Hyper-V R2 on HP StorageWorks P4500 SAN storage Technical white paper Table of contents Executive summary... 2 Introduction... 2 Test methodology... 3

More information

ADVANCED NETWORK CONFIGURATION GUIDE

ADVANCED NETWORK CONFIGURATION GUIDE White Paper ADVANCED NETWORK CONFIGURATION GUIDE CONTENTS Introduction 1 Terminology 1 VLAN configuration 2 NIC Bonding configuration 3 Jumbo frame configuration 4 Other I/O high availability options 4

More information

Windows Server 2008 R2 Hyper-V Live Migration

Windows Server 2008 R2 Hyper-V Live Migration Windows Server 2008 R2 Hyper-V Live Migration White Paper Published: August 09 This is a preliminary document and may be changed substantially prior to final commercial release of the software described

More information

Networking for Caribbean Development

Networking for Caribbean Development Networking for Caribbean Development BELIZE NOV 2 NOV 6, 2015 w w w. c a r i b n o g. o r g Virtualization: Architectural Considerations and Implementation Options Virtualization Virtualization is the

More information

Windows 8 SMB 2.2 File Sharing Performance

Windows 8 SMB 2.2 File Sharing Performance Windows 8 SMB 2.2 File Sharing Performance Abstract This paper provides a preliminary analysis of the performance capabilities of the Server Message Block (SMB) 2.2 file sharing protocol with 10 gigabit

More information

Synology High Availability (SHA)

Synology High Availability (SHA) Synology High Availability (SHA) Based on DSM 5.1 Synology Inc. Synology_SHAWP_ 20141106 Table of Contents Chapter 1: Introduction... 3 Chapter 2: High-Availability Clustering... 4 2.1 Synology High-Availability

More information

Availability Digest. www.availabilitydigest.com. Redundant Load Balancing for High Availability July 2013

Availability Digest. www.availabilitydigest.com. Redundant Load Balancing for High Availability July 2013 the Availability Digest Redundant Load Balancing for High Availability July 2013 A large data center can comprise hundreds or thousands of servers. These servers must not only be interconnected, but they

More information

Feature Comparison. Windows Server 2008 R2 Hyper-V and Windows Server 2012 Hyper-V

Feature Comparison. Windows Server 2008 R2 Hyper-V and Windows Server 2012 Hyper-V Comparison and Contents Introduction... 4 More Secure Multitenancy... 5 Flexible Infrastructure... 9 Scale, Performance, and Density... 13 High Availability... 18 Processor and Memory Support... 24 Network...

More information

Zadara Storage Cloud A whitepaper. @ZadaraStorage

Zadara Storage Cloud A whitepaper. @ZadaraStorage Zadara Storage Cloud A whitepaper @ZadaraStorage Zadara delivers two solutions to its customers: On- premises storage arrays Storage as a service from 31 locations globally (and counting) Some Zadara customers

More information

Deploying in a Distributed Environment

Deploying in a Distributed Environment Deploying in a Distributed Environment Distributed enterprise networks have many remote locations, ranging from dozens to thousands of small offices. Typically, between 5 and 50 employees work at each

More information

Preparation Guide. How to prepare your environment for an OnApp Cloud v3.0 (beta) deployment.

Preparation Guide. How to prepare your environment for an OnApp Cloud v3.0 (beta) deployment. Preparation Guide v3.0 BETA How to prepare your environment for an OnApp Cloud v3.0 (beta) deployment. Document version 1.0 Document release date 25 th September 2012 document revisions 1 Contents 1. Overview...

More information

Dell High Availability Solutions Guide for Microsoft Hyper-V

Dell High Availability Solutions Guide for Microsoft Hyper-V Dell High Availability Solutions Guide for Microsoft Hyper-V www.dell.com support.dell.com Notes and Cautions NOTE: A NOTE indicates important information that helps you make better use of your computer.

More information

The functionality and advantages of a high-availability file server system

The functionality and advantages of a high-availability file server system The functionality and advantages of a high-availability file server system This paper discusses the benefits of deploying a JMR SHARE High-Availability File Server System. Hardware and performance considerations

More information

NET ACCESS VOICE PRIVATE CLOUD

NET ACCESS VOICE PRIVATE CLOUD Page 0 2015 SOLUTION BRIEF NET ACCESS VOICE PRIVATE CLOUD A Cloud and Connectivity Solution for Hosted Voice Applications NET ACCESS LLC 9 Wing Drive Cedar Knolls, NJ 07927 www.nac.net Page 1 Table of

More information

Technology Insight Series

Technology Insight Series Evaluating Storage Technologies for Virtual Server Environments Russ Fellows June, 2010 Technology Insight Series Evaluator Group Copyright 2010 Evaluator Group, Inc. All rights reserved Executive Summary

More information

The proliferation of the raw processing

The proliferation of the raw processing TECHNOLOGY CONNECTED Advances with System Area Network Speeds Data Transfer between Servers with A new network switch technology is targeted to answer the phenomenal demands on intercommunication transfer

More information

Performance Evaluation of VMXNET3 Virtual Network Device VMware vsphere 4 build 164009

Performance Evaluation of VMXNET3 Virtual Network Device VMware vsphere 4 build 164009 Performance Study Performance Evaluation of VMXNET3 Virtual Network Device VMware vsphere 4 build 164009 Introduction With more and more mission critical networking intensive workloads being virtualized

More information

Oracle Database Scalability in VMware ESX VMware ESX 3.5

Oracle Database Scalability in VMware ESX VMware ESX 3.5 Performance Study Oracle Database Scalability in VMware ESX VMware ESX 3.5 Database applications running on individual physical servers represent a large consolidation opportunity. However enterprises

More information

DIABLO TECHNOLOGIES MEMORY CHANNEL STORAGE AND VMWARE VIRTUAL SAN : VDI ACCELERATION

DIABLO TECHNOLOGIES MEMORY CHANNEL STORAGE AND VMWARE VIRTUAL SAN : VDI ACCELERATION DIABLO TECHNOLOGIES MEMORY CHANNEL STORAGE AND VMWARE VIRTUAL SAN : VDI ACCELERATION A DIABLO WHITE PAPER AUGUST 2014 Ricky Trigalo Director of Business Development Virtualization, Diablo Technologies

More information

Unitt www.unitt.com. Zero Data Loss Service (ZDLS) The ultimate weapon against data loss

Unitt www.unitt.com. Zero Data Loss Service (ZDLS) The ultimate weapon against data loss Zero Data Loss Service (ZDLS) The ultimate weapon against data loss The ultimate protection for your business-critical data In the past, ultimate data protection was a costly issue, if not an impossible

More information

Live Migration of Virtual Machines in Cloud

Live Migration of Virtual Machines in Cloud International Journal of Scientific and Research Publications, Volume 2, Issue 6, June 2012 1 Live Migration of Virtual Machines in Cloud Ashima Agarwal, Shangruff Raina Department of Computer, MIT College

More information

Microsoft SQL Server 2012 on Cisco UCS with iscsi-based Storage Access in VMware ESX Virtualization Environment: Performance Study

Microsoft SQL Server 2012 on Cisco UCS with iscsi-based Storage Access in VMware ESX Virtualization Environment: Performance Study White Paper Microsoft SQL Server 2012 on Cisco UCS with iscsi-based Storage Access in VMware ESX Virtualization Environment: Performance Study 2012 Cisco and/or its affiliates. All rights reserved. This

More information

FlexNetwork Architecture Delivers Higher Speed, Lower Downtime With HP IRF Technology. August 2011

FlexNetwork Architecture Delivers Higher Speed, Lower Downtime With HP IRF Technology. August 2011 FlexNetwork Architecture Delivers Higher Speed, Lower Downtime With HP IRF Technology August 2011 Page2 Executive Summary HP commissioned Network Test to assess the performance of Intelligent Resilient

More information

Remote Copy Technology of ETERNUS6000 and ETERNUS3000 Disk Arrays

Remote Copy Technology of ETERNUS6000 and ETERNUS3000 Disk Arrays Remote Copy Technology of ETERNUS6000 and ETERNUS3000 Disk Arrays V Tsutomu Akasaka (Manuscript received July 5, 2005) This paper gives an overview of a storage-system remote copy function and the implementation

More information

White Paper. Recording Server Virtualization

White Paper. Recording Server Virtualization White Paper Recording Server Virtualization Prepared by: Mike Sherwood, Senior Solutions Engineer Milestone Systems 23 March 2011 Table of Contents Introduction... 3 Target audience and white paper purpose...

More information

PORTrockIT. Veeam : accelerating virtual machine replication with PORTrockIT

PORTrockIT. Veeam : accelerating virtual machine replication with PORTrockIT 1 PORTrockIT Veeam : accelerating virtual machine replication 2 Executive summary Business continuity solutions such as Veeam offer the ability to recover quickly from disaster by creating a replica of

More information

Technical Paper. Leveraging VMware Software to Provide Failover Protection for the Platform for SAS Business Analytics April 2011

Technical Paper. Leveraging VMware Software to Provide Failover Protection for the Platform for SAS Business Analytics April 2011 Technical Paper Leveraging VMware Software to Provide Failover Protection for the Platform for SAS Business Analytics April 2011 Table of Contents About this Document... 3 Introduction... 4 What is Failover?...

More information

Bosch Video Management System High Availability with Hyper-V

Bosch Video Management System High Availability with Hyper-V Bosch Video Management System High Availability with Hyper-V en Technical Service Note Bosch Video Management System Table of contents en 3 Table of contents 1 Introduction 4 1.1 General Requirements

More information

Quantifying the Performance Degradation of IPv6 for TCP in Windows and Linux Networking

Quantifying the Performance Degradation of IPv6 for TCP in Windows and Linux Networking Quantifying the Performance Degradation of IPv6 for TCP in Windows and Linux Networking Burjiz Soorty School of Computing and Mathematical Sciences Auckland University of Technology Auckland, New Zealand

More information

D1.2 Network Load Balancing

D1.2 Network Load Balancing D1. Network Load Balancing Ronald van der Pol, Freek Dijkstra, Igor Idziejczak, and Mark Meijerink SARA Computing and Networking Services, Science Park 11, 9 XG Amsterdam, The Netherlands June ronald.vanderpol@sara.nl,freek.dijkstra@sara.nl,

More information

Disaster Recovery Design Ehab Ashary University of Colorado at Colorado Springs

Disaster Recovery Design Ehab Ashary University of Colorado at Colorado Springs Disaster Recovery Design Ehab Ashary University of Colorado at Colorado Springs As a head of the campus network department in the Deanship of Information Technology at King Abdulaziz University for more

More information

Part 1 - What s New in Hyper-V 2012 R2. Clive.Watson@Microsoft.com Datacenter Specialist

Part 1 - What s New in Hyper-V 2012 R2. Clive.Watson@Microsoft.com Datacenter Specialist Part 1 - What s New in Hyper-V 2012 R2 Clive.Watson@Microsoft.com Datacenter Specialist Microsoft Cloud OS Vision Public Cloud Azure Virtual Machines Windows Azure Pack 1 Consistent Platform Windows Azure

More information

High Performance Data-Transfers in Grid Environment using GridFTP over InfiniBand

High Performance Data-Transfers in Grid Environment using GridFTP over InfiniBand High Performance Data-Transfers in Grid Environment using GridFTP over InfiniBand Hari Subramoni *, Ping Lai *, Raj Kettimuthu **, Dhabaleswar. K. (DK) Panda * * Computer Science and Engineering Department

More information

Performance Characteristics of VMFS and RDM VMware ESX Server 3.0.1

Performance Characteristics of VMFS and RDM VMware ESX Server 3.0.1 Performance Study Performance Characteristics of and RDM VMware ESX Server 3.0.1 VMware ESX Server offers three choices for managing disk access in a virtual machine VMware Virtual Machine File System

More information

HIGHLY AVAILABLE MULTI-DATA CENTER WINDOWS SERVER SOLUTIONS USING EMC VPLEX METRO AND SANBOLIC MELIO 2010

HIGHLY AVAILABLE MULTI-DATA CENTER WINDOWS SERVER SOLUTIONS USING EMC VPLEX METRO AND SANBOLIC MELIO 2010 White Paper HIGHLY AVAILABLE MULTI-DATA CENTER WINDOWS SERVER SOLUTIONS USING EMC VPLEX METRO AND SANBOLIC MELIO 2010 Abstract This white paper demonstrates key functionality demonstrated in a lab environment

More information

Where IT perceptions are reality. Test Report. OCe14000 Performance. Featuring Emulex OCe14102 Network Adapters Emulex XE100 Offload Engine

Where IT perceptions are reality. Test Report. OCe14000 Performance. Featuring Emulex OCe14102 Network Adapters Emulex XE100 Offload Engine Where IT perceptions are reality Test Report OCe14000 Performance Featuring Emulex OCe14102 Network Adapters Emulex XE100 Offload Engine Document # TEST2014001 v9, October 2014 Copyright 2014 IT Brand

More information

SILVER PEAK ACCELERATION WITH EMC VSPEX PRIVATE CLOUD WITH RECOVERPOINT FOR VMWARE VSPHERE

SILVER PEAK ACCELERATION WITH EMC VSPEX PRIVATE CLOUD WITH RECOVERPOINT FOR VMWARE VSPHERE VSPEX IMPLEMENTATION GUIDE SILVER PEAK ACCELERATION WITH EMC VSPEX PRIVATE CLOUD WITH RECOVERPOINT FOR VMWARE VSPHERE Silver Peak Abstract This Implementation Guide describes the deployment of Silver Peak

More information

The Benefits of Virtualizing

The Benefits of Virtualizing T E C H N I C A L B R I E F The Benefits of Virtualizing Aciduisismodo Microsoft SQL Dolore Server Eolore in Dionseq Hitachi Storage Uatummy Environments Odolorem Vel Leveraging Microsoft Hyper-V By Heidi

More information

PADS GPFS Filesystem: Crash Root Cause Analysis. Computation Institute

PADS GPFS Filesystem: Crash Root Cause Analysis. Computation Institute PADS GPFS Filesystem: Crash Root Cause Analysis Computation Institute Argonne National Laboratory Table of Contents Purpose 1 Terminology 2 Infrastructure 4 Timeline of Events 5 Background 5 Corruption

More information

Performance Analysis of IPv4 v/s IPv6 in Virtual Environment Using UBUNTU

Performance Analysis of IPv4 v/s IPv6 in Virtual Environment Using UBUNTU Performance Analysis of IPv4 v/s IPv6 in Virtual Environment Using UBUNTU Savita Shiwani Computer Science,Gyan Vihar University, Rajasthan, India G.N. Purohit AIM & ACT, Banasthali University, Banasthali,

More information

Deploying Riverbed wide-area data services in a LeftHand iscsi SAN Remote Disaster Recovery Solution

Deploying Riverbed wide-area data services in a LeftHand iscsi SAN Remote Disaster Recovery Solution Wide-area data services (WDS) Accelerating Remote Disaster Recovery Reduce Replication Windows and transfer times leveraging your existing WAN Deploying Riverbed wide-area data services in a LeftHand iscsi

More information

CloudNet: Dynamic Pooling of Cloud Resources by Live WAN Migration of Virtual Machines

CloudNet: Dynamic Pooling of Cloud Resources by Live WAN Migration of Virtual Machines University of Massachusetts, Technical Report 21 - Preliminary Draft 1 : Dynamic Pooling of Cloud Resources by Live WAN Migration of Virtual Machines Timothy Wood Prashant Shenoy University of Massachusetts

More information

Using EonStor FC-host Storage Systems in VMware Infrastructure 3 and vsphere 4

Using EonStor FC-host Storage Systems in VMware Infrastructure 3 and vsphere 4 Using EonStor FC-host Storage Systems in VMware Infrastructure 3 and vsphere 4 Application Note Abstract This application note explains the configure details of using Infortrend FC-host storage systems

More information

Enterprise Linux Business Continuity Solutions for Critical Applications

Enterprise Linux Business Continuity Solutions for Critical Applications Enterprise Linux Business Continuity Solutions for Critical Applications Introducing SteelEye Protection Suite for Linux Multi-site Cluster May 15 2009 EMEA DataKeeper Our Expanding Family of Solutions

More information

SQL Server Virtualization

SQL Server Virtualization The Essential Guide to SQL Server Virtualization S p o n s o r e d b y Virtualization in the Enterprise Today most organizations understand the importance of implementing virtualization. Virtualization

More information

VMWARE WHITE PAPER 1

VMWARE WHITE PAPER 1 1 VMWARE WHITE PAPER Introduction This paper outlines the considerations that affect network throughput. The paper examines the applications deployed on top of a virtual infrastructure and discusses the

More information

POWER ALL GLOBAL FILE SYSTEM (PGFS)

POWER ALL GLOBAL FILE SYSTEM (PGFS) POWER ALL GLOBAL FILE SYSTEM (PGFS) Defining next generation of global storage grid Power All Networks Ltd. Technical Whitepaper April 2008, version 1.01 Table of Content 1. Introduction.. 3 2. Paradigm

More information

Enhancing the Performance of Live Migration of Virtual Machine s with WSClock Replacement Algorithm

Enhancing the Performance of Live Migration of Virtual Machine s with WSClock Replacement Algorithm Enhancing the Performance of Live Migration of Virtual Machine s with WSClock Replacement Algorithm C.Sagana M.Geetha Dr R.C.Suganthe PG student, Assistant Professor, Professor, Dept of CSE, Dept of CSE

More information

Answering the Requirements of Flash-Based SSDs in the Virtualized Data Center

Answering the Requirements of Flash-Based SSDs in the Virtualized Data Center White Paper Answering the Requirements of Flash-Based SSDs in the Virtualized Data Center Provide accelerated data access and an immediate performance boost of businesscritical applications with caching

More information

IP SAN Best Practices

IP SAN Best Practices IP SAN Best Practices A Dell Technical White Paper PowerVault MD3200i Storage Arrays THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL INACCURACIES.

More information

Agenda. Enterprise Application Performance Factors. Current form of Enterprise Applications. Factors to Application Performance.

Agenda. Enterprise Application Performance Factors. Current form of Enterprise Applications. Factors to Application Performance. Agenda Enterprise Performance Factors Overall Enterprise Performance Factors Best Practice for generic Enterprise Best Practice for 3-tiers Enterprise Hardware Load Balancer Basic Unix Tuning Performance

More information

Business Continuity with the. Concerto 7000 All Flash Array. Layers of Protection for Here, Near and Anywhere Data Availability

Business Continuity with the. Concerto 7000 All Flash Array. Layers of Protection for Here, Near and Anywhere Data Availability Business Continuity with the Concerto 7000 All Flash Array Layers of Protection for Here, Near and Anywhere Data Availability Version 1.0 Abstract Concerto 7000 All Flash Array s Continuous Data Protection

More information

Open-E Data Storage Software and Intel Modular Server a certified virtualization solution

Open-E Data Storage Software and Intel Modular Server a certified virtualization solution Open-E Data Storage Software and Intel Modular Server a certified virtualization solution Contents 1. New challenges for SME IT environments 2. Open-E DSS V6 and Intel Modular Server: the ideal virtualization

More information

Dell High Availability Solutions Guide for Microsoft Hyper-V R2. A Dell Technical White Paper

Dell High Availability Solutions Guide for Microsoft Hyper-V R2. A Dell Technical White Paper Dell High Availability Solutions Guide for Microsoft Hyper-V R2 A Dell Technical White Paper THIS WHITE PAPER IS FOR INFORMATIONAL PURPOPERATING SYSTEMS ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL

More information

High-Availability Fault Tolerant Computing for Remote and Branch Offices HA/FT solutions for Cisco UCS E-Series servers and VMware vsphere

High-Availability Fault Tolerant Computing for Remote and Branch Offices HA/FT solutions for Cisco UCS E-Series servers and VMware vsphere Table of Contents UCS E-Series Availability and Fault Tolerance... 3 Solid hardware... 3 Consistent management... 3 VMware vsphere HA and FT... 3 Storage High Availability and Fault Tolerance... 4 Quick-start

More information

Philips IntelliSpace Critical Care and Anesthesia on VMware vsphere 5.1

Philips IntelliSpace Critical Care and Anesthesia on VMware vsphere 5.1 Philips IntelliSpace Critical Care and Anesthesia on VMware vsphere 5.1 Jul 2013 D E P L O Y M E N T A N D T E C H N I C A L C O N S I D E R A T I O N S G U I D E Table of Contents Introduction... 3 VMware

More information

Introduction to MPIO, MCS, Trunking, and LACP

Introduction to MPIO, MCS, Trunking, and LACP Introduction to MPIO, MCS, Trunking, and LACP Sam Lee Version 1.0 (JAN, 2010) - 1 - QSAN Technology, Inc. http://www.qsantechnology.com White Paper# QWP201002-P210C lntroduction Many users confuse the

More information

High availability and disaster recovery with Microsoft, Citrix and HP

High availability and disaster recovery with Microsoft, Citrix and HP High availability and disaster recovery White Paper High availability and disaster recovery with Microsoft, Citrix and HP Using virtualization, automation and next-generation storage to improve business

More information

M.Sc. IT Semester III VIRTUALIZATION QUESTION BANK 2014 2015 Unit 1 1. What is virtualization? Explain the five stage virtualization process. 2.

M.Sc. IT Semester III VIRTUALIZATION QUESTION BANK 2014 2015 Unit 1 1. What is virtualization? Explain the five stage virtualization process. 2. M.Sc. IT Semester III VIRTUALIZATION QUESTION BANK 2014 2015 Unit 1 1. What is virtualization? Explain the five stage virtualization process. 2. What are the different types of virtualization? Explain

More information

Building Reliable, Scalable AR System Solutions. High-Availability. White Paper

Building Reliable, Scalable AR System Solutions. High-Availability. White Paper Building Reliable, Scalable Solutions High-Availability White Paper Introduction This paper will discuss the products, tools and strategies available for building reliable and scalable Action Request System

More information

Evaluation of Enterprise Data Protection using SEP Software

Evaluation of Enterprise Data Protection using SEP Software Test Validation Test Validation - SEP sesam Enterprise Backup Software Evaluation of Enterprise Data Protection using SEP Software Author:... Enabling you to make the best technology decisions Backup &

More information

Extending SANs Over TCP/IP by Richard Froom & Erum Frahim

Extending SANs Over TCP/IP by Richard Froom & Erum Frahim Extending SANs Over TCP/IP by Richard Froom & Erum Frahim Extending storage area networks (SANs) over a distance has become a necessity for enterprise networks. A single SAN island with one storage system

More information

CENTRAL CONTROL FACILITY (CCF) DESIGN AND LATEST DATA CENTER PRACTICES

CENTRAL CONTROL FACILITY (CCF) DESIGN AND LATEST DATA CENTER PRACTICES CENTRAL CONTROL FACILITY (CCF) DESIGN AND LATEST DATA CENTER PRACTICES Obrad Aleksic, Systems Specialist, Hatch Mott MacDonald, 2800 Speakman Drive, Mississauga, Canada, 905 403 3923, obrad.aleksic@hatchmott.com

More information

PERFORMANCE ANALYSIS OF KERNEL-BASED VIRTUAL MACHINE

PERFORMANCE ANALYSIS OF KERNEL-BASED VIRTUAL MACHINE PERFORMANCE ANALYSIS OF KERNEL-BASED VIRTUAL MACHINE Sudha M 1, Harish G M 2, Nandan A 3, Usha J 4 1 Department of MCA, R V College of Engineering, Bangalore : 560059, India sudha.mooki@gmail.com 2 Department

More information

CloudNet: Enterprise. AT&T Labs Research, Joint work with: Timothy Wood, Jacobus van der Merwe, and Prashant Shenoy

CloudNet: Enterprise. AT&T Labs Research, Joint work with: Timothy Wood, Jacobus van der Merwe, and Prashant Shenoy CloudNet: Enterprise Ready Virtual Private Clouds K. K. Ramakrishnan AT&T Labs Research, Florham Park, NJ Joint work with: Timothy Wood, Jacobus van der Merwe, and Prashant Shenoy Vision and Research Direction

More information

MS EXCHANGE SERVER ACCELERATION IN VMWARE ENVIRONMENTS WITH SANRAD VXL

MS EXCHANGE SERVER ACCELERATION IN VMWARE ENVIRONMENTS WITH SANRAD VXL MS EXCHANGE SERVER ACCELERATION IN VMWARE ENVIRONMENTS WITH SANRAD VXL Dr. Allon Cohen Eli Ben Namer info@sanrad.com 1 EXECUTIVE SUMMARY SANRAD VXL provides enterprise class acceleration for virtualized

More information

Dell Virtualization Solution for Microsoft SQL Server 2012 using PowerEdge R820

Dell Virtualization Solution for Microsoft SQL Server 2012 using PowerEdge R820 Dell Virtualization Solution for Microsoft SQL Server 2012 using PowerEdge R820 This white paper discusses the SQL server workload consolidation capabilities of Dell PowerEdge R820 using Virtualization.

More information

Mirror File System for Cloud Computing

Mirror File System for Cloud Computing Mirror File System for Cloud Computing Twin Peaks Software Abstract The idea of the Mirror File System (MFS) is simple. When a user creates or updates a file, MFS creates or updates it in real time on

More information

Virtualizing Exchange

Virtualizing Exchange Virtualizing Exchange Simplifying and Optimizing Management of Microsoft Exchange Server Using Virtualization Technologies By Anil Desai Microsoft MVP September, 2008 An Alternative to Hosted Exchange

More information

Brocade and EMC Solution for Microsoft Hyper-V and SharePoint Clusters

Brocade and EMC Solution for Microsoft Hyper-V and SharePoint Clusters Brocade and EMC Solution for Microsoft Hyper-V and SharePoint Clusters Highlights a Brocade-EMC solution with EMC CLARiiON, EMC Atmos, Brocade Fibre Channel (FC) switches, Brocade FC HBAs, and Brocade

More information

Symantec Cluster Server powered by Veritas

Symantec Cluster Server powered by Veritas Delivers high availability and disaster recovery for your critical applications Data Sheet: High Availability Overview protects your most important applications from planned and unplanned downtime. Cluster

More information