I. ADDITIONAL EVALUATION RESULTS. A. Environment

Size: px
Start display at page:

Download "I. ADDITIONAL EVALUATION RESULTS. A. Environment"

Transcription

1 1 A. Environment I. ADDITIONAL EVALUATION RESULTS The tests have been performed in a virtualized environment with Mininet [?]. Mininet is tool to create a virtual network running actual kernel, switch and application code. It is an ideal way to test SDN systems, and is quite flexible about the possible topologies (the topology is defined with Python code). B. Procedure Here is the general procedure used to create and run the tests. The first step is to design the topology and write down the constraints. Let s consider that the file containing the constraints is named test42_cstr.txt. Then we have to translate the topology into Mininet s language. We have to modify the file test_topo.py and add a class extending Mininet s Topo class. Let s call this class Test42. In the constructor we write the instructions necessary to describe the desired topology (switches, hosts, collector, edges). This class will be used by Mininet to build the topology. We also need a mapping between the host identifiers and actual IP and MAC addresses. Information about how to contact the switches OpenFlow port is required. This mapping may vary between different scenarios but we use a generic one for the tests. It is written in the file mapping.txt. The tools we wrote also require the topology and they derive it from the output of Mininet s net command. This means that we have to run Mininet in order to get this output. We usually launch it with the following command: sudo mn -custom test_topo.py -topo test42 -mac -switch ovsk -controller remote. This tells Mininet to launch a network described by the class mapped by the test42 identifier in test_topo.py, to use OpenVSwitch-based switches, to set the MAC address of the nodes equal to their identifier and to use a remote controller which defaults to localhost. We can then retrieve the output of the net command and write it into a test42_topo.txt file. The test network is now running but there is currently no rules defined in the OpenFlow switches. We wrote a script that generates basic routing rules from the mapping and topology files. It can generate the following classes of rules: the broadcast rule, which instructs the switches to forward to all active ports (except the input port) the packets with destination MAC address ff:ff:ff:ff:ff:ff; rules to reach hosts directly connected to the switches; rules to reach hosts connected to direct neighboring switch; and finally rules to reach remote hosts, i.e. hosts with a network distance of at least two hops from a given switch. See Figure 1 for details. When more specific rules are required, they are manually written. Fig. 1. Three node distance types with respect to the green-squared switch Once the rules have been inserted in the switches flow table, we can start running the test. First we have to run the collector with a proper capture timeout, then run the packets generator. Once the collector has captured the

2 2 test packets, it outputs the relevant data in JSON format which can then be given to the constraints checker. The checker then checks each constraint and outputs the results. C. Binary connectivity Here we present different tests to check binary connectivity. Let us consider the network shown in Figure 2. We provide the following constraints: 1) Hosts h14 and h34 can reach any other host. 2) Any host can reach h14 and h34. 3) Groups isolated1 and isolated3 cannot communicate. Fig. 2. Test network for binary connectivity The following atoms are declared. isol1(h11) isol1(h12) isol1(h13) isol3(h31) isol3(h32) isol3(h33) Fig. 3. Atoms for binary connectivity test network

3 3 Specific rules have been defined in order to verify that the binary connectivity constraints is working correctly in different cases: packets from h11 to h31 are dropped at s1; packets from h12 to h32 are dropped at s2; packets from h13 to h33 are dropped at s3. This s us to verify the constraints with empty paths and partial paths. See Table I for the different test constraints. The fifth column (Checked) refers to the previously enumerated constraints. For each test we provide also the opposite. The first and second tests partially check the first constraint (i.e. hosts h14 and h34 can reach any other host) by checking the traffic between h14 and h34. We expect both constraints to be statisfied. The third, fourth and fifth tests deal with the empty/partial path issue. Indeed, the 3 rd test will not produce any packet for the collector as the injected packets will be immediately dropped at switch s1. The 4 th test will produce a partial path of length 1, i.e. the path [s1]. The 5 th test will produce a partial path of length 2, i.e. [s1 s2]. The last three tests use atom checks and combinations of equality and atom checks. They check the second and third constraints. Test Constraint Conditions te Checked Verified 1 H s = h 14 H t = h 34 Equality First 2 H s = h 34 H t = h 14 Equality First 3 H s = h 11 H t = h 31 Empty path Third 4 H s = h 12 H t = h 32 Partial path Third 5 H s = h 13 H t = h 33 Partial path Third 6 isol1(h s) isol3(h t) Atoms Third 7 isol1(h s) H t = h 34 Atom, equality Second 8 isol3(h s) H t = h 14 Atom, equality Second TABLE I BINARY CONNECTIVITY TESTS The implementation is thus working as expected regarding the binary connectivity constraints. See Table II for data on the time spent to perform this test. Generation Injection Collection Checking TABLE II TIME SPENT BY THE DIFFERENT COMPONENTS. THE TIME IS GIVEN IN MILLISECONDS. D. Path constraints Let us consider the network shown in Figure 4. We define the following constraints. 1) The path from s1 to s4 must go through s2. 2) The path from s4 to s1 must go through s3. 3) The path from s1 to s5 must go through s3. 4) The path from s5 to s1 must go through s2. 5) The path from s2 to s6 must go through s4 or s5. 6) The path from s3 to s6 must go through s4 or s5.

4 4 7) All the paths must contain the minimum number of hops. Fig. 4. Test network for path constraints The controller is written in the following way. It has the list of path constraints described above. If it receives a packet whose destination is path-constrained, then it attempts to find the shortest path to the required intermediary switch, and retrieve the correct output port. Then it instructs the switch that sent the packet to use this port for all future packets with the same destination MAC by adding an entry to the switch s flow table. If the controller receives a packet whose destination is not path-constrained, it will simply attempt to find the shortest path to the destination, and modify the switch s flow table to use the computed path for future packets. In order to precisely define the paths in the network we have used the -arp argument when launching Mininet. This argument s the hosts to start with a full ARP table, thus avoiding the need for ARP broadcasts. Indeed, without using a protocol such as STP, all the switches ports will remain active and an ARP broadcast will indefinitely loop in the network. The following atoms are declared.

5 5 one(h11) one(h12) two(h21) two(h22) three(h31) three(h32) four(h41) four(h42) five(h51) five(h52) six(h61) six(h62) Fig. 5. Atoms for path constraints test network See Table III for a summary of the tests. They consist in verifying each constraint by setting different kinds of paths: strict paths (fully defined for each hop), partial paths (by using the Kleene operator), multiple paths (with the union operator) and length constraints (with the dot symbol). Test Path Conditions te Checked Verified 1 s1,s2,s4 one(h s) four(h t) Strict path First 2 s4,s3,s1 four(h s) one(h t) Strict path Second 3.*,s3,.* four(h s) one(h t) Partial path Second 4 s1,s3,s5 one(h s) five(h t) Strict path Third 5 s5,s2,s1 five(h s) one(h t) Strict path Fourth 6.*,s2,.* five(h s) one(h t) Partial path Fourth 7 s2,s4 s5,s6 two(h s) six(h t) Union Fifth 8 s2,.*,s6 two(h s) six(h t) Edges constrained Fifth 9 s3,s4 s5,s6 three(h s) six(h t) Union Sixth 10 s3,.*,s6 three(h s) six(h t) Edges constrained Sixth one(h s) six(h t) Length constraint Seventh 12.* one(h s) six(h t) constraint ne 13.*,s3,.* one(h s) two(h t) Partial path Seventh 14.. six(h s) one(h t) Impossible ne 15 s1,s3,s4 one(h s) four(h t) Strict path First TABLE III PATH CONSTRAINTS TESTS The implementation is behaving as expected. See Table IV for data on the time spent when performing this test. Generation Injection Collection Checking 4.73 TABLE IV TIME SPENT BY EACH COMPONENT FOR THE PATH CONSTRAINTS TEST. THE TIME IS GIVEN IN MILLISECONDS E. Load balancing Let us consider the network shown in Figure 6. We define the following constraints. 1) The path from s1 to s4 must be equally load balanced between s2 and s3. 2) The path from s4 to s1 must be load balanced by 70% through s2 and by 30% through s3.

6 6 Fig. 6. Test network for load balancing The lack of support of multipath rules in the v1.0.0 of the OpenFlow protocol has forced us to make some modifications to the test procedure for this case: At switch s1, the packets whose destination is directly connected to s4 are sent to the controller, and conversely for the switch s4. The controller handles the load balancing in a flow-based manner. The controller randomly assigns an output port to each different flow (the random number is of course weighted for each link). The following atoms are declared. one(h11) one(h12) four(h41) four(h42) Fig. 7. Atoms for load balancing test network See Table V for a summary of the test. te that each constraint is tested independently, i.e. the share of traffic going through a given path is not derived from the traffic seen on another path. The first three tests are the same and ran with 10 samples per flow. The next three ran with 100 samples and the last test ran with 1000 samples. These samples were UDP packets whose source port was randomized, ensuring the load balancer would treat them as seperate flows. We can see that as the number of samples increase, the deviation decrease and the values become more precise. The implementation is working as expected, but for future work, we could define an acceptable deviation related to the number of samples and reject the constraint if the result is outside the accepting range.

7 7 Test Path Conditions Samples Target Result.*,s2,.* one(h s) four(h t) *,s3,.* one(h s) four(h t) *,s2,.* four(h s) one(h t) *,s3,.* four(h s) one(h t) *,s2,.* one(h s) four(h t) *,s3,.* one(h s) four(h t) *,s2,.* four(h s) one(h t) *,s3,.* four(h s) one(h t) *,s2,.* one(h s) four(h t) *,s3,.* one(h s) four(h t) *,s2,.* four(h s) one(h t) *,s3,.* four(h s) one(h t) *,s2,.* one(h s) four(h t) *,s3,.* one(h s) four(h t) *,s2,.* four(h s) one(h t) *,s3,.* four(h s) one(h t) *,s2,.* one(h s) four(h t) *,s3,.* one(h s) four(h t) *,s2,.* four(h s) one(h t) *,s3,.* four(h s) one(h t) *,s2,.* one(h s) four(h t) *,s3,.* one(h s) four(h t) *,s2,.* four(h s) one(h t) *,s3,.* four(h s) one(h t) *,s2,.* one(h s) four(h t) *,s3,.* one(h s) four(h t) *,s2,.* four(h s) one(h t) *,s3,.* four(h s) one(h t) TABLE V LOAD BALANCING TESTS See Table VI for data on the time spent performing this test. Samples Total packets Generation Injection Collection Checking TABLE VI TIME SPENT BY EACH COMPONENT WHEN PERFORMING THE LOAD BALANCING TESTS. THE TIME IS GIVEN IN SECONDS. F. Delay constraints Let us consider the network shown in Figure 8. We would like to define a delay constraint between s1 and s3. The OpenFlow protocol as of v1.0.0 is not able to induce artificial delays. To circumvent this we generated a sample of 1000 test packets and we ran several delay checks on the collected traces. Over the sample, the mean latency is ms with a standard deviation of ms and minimum, maximum latency of resp ms and ms. Fig. 8. Test network for delay constraints See Figure 9 for the details of the measurements. We clearly see that almost 90% of the measurements are under 1.47 ms. t visible on the graph, we also defined two border checks, one at ms and another at

8 8 ms, which is resp ms below and above the minima and maxima. As expected, the first border check gave a matching ratio of 0.0 (all measurements are above the value) and the second one gave a matching ratio of 1.0 (all measurements are under the value). The implementation is thus working correctly. As for the load balancing constraints, it can be useful to derive a deviation parameter in order to set an accepting range for the delay constraints. Fig. 9. Matching ratio for delay checks over increasing delay values

Lecture 2.1 : The Distributed Bellman-Ford Algorithm. Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol

Lecture 2.1 : The Distributed Bellman-Ford Algorithm. Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol Lecture 2 : The DSDV Protocol Lecture 2.1 : The Distributed Bellman-Ford Algorithm Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol The Routing Problem S S D D The routing problem

More information

TCP Labs. WACREN Network Monitoring and Measurement Workshop Antoine Delvaux a.delvaux@man.poznan.pl perfsonar developer 30.09.

TCP Labs. WACREN Network Monitoring and Measurement Workshop Antoine Delvaux a.delvaux@man.poznan.pl perfsonar developer 30.09. TCP Labs WACREN Network Monitoring and Measurement Workshop Antoine Delvaux a.delvaux@man.poznan.pl perfsonar developer 30.09.2015 Hands-on session We ll explore practical aspects of TCP Checking the effect

More information

Project 4: SDNs Due: 11:59 PM, Dec 11, 2014

Project 4: SDNs Due: 11:59 PM, Dec 11, 2014 CS168 Computer Networks Fonseca Project 4: SDNs Due: 11:59 PM, Dec 11, 2014 Contents 1 Introduction 1 2 Overview 2 2.1 Components......................................... 2 3 Setup 3 4 Shortest-path Switching

More information

Internet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering

Internet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering Internet Firewall CSIS 4222 A combination of hardware and software that isolates an organization s internal network from the Internet at large Ch 27: Internet Routing Ch 30: Packet filtering & firewalls

More information

2. What is the maximum value of each octet in an IP address? A. 28 B. 255 C. 256 D. None of the above

2. What is the maximum value of each octet in an IP address? A. 28 B. 255 C. 256 D. None of the above CCNA1 V3.0 Mod 10 (Ch 8) 1. How many bits are in an IP C. 64 2. What is the maximum value of each octet in an IP A. 28 55 C. 256 3. The network number plays what part in an IP A. It specifies the network

More information

Comparisons of SDN OpenFlow Controllers over EstiNet: Ryu vs. NOX

Comparisons of SDN OpenFlow Controllers over EstiNet: Ryu vs. NOX Comparisons of SDN OpenFlow Controllers over EstiNet: Ryu vs. NOX Shie-Yuan Wang Hung-Wei Chiu and Chih-Liang Chou Department of Computer Science, National Chiao Tung University, Taiwan Email: shieyuan@cs.nctu.edu.tw

More information

B4: Experience with a Globally-Deployed Software Defined WAN TO APPEAR IN SIGCOMM 13

B4: Experience with a Globally-Deployed Software Defined WAN TO APPEAR IN SIGCOMM 13 B4: Experience with a Globally-Deployed Software Defined WAN TO APPEAR IN SIGCOMM 13 Google s Software Defined WAN Traditional WAN Routing Treat all bits the same 30% ~ 40% average utilization Cost of

More information

OpenFlow: Load Balancing in enterprise networks using Floodlight Controller

OpenFlow: Load Balancing in enterprise networks using Floodlight Controller OpenFlow: Load Balancing in enterprise networks using Floodlight Controller Srinivas Govindraj, Arunkumar Jayaraman, Nitin Khanna, Kaushik Ravi Prakash srinivas.govindraj@colorado.edu, arunkumar.jayaraman@colorado.edu,

More information

Cisco Networking Academy CCNP Multilayer Switching

Cisco Networking Academy CCNP Multilayer Switching CCNP3 v5 - Chapter 5 Cisco Networking Academy CCNP Multilayer Switching Implementing High Availability in a Campus Environment Routing issues Hosts rely on a router to find the best path Issues with established

More information

Exam 1 Review Questions

Exam 1 Review Questions CSE 473 Introduction to Computer Networks Exam 1 Review Questions Jon Turner 10/2013 1. A user in St. Louis, connected to the internet via a 20 Mb/s (b=bits) connection retrieves a 250 KB (B=bytes) web

More information

CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING

CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING CHAPTER 6 CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING 6.1 INTRODUCTION The technical challenges in WMNs are load balancing, optimal routing, fairness, network auto-configuration and mobility

More information

MuL SDN Controller HOWTO for pre-packaged VM

MuL SDN Controller HOWTO for pre-packaged VM MuL SDN Controller HOWTO for pre-packaged VM 1 P a g e Table of Contents 1 Starting the VM... 3 2 Using MuL controller... 3 2.1 Mul component overview... 3 2.2 Running MUL... 5 2.2.1 Running MuL s forwarding

More information

Experimentation driven traffic monitoring and engineering research

Experimentation driven traffic monitoring and engineering research Experimentation driven traffic monitoring and engineering research Amir KRIFA (Amir.Krifa@sophia.inria.fr) 11/20/09 ECODE FP7 Project 1 Outline i. Future directions of Internet traffic monitoring and engineering

More information

Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION

Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012 Network Chapter# 19 INTERNETWORK OPERATION Review Questions ٢ Network Chapter# 19 INTERNETWORK OPERATION 19.1 List

More information

Evaluating the SDN control traffic in large ISP networks

Evaluating the SDN control traffic in large ISP networks Evaluating the SDN control traffic in large ISP networks Andrea Bianco, Paolo Giaccone, Ahsan Mahmood Dip. di Elettronica e Telecomunicazioni, Politecnico di Torino, Italy Mario Ullio, Vinicio Vercellone

More information

Bridgewalling - Using Netfilter in Bridge Mode

Bridgewalling - Using Netfilter in Bridge Mode Bridgewalling - Using Netfilter in Bridge Mode Ralf Spenneberg, ralf@spenneberg.net Revision : 1.5 Abstract Firewalling using packet filters is usually performed by a router. The packet filtering software

More information

Lab 7: Software Defined Networking

Lab 7: Software Defined Networking CS498 Systems and Networking Lab Spring 2012 Lab 7: Software Defined Networking Instructor: Matthew Caesar Due: In this assignment you will learn the basics of Software Defined Networking, and a few of

More information

Influence of Load Balancing on Quality of Real Time Data Transmission*

Influence of Load Balancing on Quality of Real Time Data Transmission* SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 6, No. 3, December 2009, 515-524 UDK: 004.738.2 Influence of Load Balancing on Quality of Real Time Data Transmission* Nataša Maksić 1,a, Petar Knežević 2,

More information

Internet Packets. Forwarding Datagrams

Internet Packets. Forwarding Datagrams Internet Packets Packets at the network layer level are called datagrams They are encapsulated in frames for delivery across physical networks Frames are packets at the data link layer Datagrams are formed

More information

Tutorial. Reference http://www.openflowswitch.org/foswiki/bin/view/openflow/mininetgettingstarted for more thorough Mininet walkthrough if desired

Tutorial. Reference http://www.openflowswitch.org/foswiki/bin/view/openflow/mininetgettingstarted for more thorough Mininet walkthrough if desired Setup Tutorial Reference http://www.openflowswitch.org/foswiki/bin/view/openflow/mininetgettingstarted for more thorough Mininet walkthrough if desired Necessary Downloads 1. Download VM at http://www.cs.princeton.edu/courses/archive/fall10/cos561/assignments/cos561tutorial.zip

More information

Hyacinth An IEEE 802.11-based Multi-channel Wireless Mesh Network

Hyacinth An IEEE 802.11-based Multi-channel Wireless Mesh Network Hyacinth An IEEE 802.11-based Multi-channel Wireless Mesh Network 1 Gliederung Einführung Vergleich und Problemstellung Algorithmen Evaluation 2 Aspects Backbone Last mile access stationary commodity equipment

More information

PLUMgrid Toolbox: Tools to Install, Operate and Monitor Your Virtual Network Infrastructure

PLUMgrid Toolbox: Tools to Install, Operate and Monitor Your Virtual Network Infrastructure Toolbox: Tools to Install, Operate and Monitor Your Virtual Network Infrastructure Introduction The concept of Virtual Networking Infrastructure (VNI) is disrupting the networking space and is enabling

More information

Hands On Activities: TCP/IP Network Monitoring and Management

Hands On Activities: TCP/IP Network Monitoring and Management Hands On Activities: TCP/IP Network Monitoring and Management 1. TCP/IP Network Management Tasks TCP/IP network management tasks include Examine your physical and IP network address Traffic monitoring

More information

CS335 Sample Questions for Exam #2

CS335 Sample Questions for Exam #2 CS335 Sample Questions for Exam #2.) Compare connection-oriented with connectionless protocols. What type of protocol is IP? How about TCP and UDP? Connection-oriented protocols Require a setup time to

More information

Scaling 10Gb/s Clustering at Wire-Speed

Scaling 10Gb/s Clustering at Wire-Speed Scaling 10Gb/s Clustering at Wire-Speed InfiniBand offers cost-effective wire-speed scaling with deterministic performance Mellanox Technologies Inc. 2900 Stender Way, Santa Clara, CA 95054 Tel: 408-970-3400

More information

SDN IN WAN NETWORK PROGRAMMABILITY THROUGH CENTRALIZED PATH COMPUTATION. 1 st September 2014

SDN IN WAN NETWORK PROGRAMMABILITY THROUGH CENTRALIZED PATH COMPUTATION. 1 st September 2014 SDN IN WAN NETWORK PROGRAMMABILITY THROUGH CENTRALIZED PATH COMPUTATION st September 04 Aaron Tong Senior Manager High IQ Networking Centre of Excellence JUNIPER S AUTOMATION HORIZON SDN IS A JOURNEY NOT

More information

Route Discovery Protocols

Route Discovery Protocols Route Discovery Protocols Columbus, OH 43210 Jain@cse.ohio-State.Edu http://www.cse.ohio-state.edu/~jain/ 1 Overview Building Routing Tables Routing Information Protocol Version 1 (RIP V1) RIP V2 OSPF

More information

Axon: A Flexible Substrate for Source- routed Ethernet. Jeffrey Shafer Brent Stephens Michael Foss Sco6 Rixner Alan L. Cox

Axon: A Flexible Substrate for Source- routed Ethernet. Jeffrey Shafer Brent Stephens Michael Foss Sco6 Rixner Alan L. Cox Axon: A Flexible Substrate for Source- routed Ethernet Jeffrey Shafer Brent Stephens Michael Foss Sco6 Rixner Alan L. Cox 2 Ethernet Tradeoffs Strengths Weaknesses Cheap Simple High data rate Ubiquitous

More information

Ring Protection: Wrapping vs. Steering

Ring Protection: Wrapping vs. Steering Ring Protection: Wrapping vs. Steering Necdet Uzun and Pinar Yilmaz March 13, 2001 Contents Objectives What are wrapping and steering Single/dual fiber cut Comparison of wrapping and steering Simulation

More information

IP Addressing and Subnetting. 2002, Cisco Systems, Inc. All rights reserved.

IP Addressing and Subnetting. 2002, Cisco Systems, Inc. All rights reserved. IP Addressing and Subnetting 2002, Cisco Systems, Inc. All rights reserved. 1 Objectives Upon completion, you will be able to: Discuss the Types of Network Addressing Explain the Form of an IP Address

More information

Poisoning Network Visibility in Software-Defined Networks: New Attacks and Countermeasures Sungmin Hong, Lei Xu, Haopei Wang, Guofei Gu

Poisoning Network Visibility in Software-Defined Networks: New Attacks and Countermeasures Sungmin Hong, Lei Xu, Haopei Wang, Guofei Gu Poisoning Network Visibility in Software-Defined Networks: New Attacks and Countermeasures Sungmin Hong, Lei Xu, Haopei Wang, Guofei Gu Presented by Alaa Shublaq SDN Overview Software-Defined Networking

More information

SSVP SIP School VoIP Professional Certification

SSVP SIP School VoIP Professional Certification SSVP SIP School VoIP Professional Certification Exam Objectives The SSVP exam is designed to test your skills and knowledge on the basics of Networking and Voice over IP. Everything that you need to cover

More information

Static IP Routing and Aggregation Exercises

Static IP Routing and Aggregation Exercises Politecnico di Torino Static IP Routing and Aggregation xercises Fulvio Risso August 0, 0 Contents I. Methodology 4. Static routing and routes aggregation 5.. Main concepts........................................

More information

CS 326e F2002 Lab 1. Basic Network Setup & Ethereal Time: 2 hrs

CS 326e F2002 Lab 1. Basic Network Setup & Ethereal Time: 2 hrs CS 326e F2002 Lab 1. Basic Network Setup & Ethereal Time: 2 hrs Tasks: 1 (10 min) Verify that TCP/IP is installed on each of the computers 2 (10 min) Connect the computers together via a switch 3 (10 min)

More information

Sage ERP Accpac Online

Sage ERP Accpac Online Sage ERP Accpac Online Mac Resource Guide Thank you for choosing Sage ERP Accpac Online. This Resource Guide will provide important information and instructions on how you can get started using your Mac

More information

BGP: Border Gateway Protocol

BGP: Border Gateway Protocol LAB 8 BGP: Border Gateway Protocol An Interdomain Routing Protocol OBJECTIVES The objective of this lab is to simulate and study the basic features of an interdomain routing protocol called Border Gateway

More information

Sage 300 ERP Online. Mac Resource Guide. (Formerly Sage ERP Accpac Online) Updated June 1, 2012. Page 1

Sage 300 ERP Online. Mac Resource Guide. (Formerly Sage ERP Accpac Online) Updated June 1, 2012. Page 1 Sage 300 ERP Online (Formerly Sage ERP Accpac Online) Mac Resource Guide Updated June 1, 2012 Page 1 Table of Contents 1.0 Introduction... 3 2.0 Getting Started with Sage 300 ERP Online using a Mac....

More information

1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet

1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet Review questions 1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet C Media access method D Packages 2 To which TCP/IP architecture layer

More information

Disaster-Resilient Backbone and Access Networks

Disaster-Resilient Backbone and Access Networks The Workshop on Establishing Resilient Life-Space in the Cyber-Physical Integrated Society, March. 17, 2015, Sendai, Japan Disaster-Resilient Backbone and Access Networks Shigeki Yamada (shigeki@nii.ac.jp)

More information

ΤΕΙ Κρήτης, Παράρτηµα Χανίων

ΤΕΙ Κρήτης, Παράρτηµα Χανίων ΤΕΙ Κρήτης, Παράρτηµα Χανίων ΠΣΕ, Τµήµα Τηλεπικοινωνιών & ικτύων Η/Υ Εργαστήριο ιαδίκτυα & Ενδοδίκτυα Η/Υ Modeling Wide Area Networks (WANs) ρ Θεοδώρου Παύλος Χανιά 2003 8. Modeling Wide Area Networks

More information

Efficient Video Distribution Networks with.multicast: IGMP Querier and PIM-DM

Efficient Video Distribution Networks with.multicast: IGMP Querier and PIM-DM Efficient Video Distribution Networks with.multicast: IGMP Querier and PIM-DM A Dell technical white paper Version 1.1 Victor Teeter Network Solutions Engineer This document is for informational purposes

More information

How To Make A Vpc More Secure With A Cloud Network Overlay (Network) On A Vlan) On An Openstack Vlan On A Server On A Network On A 2D (Vlan) (Vpn) On Your Vlan

How To Make A Vpc More Secure With A Cloud Network Overlay (Network) On A Vlan) On An Openstack Vlan On A Server On A Network On A 2D (Vlan) (Vpn) On Your Vlan Centec s SDN Switch Built from the Ground Up to Deliver an Optimal Virtual Private Cloud Table of Contents Virtualization Fueling New Possibilities Virtual Private Cloud Offerings... 2 Current Approaches

More information

Network Instruments white paper

Network Instruments white paper Network Instruments white paper MONITORING SERVICE DELIVERY IN AN MPLS ENVIRONMENT A growing number of enterprises depend on (or are considering) MPLS-based routing to guarantee highbandwidth capacity

More information

OpenFlow Based Load Balancing

OpenFlow Based Load Balancing OpenFlow Based Load Balancing Hardeep Uppal and Dane Brandon University of Washington CSE561: Networking Project Report Abstract: In today s high-traffic internet, it is often desirable to have multiple

More information

Relationship between SMP, ASON, GMPLS and SDN

Relationship between SMP, ASON, GMPLS and SDN Relationship between SMP, ASON, GMPLS and SDN With the introduction of a control plane in optical networks, this white paper describes the relationships between different protocols and architectures. Introduction

More information

Load Balancing. Final Network Exam LSNAT. Sommaire. How works a "traditional" NAT? Un article de Le wiki des TPs RSM.

Load Balancing. Final Network Exam LSNAT. Sommaire. How works a traditional NAT? Un article de Le wiki des TPs RSM. Load Balancing Un article de Le wiki des TPs RSM. PC Final Network Exam Sommaire 1 LSNAT 1.1 Deployement of LSNAT in a globally unique address space (LS-NAT) 1.2 Operation of LSNAT in conjunction with

More information

基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器

基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器 基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器 楊 竹 星 教 授 國 立 成 功 大 學 電 機 工 程 學 系 Outline Introduction OpenFlow NetFPGA OpenFlow Switch on NetFPGA Development Cases Conclusion 2 Introduction With the proposal

More information

Part A:Background/Preparation

Part A:Background/Preparation Lab no 1 PC Network TCP/IP Configuration In this lab we will learn about Computer Networks Configuration Introduction to IP addressing Identify tools used for discovering a computer s network configuration

More information

SSVVP SIP School VVoIP Professional Certification

SSVVP SIP School VVoIP Professional Certification SSVVP SIP School VVoIP Professional Certification Exam Objectives The SSVVP exam is designed to test your skills and knowledge on the basics of Networking, Voice over IP and Video over IP. Everything that

More information

Additional Information: A link to the conference website is available at: http://www.curtin.edu.my/cutse2008/index.html

Additional Information: A link to the conference website is available at: http://www.curtin.edu.my/cutse2008/index.html Citation: Veeramani, S. and Gopal, Lenin. 2008. Network monitoring tool, in Curtin University of Technology (ed), Curtin University of Technology Science and Engineering International Conference CUTSE

More information

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc (International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan dr.khalidbilal@hotmail.com

More information

LAB THREE STATIC ROUTING

LAB THREE STATIC ROUTING LAB THREE STATIC ROUTING In this lab you will work with four different network topologies. The topology for Parts 1-4 is shown in Figure 3.1. These parts address router configuration on Linux PCs and a

More information

THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering

THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering ENG 224 Information Technology Laboratory 6: Internet Connection Sharing Objectives: Build a private network that

More information

QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES

QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES SWATHI NANDURI * ZAHOOR-UL-HUQ * Master of Technology, Associate Professor, G. Pulla Reddy Engineering College, G. Pulla Reddy Engineering

More information

Procedure: You can find the problem sheet on Drive D: of the lab PCs. 1. IP address for this host computer 2. Subnet mask 3. Default gateway address

Procedure: You can find the problem sheet on Drive D: of the lab PCs. 1. IP address for this host computer 2. Subnet mask 3. Default gateway address Objectives University of Jordan Faculty of Engineering & Technology Computer Engineering Department Computer Networks Laboratory 907528 Lab.4 Basic Network Operation and Troubleshooting 1. To become familiar

More information

Assignment 6: Internetworking Due October 17/18, 2012

Assignment 6: Internetworking Due October 17/18, 2012 Assignment 6: Internetworking Due October 17/18, 2012 Our topic this week will be the notion of internetworking in general and IP, the Internet Protocol, in particular. IP is the foundation of the Internet

More information

Module 7. Routing and Congestion Control. Version 2 CSE IIT, Kharagpur

Module 7. Routing and Congestion Control. Version 2 CSE IIT, Kharagpur Module 7 Routing and Congestion Control Lesson 4 Border Gateway Protocol (BGP) Specific Instructional Objectives On completion of this lesson, the students will be able to: Explain the operation of the

More information

Scanning Tools. Scan Types. Network sweeping - Basic technique used to determine which of a range of IP addresses map to live hosts.

Scanning Tools. Scan Types. Network sweeping - Basic technique used to determine which of a range of IP addresses map to live hosts. Scanning Tools The goal of the scanning phase is to learn more information about the target environment and discover openings by interacting with that target environment. This paper will look at some of

More information

Datasheet iscsi Protocol

Datasheet iscsi Protocol Protocol with DCB PROTOCOL PACKAGE Industry s premiere validation system for SAN technologies Overview Load DynamiX offers SCSI over TCP/IP transport () support to its existing powerful suite of file,

More information

Homework 3 TCP/IP Network Monitoring and Management

Homework 3 TCP/IP Network Monitoring and Management Homework 3 TCP/IP Network Monitoring and Management Hw3 Assigned on 2013/9/13, Due 2013/9/24 Hand In Requirement Prepare a activity/laboratory report (name it Hw3_WebSys.docx) using the ECET Lab report

More information

PANDORA FMS NETWORK DEVICE MONITORING

PANDORA FMS NETWORK DEVICE MONITORING NETWORK DEVICE MONITORING pag. 2 INTRODUCTION This document aims to explain how Pandora FMS is able to monitor all network devices available on the marke such as Routers, Switches, Modems, Access points,

More information

Question 1. [7 points] Consider the following scenario and assume host H s routing table is the one given below:

Question 1. [7 points] Consider the following scenario and assume host H s routing table is the one given below: Computer Networks II Master degree in Computer Engineering Exam session: 11/02/2009 Teacher: Emiliano Trevisani Last name First name Student Identification number You are only allowed to use a pen and

More information

PERFORMANCE OF MOBILE AD HOC NETWORKING ROUTING PROTOCOLS IN REALISTIC SCENARIOS

PERFORMANCE OF MOBILE AD HOC NETWORKING ROUTING PROTOCOLS IN REALISTIC SCENARIOS PERFORMANCE OF MOBILE AD HOC NETWORKING ROUTING PROTOCOLS IN REALISTIC SCENARIOS Julian Hsu, Sameer Bhatia, Mineo Takai, Rajive Bagrodia, Scalable Network Technologies, Inc., Culver City, CA, and Michael

More information

Zarząd (7 osób) F inanse (13 osób) M arketing (7 osób) S przedaż (16 osób) K adry (15 osób)

Zarząd (7 osób) F inanse (13 osób) M arketing (7 osób) S przedaż (16 osób) K adry (15 osób) QUESTION NO: 8 David, your TestKing trainee, asks you about basic characteristics of switches and hubs for network connectivity. What should you tell him? A. Switches take less time to process frames than

More information

Xperience of Programmable Network with OpenFlow

Xperience of Programmable Network with OpenFlow International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013 Xperience of Programmable Network with OpenFlow Hasnat Ahmed, Irshad, Muhammad Asif Razzaq, and Adeel Baig each one is

More information

COURSE AGENDA. Lessons - CCNA. CCNA & CCNP - Online Course Agenda. Lesson 1: Internetworking. Lesson 2: Fundamentals of Networking

COURSE AGENDA. Lessons - CCNA. CCNA & CCNP - Online Course Agenda. Lesson 1: Internetworking. Lesson 2: Fundamentals of Networking COURSE AGENDA CCNA & CCNP - Online Course Agenda Lessons - CCNA Lesson 1: Internetworking Internetworking models OSI Model Discuss the OSI Reference Model and its layers Purpose and function of different

More information

Linux Firewalls (Ubuntu IPTables) II

Linux Firewalls (Ubuntu IPTables) II Linux Firewalls (Ubuntu IPTables) II Here we will complete the previous firewall lab by making a bridge on the Ubuntu machine, to make the Ubuntu machine completely control the Internet connection on the

More information

How To Understand and Configure Your Network for IntraVUE

How To Understand and Configure Your Network for IntraVUE How To Understand and Configure Your Network for IntraVUE Summary This document attempts to standardize the methods used to configure Intrauve in situations where there is little or no understanding of

More information

Introduction to Synoptic

Introduction to Synoptic Introduction to Synoptic 1 Introduction Synoptic is a tool that summarizes log files. More exactly, Synoptic takes a set of log files, and some rules that tell it how to interpret lines in those logs,

More information

Improving the Security and Efficiency of Network Clients Using OpenFlow

Improving the Security and Efficiency of Network Clients Using OpenFlow Improving the Security and Efficiency of Network Clients Using OpenFlow Adam Coxhead This report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Computing and Mathematical

More information

PANDORA FMS NETWORK DEVICES MONITORING

PANDORA FMS NETWORK DEVICES MONITORING NETWORK DEVICES MONITORING pag. 2 INTRODUCTION This document aims to explain how Pandora FMS can monitor all the network devices available in the market, like Routers, Switches, Modems, Access points,

More information

Networking 4 Voice and Video over IP (VVoIP)

Networking 4 Voice and Video over IP (VVoIP) Networking 4 Voice and Video over IP (VVoIP) Course Objectives This course will give delegates a good understanding of LANs, WANs and VVoIP (Voice and Video over IP). It is aimed at those who want to move

More information

An Implementation Model and Solutions for Stepwise Introduction of SDN -A proposal of AP-GW model-

An Implementation Model and Solutions for Stepwise Introduction of SDN -A proposal of AP-GW model- An Implementation Model and Solutions for Stepwise Introduction of SDN -A proposal of AP-GW model- Hiroki Nakayama, Tatsuo Mori, Satoshi Ueno, Yoshihide Watanabe, Tsunemasa Hayashi BOSCO Technologies Inc.

More information

Traffic Engineering Management Concepts

Traffic Engineering Management Concepts 3 CHAPTER This chapter includes an overview of Cisco Prime Fulfillment and of some of the concepts used in this guide. This chapter includes the following sections: Prime Fulfillment TEM Overview, page

More information

Flexible SDN Transport Networks With Optical Circuit Switching

Flexible SDN Transport Networks With Optical Circuit Switching Flexible SDN Transport Networks With Optical Circuit Switching Multi-Layer, Multi-Vendor, Multi-Domain SDN Transport Optimization SDN AT LIGHT SPEED TM 2015 CALIENT Technologies 1 INTRODUCTION The economic

More information

Monitoring Service Delivery in an MPLS Environment

Monitoring Service Delivery in an MPLS Environment Monitoring Service Delivery in an MPLS Environment A growing number of enterprises depend on (or are considering) MPLS-based routing to guarantee high-bandwidth capacity for the real-time applications

More information

Configuring the Transparent or Routed Firewall

Configuring the Transparent or Routed Firewall 5 CHAPTER This chapter describes how to set the firewall mode to routed or transparent, as well as how the firewall works in each firewall mode. This chapter also includes information about customizing

More information

Network Security Demonstration - Snort based IDS Integration -

Network Security Demonstration - Snort based IDS Integration - Network Security Demonstration - Snort based IDS Integration - Hyuk Lim (hlim@gist.ac.kr) with TJ Ha, CW Jeong, J Narantuya, JW Kim Wireless Communications and Networking Lab School of Information and

More information

On real-time delay monitoring in software-defined networks

On real-time delay monitoring in software-defined networks On real-time delay monitoring in software-defined networks Victor S. Altukhov Lomonosov Moscow State University Moscow, Russia victoralt@lvk.cs.msu.su Eugene V. Chemeritskiy Applied Research Center for

More information

Programming Assignment 2: Using Mininet and Mininet Python API: Instructions

Programming Assignment 2: Using Mininet and Mininet Python API: Instructions Programming Assignment 2: Using Mininet and Mininet Python API: Instructions In this exercise, you will be learning how to build custom topologies using Mininet Python API and how certain parameters like

More information

Assignment #3 Routing and Network Analysis. CIS3210 Computer Networks. University of Guelph

Assignment #3 Routing and Network Analysis. CIS3210 Computer Networks. University of Guelph Assignment #3 Routing and Network Analysis CIS3210 Computer Networks University of Guelph Part I Written (50%): 1. Given the network graph diagram above where the nodes represent routers and the weights

More information

On the effect of forwarding table size on SDN network utilization

On the effect of forwarding table size on SDN network utilization IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz

More information

CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS

CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 137 CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 8.1 CONCLUSION In this thesis, efficient schemes have been designed and analyzed to control congestion and distribute the load in the routing process of

More information

Guideline for setting up a functional VPN

Guideline for setting up a functional VPN Guideline for setting up a functional VPN Why do I want a VPN? VPN by definition creates a private, trusted network across an untrusted medium. It allows you to connect offices and people from around the

More information

Software Defined Networking

Software Defined Networking Software Defined Networking Dr. Nick Feamster Associate Professor In this course, you will learn about software defined networking and how it is changing the way communications networks are managed, maintained,

More information

SECURE DATA TRANSMISSION USING INDISCRIMINATE DATA PATHS FOR STAGNANT DESTINATION IN MANET

SECURE DATA TRANSMISSION USING INDISCRIMINATE DATA PATHS FOR STAGNANT DESTINATION IN MANET SECURE DATA TRANSMISSION USING INDISCRIMINATE DATA PATHS FOR STAGNANT DESTINATION IN MANET MR. ARVIND P. PANDE 1, PROF. UTTAM A. PATIL 2, PROF. B.S PATIL 3 Dept. Of Electronics Textile and Engineering

More information

co Characterizing and Tracing Packet Floods Using Cisco R

co Characterizing and Tracing Packet Floods Using Cisco R co Characterizing and Tracing Packet Floods Using Cisco R Table of Contents Characterizing and Tracing Packet Floods Using Cisco Routers...1 Introduction...1 Before You Begin...1 Conventions...1 Prerequisites...1

More information

Using IPM to Measure Network Performance

Using IPM to Measure Network Performance CHAPTER 3 Using IPM to Measure Network Performance This chapter provides details on using IPM to measure latency, jitter, availability, packet loss, and errors. It includes the following sections: Measuring

More information

Dynamic Routing Protocols II OSPF. Distance Vector vs. Link State Routing

Dynamic Routing Protocols II OSPF. Distance Vector vs. Link State Routing Dynamic Routing Protocols II OSPF Relates to Lab 4. This module covers link state routing and the Open Shortest Path First (OSPF) routing protocol. 1 Distance Vector vs. Link State Routing With distance

More information

Network Layer. Introduction Datagrams and Virtual Circuits Routing Traffic Control. Data delivery from source to destination.

Network Layer. Introduction Datagrams and Virtual Circuits Routing Traffic Control. Data delivery from source to destination. Layer Introduction Datagrams and Virtual ircuits Routing Traffic ontrol Main Objective Data delivery from source to destination Node (Router) Application Presentation Session Transport Data Link Data Link

More information

Establishing How Many VoIP Calls a Wireless LAN Can Support Without Performance Degradation

Establishing How Many VoIP Calls a Wireless LAN Can Support Without Performance Degradation Establishing How Many VoIP Calls a Wireless LAN Can Support Without Performance Degradation ABSTRACT Ángel Cuevas Rumín Universidad Carlos III de Madrid Department of Telematic Engineering Ph.D Student

More information

Network management and QoS provisioning - QoS in the Internet

Network management and QoS provisioning - QoS in the Internet QoS in the Internet Inernet approach is based on datagram service (best effort), so provide QoS was not a purpose for developers. Mainly problems are:. recognizing flows;. manage the issue that packets

More information

Software Defined Networking (SDN) - Open Flow

Software Defined Networking (SDN) - Open Flow Software Defined Networking (SDN) - Open Flow Introduction Current Internet: egalitarian routing/delivery based on destination address, best effort. Future Internet: criteria based traffic management,

More information

Open Source Tools & Platforms

Open Source Tools & Platforms Open Source Tools & Platforms Open Networking Lab Ali Al-Shabibi Agenda Introduction to ON.Lab; Who we are? What we are doing? ONOS Overview OpenVirtex Overview ONRC Organizational Structure Berkeley Scott

More information

Load Balancing and Switch Scheduling

Load Balancing and Switch Scheduling EE384Y Project Final Report Load Balancing and Switch Scheduling Xiangheng Liu Department of Electrical Engineering Stanford University, Stanford CA 94305 Email: liuxh@systems.stanford.edu Abstract Load

More information

Lab 10.3.5a Basic Subnetting

Lab 10.3.5a Basic Subnetting Lab 10.3.5a Basic Subnetting Objective How to identify reasons to use a subnet mask How to distinguish between a default subnet mask and a custom subnet mask What given requirements determine the subnet

More information

Lesson 5-3: Border Gateway Protocol

Lesson 5-3: Border Gateway Protocol Unit 5: Intradomain and Interdomain Protocols Lesson 5-3: Gateway Protocol At a Glance The Gateway Protocol (BGP) is an interdomain routing protocol used in TCP/IP internetworks. BGP was created to allow

More information

CCNA R&S: Introduction to Networks. Chapter 5: Ethernet

CCNA R&S: Introduction to Networks. Chapter 5: Ethernet CCNA R&S: Introduction to Networks Chapter 5: Ethernet 5.0.1.1 Introduction The OSI physical layer provides the means to transport the bits that make up a data link layer frame across the network media.

More information

Routing Heterogeneous CCI Subnets

Routing Heterogeneous CCI Subnets Routing Heterogeneous CCI Subnets Scott Atchley Technology Integration Group, NCCS Oak Ridge National Laboratory Oak Ridge, TN, USA atchleyes@ornl.gov Abstract This electronic document is a live template

More information

Integrating CoroSoft Datacenter Automation Suite with F5 Networks BIG-IP

Integrating CoroSoft Datacenter Automation Suite with F5 Networks BIG-IP Integrating CoroSoft Datacenter Automation Suite with F5 Networks BIG-IP Introducing the CoroSoft BIG-IP Solution Configuring the CoroSoft BIG-IP Solution Optimizing the BIG-IP configuration Introducing

More information