The electronic medical record, safety, and critical care

Size: px
Start display at page:

Download "The electronic medical record, safety, and critical care"

Transcription

1 Crit Care Clin 21 (2005) The electronic medical record, safety, and critical care William F. Bria II, MD, FACP a, *, M. Michael Shabot, MD, FACS, FCCM, FACMI b a Department of Internal Medicine, University of Michigan Medical School, 1500 East Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI , USA b Surgical Intensive Care, Cedars-Sinai Medical Center, 9700 Beverly Boulevard, Suite 8215, Los Angeles, CA 90048, USA Since the call in 2000 by the Leapfrog Group to decrease medical errors by implementing computerized physician order entry (CPOE) as well as their recommendation of sweeping changes in intensive care unit (ICU) staffing, there has been a crescendo of publications and interest in the study of this and all components of the electronic medical record (EMR) [1]. This call for change in implementation of information systems in American hospitals followed the 1999 Institute of Medicine (IOM) publication of To Err is Human which reported that 95,000 people in the United States die each year because of medical errors in hospitals that are preventable with improved systems, in particular, information systems [2]. The IOM subsequently released several other publications which suggested that information technology can lead to improvements in safety, effectiveness, patient-centeredness, timeliness, efficiency, and equity in the delivery of health care [3]. In 2003, the IOM refined the connection between information systems and safety in patient care by asserting that a national health information infrastructure is needed to provide immediate access to complete patient information and decision-support tools for clinicians and their patients, and to capture patient safety information as a byproduct of care and use this information to design even safer delivery systems [4]. Finally, the entire matter of the EMR in American health care achieved the highest level of endorsement when President George W. Bush declared in his 2004 State of the Union Address * Corresponding author. address: (W.F. Bria II) /05/$ see front matter D 2004 Elsevier Inc. All rights reserved. doi: /j.ccc criticalcare.theclinics.com

2 56 bria ii & shabot that by computerizing health records, we can avoid dangerous medical mistakes, reduce costs, and improve care [5]. For the purposes of this article, the critical care EMR is separated into integrated results reporting information system (RRIS), CPOE, and clinical decision support systems (CDSS). This article describes the elements of the EMR with regard to critical care and the special challenges and opportunities for improvement in patient safety, quality of care, and efficiency of care that are possible with modern day EMRs. Integrated results reporting information system CareWeb: case study The most commonly available components of the EMR in American ICUs is the RRIS. Systems that often provide patient-centric views of laboratory, radiology, cardiology, pharmacy, and other clinical departments data have transformed the process of information retrieval, reporting, and integration. The origins of modern day critical care RRISs usually were represented by the STAT laboratory printer which spewed out the latest blood work results; these strips of data were cut and pasted onto endless flow charts and paper records. Hand-transcribed patient flow charts consumed untold hours of house officer and nursing time in an effort to make sense of the volumes of information that were generated about the critically ill patient. More recently, RRIS systems were developed that use web-based technology, the value and challenges of which may be best understood by an examination of a case history of an RRIS. In 1997, the University of Michigan Hospitals and Health Systems (UMHHS) evaluated its clinical information environment for any impending Y2K review and to formulate a new strategy for the coming millennium. Analysis revealed that the clinical information catalog consisted of more than 400 applications that were supported in more than 60 departments in the medical center. It was clear that this situation resulted in increased support costs and maintenance for the organization. Even more concerning was the fact that these systems duplicated basic functions, such as information retrieval and presentation. This analysis made it clear that a patient-centric results reporting information system, built upon a central data repository (CDR), was needed. At that time, fortuitously, programming expertise in web-based architecture was growing the medical center information technology under the direction of Dr. Jocelyn DeWitt, CIO at UMHHS. The web technology was attractive because it was evident that the architecture would provide rapid accessibility and require little training. It also was hoped that it would decrease the cost of maintenance by standardizing systems from the standpoint of information access and integration thereby avoiding the mass duplication of information access that existed. The system was dubbed CareWeb. The system was developed in incremental steps that were directed at specific information problems/issues within the organization. For example, the first problem was to combine information from a legacy homegrown patient scheduling

3 electronic medical record safety and critical care 57 system with the data from a new commercial scheduling system. The vendor of the legacy scheduling system had no integration product; Care Web was given the task and it performed well. In particular, the incorporation of patient schedule information by clinician into easily selectable lists (Fig. 1) allowed for rapid information access in a intuitive manner for physicians, nurses, and others. From the outset, concern about inappropriate information access led to two security constructs role-based information access and robust audit trail records. Role-based information access enabled selected portions of the CareWeb system for some users and restricted access for others. For example, the Psychiatry Department judged that its clinical documentation was too sensitive to be widely available for viewing. Therefore, based upon user access (double-bind password system), psychiatry notes would be viewable to the user or not. The importance of complete information for patient safety (eg, medication interactions) led to the requirement that the problem summary list always remained complete for the individual patient. Robust audit trails were programmed into the system which allowed a complete record of who signed into CareWeb and when and granular information (eg, which patients were reviewed, what information was seen and for how long). An educational communication to faculty and staff provided reassurance, in the early days of the system, that employees confidentiality and privacy would be respected. A key advantage of the CareWeb system was the development of the CDR with what might be called opportunistic information integration (ie, acquisition of information from legacy systems in whatever manner was possible). For the more robust system, standards-based (eg, health level 7; HL-7) communications were used. Where much smaller systems were encountered, internet file transfer protocol batch data transfers were used. Most importantly, the user interface was designed to be as web-standard and familiar to any browser user as possible. The system was released in 1998; within the following 8 months it became the clinical information resource for the in-patient and out-patient enterprise. A survey of house staff, attending physicians, nurses, allied health, and the administrative users (more than 10,000) was performed in 1998 to evaluate why this system was adopted by users so rapidly and completely. The top reasons for user satisfaction were: (1) all clinical information was in one place, (2) ease of use, (3) familiarity of the web user interface, and (4) incremental growth of the system. Incremental growth was possible because of a remarkable synergy that developed with the medical, nursing, and administrative staff as CareWeb grew in popularity. A CareWeb steering committee (consisting of department chairman appointed representatives from each constituency) remains the main organizational body that reviews, prioritizes, and assists in the management of CareWeb development. Early data trending (tabular clinical information) was especially useful in the critical care and out-patient areas and often replaced paper flow charts. Apart from clinical department results reporting, the most clinically important component of CareWeb is the clinical documents section (see Fig. 1). Document

4 58 bria ii & shabot

5 electronic medical record safety and critical care 59 creation in CareWeb most often occurs by voice transcription; however, by the use of user-customized document templates, the create document function in the system (text file editor) is enjoying rapid growth. Recently, this component of the system was implemented in our medical ICU (MICU) and permits legible, timely daily progress notes to be edited and signed by the ICU attending and available for viewing within 15 minutes of completion. The combination of enhanced computer skills of the new generation of physicians and the value of templates that provide guides for structured medical documentation are facilitating acceptance. A particular application of this communication function is being studied in the acute care medical units for error reduction in house officer sign-outs. In our critical care units, CareWeb has continued to grow into areas beyond traditional results reporting (eg, documentation) and now exists as the primary means for clinical information editing and electronic signature. Because CareWeb is a web-based EMR system, it is accessible over the Internet and uses a Health Insurance Portability & Account ability Act of 1996 compliant double-bind password system remotely. Physicians and others access the system from offices, homes, and the field. CareWeb demonstrates why the RRIS is the key first step toward the EMR and clinical decision support in any health care enterprise. The RRIS features of improved patient information access provide the fundamental elements of decision support. With data integration and communication standards, the process of creation of a CDR is an essential first infrastructure step. It also is important to gain the trust, attention, and interest of your organization and medical staff in particular. An enterprise-wide RRIS strategy is a proven method to engage clinicians in the effective use of the electronic medical record. Computerized physician order entry in the intensive care unit There is a rapidly evolving momentum for the implementation of CPOE in American hospitals and a notion that serious medical errors can be prevented in acute care and other settings by their implementation. A recent survey of more than 900 United States hospitals demonstrates that the vast majority have not implemented CPOE systems; less than 10% reported full physician electronic order entry [6]. The existence of this situation, despite literature that demonstrated a significant decrease in adverse drug events (ADEs) as a result of CPOE, demonstrates a conundrum of American health care that we discussed in detail [7]. Nevertheless, the growing momentum of the regulatory, research, and political initiatives resulted in a growing awareness that a transformation in American health care, including critical care, is underway. ADEs are injuries, either preventable or nonpreventable, that are due to a drug (also called an adverse drug reaction). The literature in acute care and critical care settings demonstrates a significant impact of the CPOE component of the Fig. 1. Example of CareWeb page.

6 60 bria ii & shabot Fig. 2. The effect of CPOE on potential errors. EMR on ADEs, comparable to comprehensive MD, RN, and PharmD review teams [8,9]. An important recent report of CPOE implementation in a pediatric ICU, however, begins to refine our understanding of the value of CPOE for what it is (automation of the process of writing and transmitting orders). This well-controlled investigation examined the impact of CPOE on three aspects of order writing in the ICU: (1) ADEs, (2) medication prescription errors (MPEs; errors in which inadequate information was provided or further interpretation [eg, illegibility] was required for the order to be processed), and (3) rules violations (RVs; errors that were not compliant with standard hospital policies [eg, abbreviations]). This prospective trial was conducted on 514 pediatric patients who were admitted to a 20-bed pediatric critical care unit in a tertiarycare children s hospital before and after implementation of CPOE. A total of 13,828 medication orders was reviewed. The implementation of CPOE resulted in a nearly complete elimination of MPEs and RVs and a significant, but less dramatic, effect on potential errors (Fig. 2) [10]. This provides a new insight into the value and limitations of CPOE. Automation of the format and communication of orders alone are only likely to impact those elements, format, and structure. These are important aspects of patient care; however, the more complex issues of appropriate care and evidence-based care rely on the implementation of more sophisticated, decision support systems. Accurate identification of errors in health care: a system issue Understanding safety: how are we really doing? As we endeavor to implement information tools to decrease ADEs and illegible medical documentation and to improve clinical decision making, the most

7 electronic medical record safety and critical care 61 fundamental question remains. How many errors are occurring in our ICUs? One of the most commonly observed limitations with implementation of clinical information systems has been this baseline comparison information that proves or refutes the value of the system in question on quality of care. That there are serious problems with what most clinicians consider to be traditional methods of error reporting provides a sobering insight. For example, although nationally reported medication errors rates vary little (from 3% to 6% overall), when automated methods of error event reporting are used, rates increased more than 81 times [11]. These automated strategies include elements, such as recording reason for medication discontinuation, administration of antidotes or emergency clotting factor infusions, and pointing out a fundamental disconnect between what is happening in the process of care and what is codified in incident reports. Identification of errors in the critical care setting is more complicated by: (1) the acuity of the patients that are involved, (2) the plethora of data that is generated from bedside systems, laboratory studies, radiology testing, and medications administered, and (3) the challenges of integrating the input of the many health care teams that participate in the patient s care (eg, consultants, nursing, respiratory therapy, pharmacy, physical therapy). Finally, the IOM emphasized that the solution to errors in medical care is improvement in medical systems, not individuals. Although this is a noteworthy sentiment, all too often it is not the first consideration in a critical care mishap where individual responsibility, litigation fears, and risk management come rapidly to the fore. Considering the complexity of critical care patient management, it comes as no surprise that the critical care database management system is one of the most commonly implemented elements of the EMR; it demonstrates high value and little resistance. Intensive care unit device and data integration Integrated links to patient data that are generated inside and outside of the ICU are essential requirements for a successful ICU clinical information system (CIS). These links funnel clinically needed data to bedside ICU workstations (Fig. 3). With data links that are implemented fully, the CIS serves as the focal point for real-time data acquisition, validation, and display [12,13]. In early CISs, the data links frequently were designed and implemented on site by the system developers [14 16]. Complex analog and digital data links were devised for a wide variety of bedside monitoring devices. Frequently, data links to laboratory and other information-producing systems that were outside of the ICU were point-to-point connections or even derived from other devices, such as laboratory system printers. These data links were difficult to construct and maintain. Most CIS data links now can be purchased and installed as simple options to physiologic monitoring systems, bedside therapy devices, and other dataproducing systems. This was made possible by the emergence of standards for data communication between bedside devices and information systems as well as

8 62 bria ii & shabot

9 electronic medical record safety and critical care 63 for medical communications between information systems. The current bedside device communication standard is the Institute of Electrical and Electronic Engineers Medical Information Bus Standard #1073 (MIB) [17,18]. This standard defines the hardware, software, and data communications between physiologic monitors, ventilators, intravenous (IV) pumps, intra-aortic balloon pumps, and a wide variety of other devices and a CIS. The MIB provides a means to associate devices with a particular bedside, and thereby, to a specific patient in the CIS. It also permits devices to be queried on demand or at intervals or for devices to spontaneously report data and status information on an internal schedule. Most importantly, the MIB standard provides a mechanism to identify uniquely multiple similar devices at a bedside, most commonly a profusion of IV pumps around a critically ill patient. The safety advantages that bedside device interface links provide are several: Transcription errors are avoided. Bedside data are not lost if a nurse is busy with another patient. Most CISs hold raw bedside data for the nurse s review and approval when convenient. Sophisticated alarms and alerts can be devised for medication infusions to avoid overdoses. Some vendors provide MIB-like interfaces for their devices, whereas others make bedside data available as an HL-7 data stream. Either way, it is possible for most CISs to receive and to display monitoring data properly. Depending on how the CIS is configured, raw bedside data may be presented to nurses for editing, confirmation, and approval. Other kinds of devices (eg, ventilators) provide digital data that usually are not subject to editing. Such data may be displayed in the permanent chart as device data without a specific confirmation. Typically, laboratory, radiology, dictation, patient registration, and other systems communicate with CISs over HL-7 data links. HL-7 is a standard of the American National Standards Institute that defines the format and content of many different kinds of medical data transmissions. The safety advantages of data links between systems include: Prompt, error-free delivery of results Avoidance of transcription errors Automated marking of abnormal and critical laboratory values by the CIS Ability of the CIS to provide alerts to caregivers based on the data received Clinical decision support Patient safety is enhanced by effective decision support for the caregiver team. In an ICU, this includes nurses, physicians, pharmacists, respiratory therapists, Fig. 3. Intensive care unit clinical information system and interfaces.

10 64 bria ii & shabot Fig. 4. Multi-section CIS flowsheet display. and many others. How the team works in concert with the CIS is important; an effective CIS enhances collaboration between team members [19,20]. The CIS needs to support the workflow of the team on rounds as an information source and as a means to document care. A CIS can provide decision support simply by integrating data for review on screens and reports (Fig. 4). Medication management is improved with the CIS s Medication Administration Record (MAR) (Fig. 5). A CIS also can provide derived hemodynamic, respiratory, and laboratory data for decision support [21 23]. A CIS can provide context-sensitive links or infobuttons to reference information, guidelines, or related data [24]. In addition, the CIS can provide the data for measurement of performance on the ICU core measures as proposed by the Joint Commission for Accreditation of Health Care Organizations other quality standards bodies. Critical alerting systems Introduction A growing body of evidence suggests that computerized alerting systems may improve patient safety and survival and decrease errors, the length of time patients spend in dangerous conditions, hospital length of stay (LOS), and costs. The IOM s 1999 report, To Err is Human: Building a Safe Health System, brought the problem of errors in medicine to the public s attention [2].

11 electronic medical record safety and critical care 65 Fig. 5. Medication administration record. Considerable debate in public and professional sectors ensued, although the precise number of injuries and deaths that are caused by medical errors remains in question. Regardless of the size of the problem, there is increasing recognition that errors in hospitalized and ambulatory patients significantly increase morbidity and mortality. Serious complications and death result from a series of events or system failures, as described in the IOM report. Not all events are obvious errors; however, if one seemingly harmless, avoidable event allows a chain of subsequent events to occur that leads to complications or death, the health care system has failed the patient. Although most hospitals have numerous policies and procedures in place to protect patients, these policies may contain holes through which errors can slip. Additionally, the results of interventions may not be delivered to caregivers in a timely fashion [25]. Automated alerts To preclude delays, omissions, and errors in patient care, a critical alerting system was developed at Cedars-Sinai Medical Center that continuously monitors the data in a CIS for the occurrence of critical or exceptional clinical events. The alerting system makes use of all of the data that are sent to, or generated by, a CIS. Types of data that are used as input to the alerting algorithms include: Blood pressure Heart rate

12 66 bria ii & shabot Heart rhythm Pulmonary capillary wedge pressure Urinary output Ventilator data Bedside events Coma scores Presence or absence of monitoring catheters Clinical laboratory results Blood gas results Medications Medication blood levels Readmission events In addition, certain kinds of data are trended over time to determine if trend alerts should be generated. The alerting system runs on hardware that is separate from the CIS and the other systems that are shown in this diagram and uses software and rules that were written at Cedars-Sinai Medical Center. The alerting software contains a rules engine for detecting critical events and an alerting engine to notify appropriate caregivers of events as they occur. When an Clinical Lab System Blood Gas System Pharmacy System Clinical Information System Network ALERT PROCESSOR Is Data Item an Alert Key? NO Quit YES Patient Files YES Need Other Data? NO Prior and Related Data Alert Criteria Met? NO Quit YES Alert Actions Terminal Message Alert Log Wireless Alert Fig. 6. Critical alerting system.

13 electronic medical record safety and critical care 67 alert condition is detected, the alerting engine formats a message and transmits it to various recipients, based on a table of recipients per message type. Users may be notified of critical alerts in different ways, depending on the capabilities of the CIS and the urgency of the alert. For a low-priority alert, it may be sufficient to wait for a user to log on before displaying the alert. Alternatively, an message that contains the alert may be sent. For an on-line CIS, an alert message may be displayed whenever a caregiver is viewing the affected patient s record. For urgent or high-priority alerts, the message and patient ID could be displayed whenever an appropriate caregiver was logged on to any patient. For critical alerts, the most expeditious method of notifying caregivers is to push the alert message to their alphanumeric pager or other wireless device with text-receiving capabilities [26 30]. For each type of alert and caregiver, the alerting engine contains rules that determine which alerts go to which caregivers and the preferred method of delivery. The alerting engine operates by examining all the data that are sent to it. Certain kinds of data require other data items for a decision to be made about whether an alert condition is present. When necessary, the alerting engine accesses patient files to recall the needed data. When all of the data are available, the engine determines whether an alert has occurred. This determination is made using binary rules that are stored with the alerting engine. An overview of the automated decision-making process and the various methods of alerting caregivers is shown in Fig. 6. Alert inferencing strategies Certain laboratory results are appropriate for critical value alerts because severe abnormalities can lead to morbidity or mortality (Box 1). Complex trend alerts were devised for hemoglobin, hematocrit, and serum sodium with an algorithm that analyzes the amount of change between two values, the rate of change, the time span between samples, and the proximity of the most current value to a critical value limit [31,32]. Correlation of laboratory alerts with outcome Critical alerts were correlated with outcomes for patients who were admitted to the Cedars-Sinai Surgical ICU over an 8-month period. Fifteen hundred and fifteen alerts were recorded out of a total of 115,000 laboratory results that were transmitted to the CIS during the study period (alert incidence = 1.32%). Alerts were categorized as shown in Table 1. Striking differences in outcome were noted between patients who suffered one or more alerts during their stay in the surgical ICU (SICU) and those who had no alerts, as measured over a 3-month period (Table 2). These findings were confirmed in a much larger study of 3973 consecutive patients who were admitted to the SICU over the 2-year period from January 1, 1999 through December 31, These patients received 13,608 days of SICU care (Table 3).

14 68 bria ii & shabot Box 1. Laboratory results that are appropriate for critical value alerts Chemistries Sodium Potassium Chloride Calcium Hematology Hemoglobin Hematocrit White blood count Prothrombin time Partial thromboplastin time Cardiac enzymes Troponin I Arterial blood gas ph Po 2 Pco 2 Drug levels Phenytoin Theophylline Phenobarbital Quinidine Lidocaine Procainamide N-acetyl procainamide (NAPA) Digoxin Thiocyanante Gentamicin Tobramycin

15 electronic medical record safety and critical care 69 Table 1 Categories of alerts Alert type Number Percent Blood Gas % Hematology % Hemoglobin trend % Chemistry % Cardiac enzymes % Hematocrit trend % Coagulation % Drug levels: % Total: % In the latter two studies, the differences in SICU LOS, SICU mortality, and hospital mortality were highly statistically significant between patients who had no alerts versus patients who had one or more alerts. There is no question that the occurrence of even one critical alert is correlated with adverse outcomes in critically ill patients. Critical exception alerts A new form of alert was developed based on the occurrence of exceptional clinical conditions rather than laboratory values (Box 2). Exceptional clinical conditions are defined as: (1) unusual single clinical events; (2) a cluster of clinical events that occur at the same time; or (3) clinical events that occur over a period of time. Exception alert conditions are defined in a configurable, table-driven format which permits the addition of new conditions as they are appreciated. Calculation-adjusted critical alerts Certain laboratory parameters represent appropriate alert keys if other criteria are met. A common example is serum calcium, which may cause titanic muscle contractions when levels decrease to less than 7 mg/dl; however, the measurement of total serum calcium is affected by the serum albumin concentration and the blood ph. Most patients in the patients who have what seems to be critical hypocalcemia are merely hypoalbuminemic and are in no danger of tetany. The reason is that normally calcium is 55% bound to albumin; only the unbound or ionized calcium is physiologically active. Albumin binding also is affected by Table 2 Three month study-icu alerts and outcomes # patients SICU LOS SICU mortality Hospital mortality No alert conditions % 1.3% One or more alerts % 15.9%

16 70 bria ii & shabot Table 3 Twenty four month study-icu alerts and outcomes # patients SICU LOS SICU mortality Hospital mortality No alert conditions 2, % 2.0% One or more alerts 1, % 9.5% ph. Therefore, the laboratory s reported serum calcium level must be subjected to a calculation adjustment before sending caregivers a critical alert that is based on it. Whenever related laboratory values are used in calculation-adjusted limits, one must specify a time window for which the related values are appropriate to use in the calculation. Because serum albumin changes slowly in the absence of albumin infusions, it can be recognized as valid for 48 hours. Conversely, arterial ph may change rapidly; it is only considered to be valid for 2 hours for calculation adjustment purposes. Medication alerts Medications are a prime source of patient safety information. In 1998, the ICU MAR was added to the SICU CIS. All medication orders are entered into the CareVue MAR and all doses are charted in the MAR. This allowed for comprehensive medication alerts to be added to the computerized alerting system. At the time medications are ordered, the alerting system checks for allergies, crossallergies, medication interactions and medication-laboratory value alert conditions. On an on-going basis, the alerting system checks all incoming laboratory values against the ordered medications to determine if a serious condition is developing. An example would be an increasing level of serum urea nitrogen or Box 2. Currently operational exception alert conditions FiO 2 N 60% for more than 4 hours Positive end expiratory pressure N 15 cm H 2 0 Systolic blood pressure (BP) b 80 mm Hg and no pulmonary artery catheter Systolic BP b 80 mm Hg and pulmonary wedge pressure b 10 mm Hg Pulmonary wedge pressure N 22 mm Hg Urine output b 0.3 ml/kg/h and not admitted in chronic renal failure Ventricular tachycardia Ventricular fibrillation Code blue Readmission to ICU in less than 48 hours postdischarge

17 electronic medical record safety and critical care 71 creatinine while a patient was receiving a nephrotoxic drug. The system checks for increasing levels of serum urea nitrogen and creatinine in these conditions and will alert for a significant increase in the laboratory value, even if it is in the normal range. Additionally, the medication alerting system continuously evaluates bedside physiologic measurements (eg, urine output and blood pressure) and will alert if physiologic measurements indicate that an adverse drug event may be eminent. Advisory messages are transmitted to the ICU pharmacist when laboratory values related to a patient s current medications are received by the CIS (eg, a partial thromboplastin time on a patient who is receiving a heparin anticoagulant IV infusion) (Box 3). Alphanumeric alert paging Alphanumeric devices, including encrypted pagers, messaging cell phones, and other communication devices, are now widely available. A diagram of the wireless alerting system is shown in Fig. 7. Exception alerts are transmitted as soon as they are detected. Certain time oriented exception conditions are checked hourly, others are checked every 15 minutes. A typical exception alert is displayed in Fig. 8. A typical laboratory value alert is displayed in Fig. 9. Medication alerts are detected whenever an incoming medication order, laboratory result, or bedside physiologic measurement exceeds a preset medication alert threshold. Orders that are entered into the CIS s MAR are checked automatically for allergies, excessive dosage, and certain drug lab and drug drug interactions. Medication orders are checked continuously against incoming physiologic and laboratory data for evidence of adverse drug effects (eg, worsening renal function or decreasing urine output in patients who are receiving antibiotics or other drugs that are associated with nephrotoxicity). Once detected, explicit alert messages are transmitted to alphanumeric pagers that are carried by SICU residents, faculty, and the ICU pharmacist. Advisory-type messages are transmitted to the ICU pharmacist when laboratory values that are related to a patient s current medications are received by the CIS. Examples of medication alerts are shown in Figs. 10 and 11. Clinical results Execution of algorithms to transmit critically abnormal laboratory and medication results is instantaneous, whereas execution of algorithms to detect exception conditions occurs on a frequent, periodic basis. Generally, notification of exception and alert conditions is received at the pager within 1 minute of detection. Although radio transmission is subject to data traffic or other delays in the paging system, in many instances the clinician who receives the page is the first individual to be aware of, and to respond to, the life-threatening condition. This occurs despite the fact that the data item that triggered the alert was posted simultaneously to the patient s electronic chart.

18 72 bria ii & shabot Box 3. Examples of the types of medication alert conditions that are detected Allergy alerts Penicillin allergy for ordered drugs including penicillin, ampicillin, augmentin, zosyn, oxacillin, primaxin, unasyn Sulfa or Bactrim allergy for ordered drugs including Bactrim, Celebrex Any drug ordered for which an allergy is entered in the CIS Medication dosage alerts Gentamicin 200 mg Tobramycin 200 mg Vancomycin 1500 mg Phenytoin 1000 mg Digoxin 0.5 mg Heparin flush 5000 units Heparin injection 5000 units Enoxeparin 30 mg Epogen 20,000 mg Medication-physiology alerts Low urine output (b0.3 ml/kg/h for 3 hours) and the patient is on gentamicin, tobramycin, vancomycin, penicillin, ampicillin, ampicillin, augmentin, piperacillin, zosyn, oxacillin, primaxin, unasyn Medication laboratory data trend alerts Alert if serum creatinine level increases by 0.5 mg/dl in 24 hours and the patient is receiving any of the following drugs: gentamicin, tobramycin, amikacin, vancomycin, amphotericin, digoxin, procainamide, prograf, cyclosporin, ganciclovir Medication-lab advisories (sent to pharmacist only) Laboratory results sent when a patient is receiving one of the following drugs: Partial thromboplastin time on heparin drip Phenytoin level on phenytoin Prothrombin time on warfarin

19 electronic medical record safety and critical care 73 Prothrombin time international normalized ratio on warfarin Digoxin level on digoxin Gentamicin level on gentamicin Tobramycin level on tobramycin Vancomycin level on vancomycin Lidocaine level on lidocaine drip Theophylline level on theophylline Theophylline level on theodur Theophylline level on aminophylline FK506 level on tacrolimus FK506 level on prograf Procainamide level on procainamide NAPA level on procainamide Pro-NAPA level on procainamide Alert and advisory messages Wireless messages were audited for a 6-month period from July 1, 1999 to December 31, 1999 in the SICU; alerts were received on 937 patients who received 3232 days of care (Table 4). These results indicate that critical events occur in a busy, tertiary care ICU several thousand times per year. Each critical Fig. 7. Cedars-Sinai wireless alerting system.

20 74 bria ii & shabot Fig. 8. Exception condition alert: systolic blood pressure b80 mm Hg with no Swan-Ganz catheter in place. Patient identification and other information is available using the arrow scroll buttons to the right of the display. event represents an opportunity for omission, delay, or error in treatment. The potential for improving outcomes with a real-time alerting system is clear. Standards, the electronic medical record, and the intensive care unit Information systems, at the lowest level, operate on a series of 0s and 1s, the binary number system. To represent words, pictures, diagnoses, procedures, and so forth a computer system must have a number (a code for that element). Medical information has been represented in controlled dictionaries or lexicons for decades. The most commonly used lexicon in medicine is the International Classification of Diseases, Ninth Revision (and elsewhere, International Statistical Classification of Diseases, 10th Revision) system. This system was created for financial transactions rather than to communicate medical diagnoses between practicing clinicians. Internationally, many other lexicons have been developed to meet specific needs. For example, the Systematized Nomenclature of Medicine (SNOMED) lexicon initially was developed by the American College of Pathology for standardized diagnosis coding. Over the years, this lexicon has been expanded to include medications, procedures, and fine detail of clinically relevant medical information. On July 1, 2003, the Secretary of Health Fig. 9. Laboratory value alert: serum sodium (NA + ) 117 mmol/dl.

Wireless Clinical Alerts for Critical Medication, Laboratory and Physiologic Data

Wireless Clinical Alerts for Critical Medication, Laboratory and Physiologic Data Wireless Clinical Alerts for Critical Medication, Laboratory and Physiologic Data M. Michael Shabot, M.D., FACS, FCCM, FACMI, Mark LoBue, B.A. and Jeannie Chen, Pharm.D. From the Burns and Allen Research

More information

Medication error is the most common

Medication error is the most common Medication Reconciliation Transfer of medication information across settings keeping it free from error. By Jane H. Barnsteiner, PhD, RN, FAAN Medication error is the most common type of error affecting

More information

JAMIA. Reducing the Frequency of Errors in Medicine Using Information Technology. on Quality Improvement

JAMIA. Reducing the Frequency of Errors in Medicine Using Information Technology. on Quality Improvement Journal of the American Medical Informatics Association Volume 8 Number 4 Jul / Aug 2001 299 Focus JAMIA on Quality Improvement White Paper Reducing the Frequency of Errors in Medicine Using Information

More information

Challenges to Physicians Use of A Wireless Alert Pager

Challenges to Physicians Use of A Wireless Alert Pager Challenges to Physicians Use of A Wireless Alert Pager Madhu C. Reddy Ph.D. 1, Wanda Pratt Ph.D. 2,3, David W. McDonald Ph.D. 3, M. Michael Shabot M.D. 4 1 School of Management and Information Systems,

More information

Mona Osman MD, MPH, MBA

Mona Osman MD, MPH, MBA Mona Osman MD, MPH, MBA Objectives To define an Electronic Medical Record (EMR) To demonstrate the benefits of EMR To introduce the Lebanese Society of Family Medicine- EMR Reality Check The healthcare

More information

HIMSS Electronic Health Record Definitional Model Version 1.0

HIMSS Electronic Health Record Definitional Model Version 1.0 HIMSS Electronic Health Record Definitional Model Version 1.0 Prepared by HIMSS Electronic Health Record Committee Thomas Handler, MD. Research Director, Gartner Rick Holtmeier, President, Berdy Systems

More information

Since the release of the Institute of Medicine s report To err is human, 1 there

Since the release of the Institute of Medicine s report To err is human, 1 there Will Electronic Order Entry Reduce Health Care Costs? Since the release of the Institute of Medicine s report To err is human, 1 there has been growing interest in electronic order entry as a tool for

More information

Design and Implementation of a Real-Time Clinical Alerting System for Intensive Care Unit

Design and Implementation of a Real-Time Clinical Alerting System for Intensive Care Unit Design and Implementation of a Real-Time Clinical Alerting System for Intensive Care Unit Hsiao-Ting Chen 1, Wan-Chun Ma 2, Der-Ming Liou 1 1 Telemedicine Lab, Institute of Health Informatics and Decision

More information

Efficiency Gains with Computerized Provider Order Entry

Efficiency Gains with Computerized Provider Order Entry Efficiency Gains with Computerized Provider Order Entry Andrew M. Steele, MD, MPH, MSc; Mical DeBrow, PhD, RN Abstract Objective: The objective of this project was to measure efficiency gains in turnaround

More information

Patient Safety: Achieving A New Standard for Care. Institute of Medicine Committee on Data Standards for Patient Safety November, 2003

Patient Safety: Achieving A New Standard for Care. Institute of Medicine Committee on Data Standards for Patient Safety November, 2003 Patient Safety: Achieving A New Standard for Care Institute of Medicine Committee on Data Standards for Patient Safety November, 2003 Outline Committee charge and definitions System support of patient

More information

EMR Benefits and Benefit Realization Methods of Stage 6 and 7 Hospitals Hospitals with advanced EMRs report numerous benefits.

EMR Benefits and Benefit Realization Methods of Stage 6 and 7 Hospitals Hospitals with advanced EMRs report numerous benefits. EMR Benefits and Benefit Realization Methods of Stage 6 and 7 Hospitals Hospitals with advanced EMRs report numerous benefits February, 2012 2 Table of Contents 3 Introduction... 4 An Important Question...

More information

Communicating Critical Test Results Safe Practice Recommendations

Communicating Critical Test Results Safe Practice Recommendations Communicating Critical Test Results Safe Practice Recommendations Massachusetts hospitals are collaborating in a patient safety initiative to improve our ability to provide timely and reliable communication

More information

Medical Information Systems

Medical Information Systems Medical Information Systems Introduction The introduction of information systems in hospitals and other medical facilities is not only driven by the wish to improve management of patient-related data for

More information

UNIVERSITY OF CONNECTICUT HEALTH CENTER CORRECTIONAL MANAGED HEALTH CARE POLICY AND PROCEDURES FOR USE WITHIN THE CONNECTICUT DEPARTMENT OF CORRECTION

UNIVERSITY OF CONNECTICUT HEALTH CENTER CORRECTIONAL MANAGED HEALTH CARE POLICY AND PROCEDURES FOR USE WITHIN THE CONNECTICUT DEPARTMENT OF CORRECTION UNIVERSITY OF CONNECTICUT HEALTH CENTER CORRECTIONAL MANAGED HEALTH CARE POLICY AND PROCEDURES FOR USE WITHIN THE CONNECTICUT DEPARTMENT OF CORRECTION NUMBER: P 1.01 Page 1 of 1 PATIENT SAFETY SYSTEM/PSS:

More information

Good Shepherd Medical Center Device Connectivity Case Study

Good Shepherd Medical Center Device Connectivity Case Study Good Shepherd Medical Center Device Connectivity Case Study How Nuvon Improved Time for Patient Care in the ED, Provided Better Patient Triage, and Supported Increased ED Throughput Capacity While Going

More information

The Human Experiment- Electronic Medical/Health Records

The Human Experiment- Electronic Medical/Health Records The Human Experiment- Electronic Medical/Health Records Patient safety is one of the primary stated intentions behind the push for computerized medical records. To the extent illegible handwriting leads

More information

GUIDELINES ON PREVENTING MEDICATION ERRORS IN PHARMACIES AND LONG-TERM CARE FACILITIES THROUGH REPORTING AND EVALUATION

GUIDELINES ON PREVENTING MEDICATION ERRORS IN PHARMACIES AND LONG-TERM CARE FACILITIES THROUGH REPORTING AND EVALUATION GUIDELINES GUIDELINES ON PREVENTING MEDICATION ERRORS IN PHARMACIES AND LONG-TERM CARE FACILITIES THROUGH REPORTING AND EVALUATION Preamble The purpose of this document is to provide guidance for the pharmacist

More information

ATOMS A Laboratory Specimen Collection and Management System

ATOMS A Laboratory Specimen Collection and Management System ATOMS A Laboratory Specimen Collection and Management System Cicada Cube Pte Ltd 20 Ayer Rajah Crescent, #09-26 Technopreneur Centre, Singapore 139664 Tel: 65-67787833; Fax: 65-67797229 Email: info@cicadacube.com

More information

Learning Objectives. Introduction to Reconciling Medication Information. Background. Elements of Performance NPSG.03.06.01

Learning Objectives. Introduction to Reconciling Medication Information. Background. Elements of Performance NPSG.03.06.01 Pharmacy Evaluation of Medication Reconciliation Initiated in the Emergency Department Manuel A. Calvin, Pharm.D. PGY1 Pharmacy Resident Saint Francis Hospital, Tulsa, OK OSHP Annual Meeting Residency

More information

Special Topics in Vendor- Specific Systems. Outline. Results Review. Unit 4 EHR Functionality. EHR functionality. Results Review

Special Topics in Vendor- Specific Systems. Outline. Results Review. Unit 4 EHR Functionality. EHR functionality. Results Review Special Topics in Vendor- Specific Systems Unit 4 EHR Functionality EHR functionality Results Review Outline Computerized Provider Order Entry (CPOE) Documentation Billing Messaging 2 Results Review Laboratory

More information

Pediatric Physician. and Advanced Providers Handbook. for Inpatient Cerner Use

Pediatric Physician. and Advanced Providers Handbook. for Inpatient Cerner Use Pediatric Physician and Advanced Providers Handbook for Inpatient Cerner Use Section Last updated Page(s) Background Jan-13 2 Admission Process Nov-12 11 Codes Nov-12 17 Discharge Process Nov-12 13 Downtime

More information

A cluster randomized trial evaluating electronic prescribing in an ambulatory care setting

A cluster randomized trial evaluating electronic prescribing in an ambulatory care setting A cluster randomized trial evaluating electronic prescribing in an ambulatory care setting Merrick Zwarenstein, MBBCh, MSc Senior Scientist Institute for Clinically Evaluative Science 2075 Bayview Avenue

More information

ELECTRONIC MEDICAL RECORDS (EMR)

ELECTRONIC MEDICAL RECORDS (EMR) ELECTRONIC MEDICAL RECORDS (EMR) SAUDI BOARD FOR COMMUNITY MEDICINE FIRST PART - FIRST SEMESTER (FALL 2010) COURSE SBCM 002: MEDICAL INFORMATICS Osama Alswailem MD MA Medical Record function 1. It s a

More information

PROPOSAL FOR INTEGRATION OF ICU MEDICAL DEVICES WITH ELECTRONIC MEDICAL RECORD

PROPOSAL FOR INTEGRATION OF ICU MEDICAL DEVICES WITH ELECTRONIC MEDICAL RECORD PROPOSAL FOR INTEGRATION OF ICU MEDICAL DEVICES WITH ELECTRONIC MEDICAL RECORD Presented on November 2011 to the Community Health Center Board of Directors Presented by: Jeana O Brien Sharon Perelman Maureen

More information

One of the Institute of Medicine s 10 rules for health

One of the Institute of Medicine s 10 rules for health MEDICATION RECONCILIATION TOOL A Practical Tool to Reduce Medication Errors During Patient Transfer from an Intensive Care Unit Peter Pronovost, MD, PhD, Deborah Baugher Hobson, BSN, Karen Earsing, RN,

More information

www.sequelmed.com 800.965.2728 www.sequelmed.com

www.sequelmed.com 800.965.2728 www.sequelmed.com Practice Management Document Management Medical Records e-prescribe e-health Patient Portal One Integrated Solution Our practice has been working with Sequel Systems for many years and is extremely satisfied.

More information

Instructor Guide: CPOE (Order Entry) for the Nurse. Trainer Notes. Objective Learn about PowerPlans. Benefits of CPOE. Learn about Nurse Review

Instructor Guide: CPOE (Order Entry) for the Nurse. Trainer Notes. Objective Learn about PowerPlans. Benefits of CPOE. Learn about Nurse Review Instructor Guide: CPOE (Order Entry) for the Nurse Trainer Notes Section Name Duration Order Entry 45 minutes Objective Learn about PowerPlans Benefits of CPOE Learn about Nurse Review You ll Need Parking

More information

Centricity Enterprise Provider Tools

Centricity Enterprise Provider Tools GE Healthcare Centricity Enterprise Provider Tools The clinical information system that gives you critical data when and where you need it. As a healthcare provider, your patients rely on you to deliver

More information

The HELP Clinical Decision-Support System

The HELP Clinical Decision-Support System - The HELP Clinical Decision-Support System Reed M. Gardner, Ph.D* Editor's Note: This article is geared to the future when physicians' offices will be linked to hospital computer systems with interactive

More information

Centricity Enterprise Nursing Workflow Tools

Centricity Enterprise Nursing Workflow Tools GE Healthcare Centricity Enterprise Nursing Workflow Tools The system that supports a critical piece of patient care your nurses. Nurses are the cornerstone of patient care delivery. Their work spans the

More information

Predictive Analytics: 'A Means to Harnessing the Power to Drive Healthcare Value

Predictive Analytics: 'A Means to Harnessing the Power to Drive Healthcare Value Predictive Analytics: 'A Means to Harnessing the Power to Drive Healthcare Value Wolf H. Stapelfeldt, MD Chairman, Department of General Anesthesiology Cleveland Clinic Vice Chairman, Surgical Operations,

More information

BIBLIOGRAPHICAL REVIEW ON COST OF PATIENT SAFETY FAILINGS IN ADMINISTRATION OF DRUGS. SUMMARY.

BIBLIOGRAPHICAL REVIEW ON COST OF PATIENT SAFETY FAILINGS IN ADMINISTRATION OF DRUGS. SUMMARY. BIBLIOGRAPHICAL REVIEW ON COST OF PATIENT SAFETY FAILINGS IN ADMINISTRATION OF DRUGS. SUMMARY. Bibliographical review on cost of Patient Safety Failings in administration of drugs. Summary This has been

More information

2. Is the data entered: Manually (i.e. by user) Automatically (i.e. by the ST product) Both

2. Is the data entered: Manually (i.e. by user) Automatically (i.e. by the ST product) Both Starter Questions for Assessing Capabilities of Surveillance Technology (ST) & Their Vendors These are questions which might be asked of each ST vendor. This preliminary information may help compare products

More information

EHR Software Feature Comparison

EHR Software Feature Comparison EHR Comparison ELECTRONIC MEDICAL RECORDS Patient demographics Manages the input and maintenance of patient information including demographics, insurance, contacts, referrals, notes and more. Consents

More information

Electronic Medical Record Adoption Model (EMRAM) John Rayner Director of Professional Development HIMSS-UK

Electronic Medical Record Adoption Model (EMRAM) John Rayner Director of Professional Development HIMSS-UK Electronic Medical Record Adoption Model (EMRAM) John Rayner Director of Professional Development HIMSS-UK HIMSS UK HIMSS Vision Improve health through the better use of technology and information. Do

More information

Reducing Medical Errors with an Electronic Medical Records System

Reducing Medical Errors with an Electronic Medical Records System Reducing Medical Errors with an Electronic Medical Records System A recent report by the Institute of Medicine estimated that as many as 98,000 people die in any given year from medical errors in hospitals

More information

1 Hitech Consultants, 15 Akadimias str., Athens, Greece. 2 Department of Critical Care, Medical School, University of Athens, Athens, Greece

1 Hitech Consultants, 15 Akadimias str., Athens, Greece. 2 Department of Critical Care, Medical School, University of Athens, Athens, Greece A Decision Support Software Package for medical treatment of I.C.U patients N. Sphiris 1, H. Paraskevopoulou 1, S. Nanas 2, A. Lymberis 1, Ch. Roussos 2 1 Hitech Consultants, 15 Akadimias str., Athens,

More information

Clinical Decision Support

Clinical Decision Support Goals and Objectives Clinical Decision Support What Is It? Where Is It? Where Is It Going? Name the different types of clinical decision support Recall the Five Rights of clinical decision support Identify

More information

Electronic Prescribing

Electronic Prescribing Electronic Prescribing Objectives: Describe Electronic Prescribing Discuss tools and information system needed Evaluate the Nurse Informaticist role in EMR/Electronic Prescribing Discuss safety, ethical

More information

Introduction to Information and Computer Science: Information Systems

Introduction to Information and Computer Science: Information Systems Introduction to Information and Computer Science: Information Systems Lecture 1 Audio Transcript Slide 1 Welcome to Introduction to Information and Computer Science: Information Systems. The component,

More information

Medical Informatic Basics for the Cancer Registry

Medical Informatic Basics for the Cancer Registry Medical Informatic Basics for the Cancer Registry DEVELOPED BY: THE NCRA EDUCATION FOUNDATION AND THE NCRA CANCER INFORMATICS COMMITTEE Medical Informatics is the intersection of science, computer science

More information

Overview of emar Electronic Medication Administration Record

Overview of emar Electronic Medication Administration Record Overview of emar Electronic Medication Administration Record March 2006 WHAT IS emar? emar Electronic Medication Administration Record - Replaces the paper MAR MAK Medication Administration Check (Siemens)

More information

Health Information Technology & Management Chapter 2 HEALTH INFORMATION SYSTEMS

Health Information Technology & Management Chapter 2 HEALTH INFORMATION SYSTEMS Health Information Technology & Management Chapter 2 HEALTH INFORMATION SYSTEMS INFORMATION SYSTEM *Use of computer hardware and software to process data into information. *Healthcare information system

More information

Why Medicare's E-Prescribing Bonus Gives Labs A New Opportunity for Added Value. Ravi Sharma, CEO 4medica, Inc.

Why Medicare's E-Prescribing Bonus Gives Labs A New Opportunity for Added Value. Ravi Sharma, CEO 4medica, Inc. Why Medicare's E-Prescribing Bonus Gives Labs A New Opportunity for Added Value Ravi Sharma, CEO 4medica, Inc. eprescribing definition The transmission, using electronic media, of prescription or prescription-related

More information

PRACTICE BRIEF. Preventing Medication Errors in Home Care. Home Care Patients Are Vulnerable to Medication Errors

PRACTICE BRIEF. Preventing Medication Errors in Home Care. Home Care Patients Are Vulnerable to Medication Errors PRACTICE BRIEF FALL 2002 Preventing Medication Errors in Home Care This practice brief highlights the results of two home health care studies on medication errors. The first study determined how often

More information

Session Name Objectives Suggested Attendees

Session Name Objectives Suggested Attendees Cerner Demonstration Sesion Descriptions Cerner Demonstration Session Descriptions Thursday, November 12 th Session Name Objectives Suggested Attendees Day in the Life - Care Across the Continuum An overview

More information

Guidelines for the Operation of Burn Centers

Guidelines for the Operation of Burn Centers C h a p t e r 1 4 Guidelines for the Operation of Burn Centers............................................................. Each year in the United States, burn injuries result in more than 500,000 hospital

More information

TITLE: Processing Provider Orders: Inpatient and Outpatient

TITLE: Processing Provider Orders: Inpatient and Outpatient POLICY and PROCEDURE TITLE: Processing Provider Orders: Inpatient and Outpatient Number: 13211 Version: 13211.3 Type: Patient Care Author: Janice Dinner; Provider Order Policy Committee Effective Date:

More information

Electronic Medication Administration Record (emar) (For Cerner Sites Only)

Electronic Medication Administration Record (emar) (For Cerner Sites Only) POLICY NO. 1009 Approved: 12/05 Effective: 12/05 Reviewed: 9/10; 5/12 1. Purpose: Electronic Medication Administration Record (emar) (For Cerner Sites Only) To provide direction for the transcription and

More information

Healthcare Professional. Driving to the Future 11 March 7, 2011

Healthcare Professional. Driving to the Future 11 March 7, 2011 Clinical Analytics for the Practicing Healthcare Professional Driving to the Future 11 March 7, 2011 Michael O. Bice Agenda Clinical informatics as context for clinical analytics Uniqueness of medical

More information

UAB HEALTH SYSTEM AMBULATORY EHR IMPLEMENTATION

UAB HEALTH SYSTEM AMBULATORY EHR IMPLEMENTATION UAB HEALTH SYSTEM AMBULATORY EHR IMPLEMENTATION Richard Rosenthal, MD Associate Chief of Staff Ambulatory Services Associate Professor of Medicine Department of Medicine Endocrinology Agenda About UAB

More information

Concept Series Paper on Electronic Prescribing

Concept Series Paper on Electronic Prescribing Concept Series Paper on Electronic Prescribing E-prescribing is the use of health care technology to improve prescription accuracy, increase patient safety, and reduce costs as well as enable secure, real-time,

More information

Collaborative Practice Agreement for Nurse Practitioner Management of Patients in the Specialty of Pediatric Critical Care

Collaborative Practice Agreement for Nurse Practitioner Management of Patients in the Specialty of Pediatric Critical Care Collaborative Practice Agreement for Nurse Practitioner Management of Patients in the Specialty of Pediatric Critical Care Purpose Section I Introduction/Overview This document authorizes the nurse practitioner

More information

Physician Practice Connections Patient Centered Medical Home

Physician Practice Connections Patient Centered Medical Home Physician Practice Connections Patient Centered Medical Home Getting Started Any practice assessing its ability to achieve NCQA Physician Recognition in PPC- PCMH is taking a bold step toward aligning

More information

IS CPOE SAFE FOR PATIENTS? An early experience.

IS CPOE SAFE FOR PATIENTS? An early experience. IS CPOE SAFE FOR PATIENTS? An early experience. Leah Brown MSN, RN and James Frye MBA Abstract In a 1999 report from the Committee on Quality Healthcare in America, To Err is Human [1], indicated that

More information

Evaluating the Short Message Service Alerting System for Critical Value Notification via PDA Telephones

Evaluating the Short Message Service Alerting System for Critical Value Notification via PDA Telephones Available online at www.annclinlabsci.org Annals of Clinical & Laboratory Science, vol. 38, no. 2, 2008 149 Evaluating the Short Message Service Alerting System for Critical Value Notification via PDA

More information

Martin C. Were, MD, MS. Regenstrief Institute, Inc. Indiana University School of Medicine BHI Lecture Series May 13, 2008

Martin C. Were, MD, MS. Regenstrief Institute, Inc. Indiana University School of Medicine BHI Lecture Series May 13, 2008 Using an Informatics Tool to Improve Implementation of Recommendations by Consultants Martin C. Were, MD, MS. Regenstrief Institute, Inc. Indiana University School of Medicine BHI Lecture Series May 13,

More information

Health Information Technology/Informatics (Policy Number)

Health Information Technology/Informatics (Policy Number) The American Society For Clinical Pathology Policy Statement Health Information Technology/Informatics (Policy Number) Policy Statement: ASCP supports the implementation of standardized health information

More information

Virtual Mentor Ethics Journal of the American Medical Association June 2006, Volume 8, Number 6: 381-386.

Virtual Mentor Ethics Journal of the American Medical Association June 2006, Volume 8, Number 6: 381-386. Virtual Mentor Ethics Journal of the American Medical Association June 2006, Volume 8, Number 6: 381-386. Medical Education E-prescribing by Jorge G. Ruiz, MD, and Brian Hagenlocker, MD Both the federal

More information

Electronic Medical Records vs. Electronic Health Records: Yes, There Is a Difference. A HIMSS Analytics TM White Paper. By Dave Garets and Mike Davis

Electronic Medical Records vs. Electronic Health Records: Yes, There Is a Difference. A HIMSS Analytics TM White Paper. By Dave Garets and Mike Davis Electronic Medical Records vs. Electronic Health Records: Yes, There Is a Difference A HIMSS Analytics TM White Paper By Dave Garets and Mike Davis Updated January 26, 2006 HIMSS Analytics, LLC 230 E.

More information

Safety Implications of EHR/HIT

Safety Implications of EHR/HIT Safety Implications of EHR/HIT PSA Board Meeting July 24, 2012 Erin Sparnon, MEng. William M. Marella, MBA 7/19/2012 2012 Pennsylvania Patient Safety Authority 1 What does it take to have safe HIT? Availability

More information

CDS In Community Hospitals. Fieldwork Manual 50750 9/07 CHR

CDS In Community Hospitals. Fieldwork Manual 50750 9/07 CHR CDS In Community Hospitals Fieldwork Manual Date/Time: Site/Unit: Qualifications/Role: Years at institution: Clinical Decision Support & Knowledge Management Assessment Tool Site Inventory Hospital characteristics

More information

AMERICAN BURN ASSOCIATION BURN CENTER VERIFICATION REVIEW PROGRAM Verificatoin Criterea EFFECTIVE JANUARY 1, 2015. Criterion. Level (1 or 2) Number

AMERICAN BURN ASSOCIATION BURN CENTER VERIFICATION REVIEW PROGRAM Verificatoin Criterea EFFECTIVE JANUARY 1, 2015. Criterion. Level (1 or 2) Number Criterion AMERICAN BURN ASSOCIATION BURN CENTER VERIFICATION REVIEW PROGRAM Criterion Level (1 or 2) Number Criterion BURN CENTER ADMINISTRATION 1. The burn center hospital is currently accredited by The

More information

UNIVERSITY OF WISCONSIN HOSPITAL AND CLINICS DEPARTMENT OF PHARMACY SCOPE OF PATIENT CARE SERVICES FY 2014 October 1 st, 2014

UNIVERSITY OF WISCONSIN HOSPITAL AND CLINICS DEPARTMENT OF PHARMACY SCOPE OF PATIENT CARE SERVICES FY 2014 October 1 st, 2014 UNIVERSITY OF WISCONSIN HOSPITAL AND CLINICS DEPARTMENT OF PHARMACY SCOPE OF PATIENT CARE SERVICES FY 2014 October 1 st, 2014 Department Name: Department of Pharmacy Department Director: Steve Rough, MS,

More information

Integration for your Health Information System

Integration for your Health Information System Integration for your Health Information System Achieve comprehensive healthcare IT integration that leverages your existing IT investments and helps you meet the growing demands of Meaningful Use, HIE,

More information

National Patient Safety Goals Effective January 1, 2015

National Patient Safety Goals Effective January 1, 2015 National Patient Safety Goals Goal 1 Nursing are enter ccreditation Program Improve the accuracy of patient and resident identification. NPSG.01.01.01 Use at least two patient or resident identifiers when

More information

The Role of the Acute Care Nurse Practitioner: New Models for Acute Care Delivery in an Academic Medical Center

The Role of the Acute Care Nurse Practitioner: New Models for Acute Care Delivery in an Academic Medical Center The Role of the Acute Care Nurse Practitioner: New Models for Acute Care Delivery in an Academic Medical Center March 22, 2012 Barbara Cashavelly MS, RN, AOCN Maria Winne MS, RN, NE-BC Massachusetts General

More information

Hospital IT Expenses and Budgets Related to Clinical Sophistication. Market Findings from HIMSS Analytics

Hospital IT Expenses and Budgets Related to Clinical Sophistication. Market Findings from HIMSS Analytics Hospital IT Expenses and Budgets Related to Clinical Sophistication Market Findings from HIMSS Analytics Table of Contents 2 3 4 8 13 14 Executive Summary Expense Metrics Used for this Research Operating

More information

Meaningful Use. Medicare and Medicaid EHR Incentive Programs

Meaningful Use. Medicare and Medicaid EHR Incentive Programs Meaningful Use Medicare and Medicaid Table of Contents What is Meaningful Use?... 1 Table 1: Patient Benefits... 2 What is an EP?... 4 How are Registration and Attestation Being Handled?... 5 What are

More information

Introducing. MEDITECH's Electronic Health Record. Here are the components comprising. MEDITECH's Electronic Health Record...

Introducing. MEDITECH's Electronic Health Record. Here are the components comprising. MEDITECH's Electronic Health Record... Introducing MEDITECH's Electronic Health Record MEDITECH s Electronic Health Record is a well-crafted suite of integrated applications including EPR and PAS designed to support the delivery of safe, cost-effective

More information

Clinical Decision Support s Impact on Quality of Care. Greg Adams, Vice President of Strategic Business Development, UpToDate

Clinical Decision Support s Impact on Quality of Care. Greg Adams, Vice President of Strategic Business Development, UpToDate Clinical Decision Support s Impact on Quality of Care Greg Adams, Vice President of Strategic Business Development, UpToDate Agenda What is Clinical Decision Support (CDS)? How does CDS help clinicians

More information

...180,000 people die each year partly as a result of iatrogenic injury... Overview: CDSS

...180,000 people die each year partly as a result of iatrogenic injury... Overview: CDSS Improving Patient-Centered Workflow with Clinical Decision Support Systems Robert A. Jenders, MD, MS, FACP, FACMI Associate Professor, Department of Medicine Cedars-Sinai Medical Center University of California,

More information

Case Study: Using Predictive Analytics to Reduce Sepsis Mortality

Case Study: Using Predictive Analytics to Reduce Sepsis Mortality Case Study: Using Predictive Analytics to Reduce Sepsis Mortality 1 Learning Objectives 1. Understand how an automated, real time IT intervention can help care teams recognize and intervene on critical,

More information

Title: Patient Safety: The Role of Information Technology. Overview of Information Technology and Patient Safety in Healthcare

Title: Patient Safety: The Role of Information Technology. Overview of Information Technology and Patient Safety in Healthcare Title: Patient Safety: The Role of Information Technology Introduction In this chapter, we discuss the role of information technology (IT) in the reduction of medical errors and the improvement of patient

More information

The American Academy of Ophthalmology Adopts SNOMED CT as its Official Clinical Terminology

The American Academy of Ophthalmology Adopts SNOMED CT as its Official Clinical Terminology The American Academy of Ophthalmology Adopts SNOMED CT as its Official Clinical Terminology H. Dunbar Hoskins, Jr., M.D., P. Lloyd Hildebrand, M.D., Flora Lum, M.D. The road towards broad adoption of electronic

More information

Conflict of Interest Disclosure

Conflict of Interest Disclosure Leveraging Clinical Decision Support for Optimal Medication Management Anne M Bobb, BS Pharm., Director Quality Informatics Children s Memorial Hospital, Chicago IL, February 20, 2012 DISCLAIMER: The views

More information

SafetyFirst Alert. Errors in Transcribing and Administering Medications

SafetyFirst Alert. Errors in Transcribing and Administering Medications SafetyFirst Alert Massachusetts Coalition for the Prevention of Medical Errors January 2001 This issue of Safety First Alert is a publication of the Massachusetts Coalition for the Prevention of Medical

More information

Ruchika D. Husa, MD, MS Assistant t Professor of Medicine in the Division of Cardiology The Ohio State University Wexner Medical Center

Ruchika D. Husa, MD, MS Assistant t Professor of Medicine in the Division of Cardiology The Ohio State University Wexner Medical Center Modified Early Warning Score (MEWS) Ruchika D. Husa, MD, MS Assistant t Professor of Medicine i in the Division of Cardiology The Ohio State University Wexner Medical Center MEWS Simple physiological scoring

More information

Meaningful Use Stage 2 Certification: A Guide for EHR Product Managers

Meaningful Use Stage 2 Certification: A Guide for EHR Product Managers Meaningful Use Stage 2 Certification: A Guide for EHR Product Managers Terminology Management is a foundational element to satisfying the Meaningful Use Stage 2 criteria and due to its complexity, and

More information

For sample use only - data from 2006.

For sample use only - data from 2006. Essentials of the U.S. Hospital IT Market 1st Edition For sample use only - data from 2006. Electronic Medical Records 2426-7000 himss titles 3/9/06 9:34 AM Page 12 111 Approximately 75 percent of U.S.

More information

Using Predictive Analytics to Improve Sepsis Outcomes 4/23/2014

Using Predictive Analytics to Improve Sepsis Outcomes 4/23/2014 Using Predictive Analytics to Improve Sepsis Outcomes 4/23/2014 Ryan Arnold, MD Department of Emergency Medicine and Value Institute Christiana Care Health System, Newark, DE Susan Niemeier, RN Chief Nursing

More information

Improving Cardiac Surgery Patient Flow through Computer Simulation Modeling

Improving Cardiac Surgery Patient Flow through Computer Simulation Modeling Improving Cardiac Surgery Patient Flow through Computer Simulation Modeling Dana Khayal, Fatma Almadhoun, Lama Al-Sarraj and Farayi Musharavati Abstract In this paper, computer simulation modeling was

More information

Eligible Professionals please see the document: MEDITECH Prepares You for Stage 2 of Meaningful Use: Eligible Professionals.

Eligible Professionals please see the document: MEDITECH Prepares You for Stage 2 of Meaningful Use: Eligible Professionals. s Preparing for Meaningful Use in 2014 MEDITECH (Updated December 2013) Professionals please see the document: MEDITECH Prepares You for Stage 2 of Meaningful Use: Professionals. Congratulations to our

More information

REAL-TIME INTELLIGENCE FOR FASTER PATIENT INTERVENTIONS. MICROMEDEX 360 Care Insights. Real-Time Patient Intervention

REAL-TIME INTELLIGENCE FOR FASTER PATIENT INTERVENTIONS. MICROMEDEX 360 Care Insights. Real-Time Patient Intervention REAL-TIME INTELLIGENCE FOR FASTER PATIENT INTERVENTIONS MICROMEDEX 360 Care Insights Real-Time Patient Intervention Real-Time Intelligence for Fast Patient Interventions At your patient s side, developments

More information

Streamline Your Radiology Workflow. With Radiology Information Systems (RIS) and EHR

Streamline Your Radiology Workflow. With Radiology Information Systems (RIS) and EHR Streamline Your Radiology Workflow With Radiology Information Systems (RIS) and EHR 2 Practicing medicine effectively requires transferring large amounts of information quickly, accurately, and securely.

More information

Information Systems at VCU Health System. Alistair Erskine, MD Chief Medical Information Officer

Information Systems at VCU Health System. Alistair Erskine, MD Chief Medical Information Officer Information Systems at VCU Health System Alistair Erskine, MD Chief Medical Information Officer Overview - Glossary Cerner Zynx Patientkeeper Stentor Intranet Lotus Notes Cisco VPN EMR Vendor Content Provider

More information

WHITE PAPER. QualityAnalytics. Bridging Clinical Documentation and Quality of Care

WHITE PAPER. QualityAnalytics. Bridging Clinical Documentation and Quality of Care WHITE PAPER QualityAnalytics Bridging Clinical Documentation and Quality of Care 2 EXECUTIVE SUMMARY The US Healthcare system is undergoing a gradual, but steady transformation. At the center of this transformation

More information

National Clinical. Respiratory

National Clinical. Respiratory * Posted with the Permission and Approval of the American Association for Respiratory Care. 2013, All Rights Reserved. Respiratory National Clinical Respiratory therapists adjust and respond to alarms

More information

TOWARD A FRAMEWORK FOR DATA QUALITY IN ELECTRONIC HEALTH RECORD

TOWARD A FRAMEWORK FOR DATA QUALITY IN ELECTRONIC HEALTH RECORD TOWARD A FRAMEWORK FOR DATA QUALITY IN ELECTRONIC HEALTH RECORD Omar Almutiry, Gary Wills and Richard Crowder School of Electronics and Computer Science, University of Southampton, Southampton, UK. {osa1a11,gbw,rmc}@ecs.soton.ac.uk

More information

Going Digital with Patients: IT s about Patient Safety. Paul C. Tang, MD Palo Alto Medical Foundation Sutter Health

Going Digital with Patients: IT s about Patient Safety. Paul C. Tang, MD Palo Alto Medical Foundation Sutter Health Going Digital with Patients: IT s about Patient Safety Paul C. Tang, MD Palo Alto Medical Foundation Sutter Health Outline The beckoning opportunity in patient safety EHR systems: prescription for safer

More information

Question & Answer Guide

Question & Answer Guide Joint Commission Primary Care Medical Home (PCMH) Certification for Accredited Ambulatory Health Care Organizations Question & Answer Guide A. SCORING/DECISION-RELATED Question: We are already Joint Commission

More information

Effectively Managing EHR Projects: Guidelines for Successful Implementation

Effectively Managing EHR Projects: Guidelines for Successful Implementation Phoenix Health Systems Effectively Managing EHR Projects: Guidelines for Successful Implementation Introduction Effectively managing any EHR (Electronic Health Record) implementation can be challenging.

More information

LEGAL HEALTH RECORD: Definition and Standards

LEGAL HEALTH RECORD: Definition and Standards LEGAL HEALTH RECORD: Definition and Standards DEVELOPING YOUR STRATEGY & Tool Kit Diane Premeau, MBA, MCIS, RHIA, RHIT, CHP, A.C.E. OBJECTIVES Define Legal Health Record Differentiate between Designated

More information

Electronic Health Records

Electronic Health Records What Do Electronic Health Records Mean for Our Practice? What are Electronic Health Records? Electronic Health Records (EHRs) are computer systems that medical practices use instead of paper charts. All

More information

National Patient Safety Goals Effective January 1, 2015

National Patient Safety Goals Effective January 1, 2015 National Patient Safety Goals Effective January 1, 2015 Goal 1 Improve the accuracy of resident identification. NPSG.01.01.01 Long Term are ccreditation Program Medicare/Medicaid ertification-based Option

More information

Administrative Policies and Procedures for MOH hospitals /PHC Centers. TITLE: Organization & Management Of Medication Use APPLIES TO: Hospital-wide

Administrative Policies and Procedures for MOH hospitals /PHC Centers. TITLE: Organization & Management Of Medication Use APPLIES TO: Hospital-wide Administrative Policies and Procedures for MOH hospitals /PHC Centers TITLE: Organization & Management Of Medication Use APPLIES TO: Hospital-wide NO. OF PAGES: ORIGINAL DATE: REVISION DATE : السیاسات

More information

TRUSTED PATIENT EDUCATION FOR BETTER OUTCOMES. MICROMEDEX Patient Connect. Patient Education & Engagement

TRUSTED PATIENT EDUCATION FOR BETTER OUTCOMES. MICROMEDEX Patient Connect. Patient Education & Engagement TRUSTED PATIENT EDUCATION FOR BETTER OUTCOMES MICROMEDEX Patient Connect Patient Education & Engagement Trusted Patient Education for Better Outcomes All your training, experience, tools, and technology

More information

empowersystemstm empowerhis Advanced Core Hospital Information System Technology Comprehensive Solutions for Facilities of Any Size

empowersystemstm empowerhis Advanced Core Hospital Information System Technology Comprehensive Solutions for Facilities of Any Size empowersystemstm empowerhis TM Advanced Core Hospital Information System Technology Comprehensive Solutions for Facilities of Any Size ADT / Patient Registration System + Fully Integrated Patient Registration

More information

in Critical Care Stephen Lapinsky Mount Sinai Hospital

in Critical Care Stephen Lapinsky Mount Sinai Hospital Electronic Patient Record in Critical Care Stephen Lapinsky Mount Sinai Hospital Toronto Outline Terminology How can IT improve care The ICU Clinical Information System Drivers and barriers to a CIS Clinical

More information

1a-b. Title: Clinical Decision Support Helps Memorial Healthcare System Achieve 97 Percent Compliance With Pediatric Asthma Core Quality Measures

1a-b. Title: Clinical Decision Support Helps Memorial Healthcare System Achieve 97 Percent Compliance With Pediatric Asthma Core Quality Measures 1a-b. Title: Clinical Decision Support Helps Memorial Healthcare System Achieve 97 Percent Compliance With Pediatric Asthma Core Quality Measures 2. Background Knowledge: Asthma is one of the most prevalent

More information