VoIP over Wireless Opportunities and Challenges
|
|
|
- Daniel Long
- 10 years ago
- Views:
Transcription
1 Prof. Dr. P. Tran-Gia VoIP over Wireless Opportunities and Challenges Universität Würzburg Lehrstuhl für verteilte Systeme
2 H.323 RTP Codec Voice-over-IP over Wireless (VoIPoW) UDP IMS G723.1 SIP G729 HSDPA WiMAX Skype G711 WiFi IP UMTS AMR LTE QoS QoE Play-out buffer Header Compression PTT Packet Loss Concealment
3 Overview > Why Voice-over-IP over Wireless? Motivation and Advantages Current problems and challenges > VoIP transmission in different radio access technologies IEEE WLAN IEEE WiMAX UMTS > An outlook to the future/ current research > Conclusion
4 Why VoIP over Wireless? flexibility of IP spectral efficiency future VoIPoW VoIPoW today circuit-switched voice QoS
5 VoIP and VoIPoW > Aspects of VoIP signaling and connection management (SIP, H.323, Skype, IMS ) transport protocol (RTP) voice codec play-out buffer packet loss concealment (FEC, ) jitter, packet loss, delay > Additional aspects of VoIPoW mobility management (MobileIP, VHO, IMS, ) properties of radio transmission high bit error rate time-variant channel limited, expensive bandwidth different radio access technologies must fit to each other
6 Problems, Challenges, Solutions > Desired: high spectral efficiency problem: small packets, large header RTP/UDP/IP header avoidable through header compression problem: MAC layer overhead frame aggregation problem: no delivery of erroneous packets voice codec could deal with rare bit errors MAC/UDP require correct packets higher SIR, more robust transmission, more retransmissions > Desired: low packet loss, delay, and jitter problems: retransmissions random access/medium access scheduling time-variant channel quality solutions: play-out buffer, adaptive codec, packet loss concealment
7 VoIP over Wireless LAN > IEEE802.11abg random access on up- and downlink no service differentiation bad spectral efficiency alternative: polling with PCF (point coordination function) > IEEE802.11e service differentiation dedicated resource allocation with HCCA (Hybrid Control Function Controlled Channel Access) > Header compression is possible but not used > Future challenges admission control adaptive contention parameters
8 VoIP over IEEE802.11g/e with Header Compression maximum number of clients IEEE802.11g without service differentiation 54 Mbps 36 Mbps 24 Mbps 18 Mbps 12 Mbps 9 Mbps 6 Mbps dashed: without header compression solid: using header compression maximum number of clients IEEE802.11e with service differentiation 54 Mbps 36 Mbps 24 Mbps 18 Mbps 12 Mbps 9 Mbps 6 Mbps dashed: without header compression solid: using header compression frame size in milliseconds > Contention parameters for VoIP support decrease VoIP capacity adaptive contention parameters > Small benefits from header compression frame size in milliseconds
9 VoIP over WiMAX (IEEE ) > Possible scheduling services in WiMAX UGS (Unsolicited Grant Service) essentially a dedicated channel no support for silence suppression on uplink rt-ps (real-time Polling Service) regular dedicated bandwidth request opportunities support for silence suppression on uplink BE (Best Effort) not intended for VoIP contention based bandwidth requests collision free data transmission introduces delay and jitter > Problem: Services intended for VoIP (UGS, rt-ps) require detailed traffic characteristics and provide detailed QoS VoIP e.g. Skype transmitted over BE
10 VoIP over Best-Effort Connections in Fixed WiMAX > Performance of VoIP connections over BE service > No background traffic, no packet loss, no header compression > 5MHz TDD > G723.1 Codec: 480bit every 30ms 10ms frame, QPSK, ½ code rate 5ms frame, 16QAM, ¾ code rate P{delay P(T <= 10 frames) P <= 100ms} number of VoIP G723.1 connections P{delay <= 100ms} number of VoIP G723.1 connections
11 VoIP over UMTS > Today: Typical: circuit-switched voice over dedicated channels using AMR codec (Adaptive Multi-Rate) VoIP transmission as normal data traffic on DCH/HSDPA typically no service differentiation > Future: IMS, special dedicated channels for VoIP Special support for VoIP over HSDPA/HSUPA? Scheduling disciplines VoIP in UTRA LTE enhanced VoIP capacity by enhanced transmission techniques? > CDMA2000 1x EV-DO Rev A similar to HSDPA/HSUPA special support for VoIP
12 Skype over UMTS > T. Hoßfeld, A. Binzenhöfer, M. Fiedler, K. Tutschku, Measurement and Analysis of Skype VoIP Traffic in 3G UMTS Systems, IPS-MoMe 2006 > ilbc codec: 108 Byte voice packet with every 60 ms 1 Uplink 1 Downlink CDF DSL receiver with 1024 kbps UMTS sender with 64 kbps CDF UMTS receiver with 384 kbps DSL sender with 128 kbps packet interarrival time [ms] > considerable jitter > PESQ ~2.2 instead of ~3 in bottleneck LAN with 64 kbps packet interarrival time [ms] > packet inter-arrival time deterministic > PESQ ~2.5 instead of ~3 in bottleneck LAN with 128 kbps
13 Outlook to the Future > Development of VoIPoW current codec optimized for circuit-switched data development of special codecs for VoIPoW differentiated packet dropping > Challenges and opportunities for VoIPoW adaptive modulation and coding channel-aware scheduling frequency-selective scheduling enhanced antenna techniques multi-hop networks heterogeneous networks
14 Skype: Adaptive Codec > ISAC codec with artificial time-variant packet loss > Packetization independent of packet loss > Variable bit rate by increasing packet size, i.e. more audio data Packet loss packet loss receiver sender sender Time [ms] x 10 6 Time between packets [ms] Packet loss 0.2 packet size packet loss Time [ms] x Packet sizes
15 Scenario: VoIP over HSDPA > G.711 codec: 64 kbps 160bytes per 20 ms > Performance of different schedulers Maximum CQI Scheduler optimizes throughput channel-aware starvation, unfairness Proportional Fair Scheduler optimizes throughput considering long-term throughput fairness channel-aware Round Robin optimal short-term time fairness channel-unaware FIFO First In First Out common buffer channel-unaware DEDF Scheduler Dynamic-Earliest-Deadline-First considers buffering time channel-aware optimizes delay CH-EDD Scheduler Channel-Dependent-Earliest-Due-Date considers buffering time channel-aware drops packet after deadline
16 VoIP over HSDPA packet dropping probability User MAX PF DEDF CH-EDD 13 User % < 1 % < 1 % 2.09 % % 1.90 % < 1 % 3.99 % % 7.48 % < 1 % 7.76 % 16 User 20 User
17 Conclusion > Situation today circuit-switched voice is optimized for QoS and spectral efficiency little/no support for VoIP in cellular networks VoIPoW is VoIP over WLAN > Drivers for VoIPoW in cellular networks are all-ip infrastructure, IMS vertical handover possibilities of packet-switched radio transmission > VoIP over Wireless will replace circuit-switched voice in the future > Future challenges and opportunities enhanced packet-switched radio transmission multi-hop development of VoIP optimized codecs charging
HO Policies for Combined WLAN/UMTS Networks
HO Policies for Combined WLAN/UMTS Networks Sven Wiethölter Telecommunication Networks Group TU Berlin Telecommunication Networks Group Technische Universität Berlin Project Overview Project partners Goal:
Introduction VOIP in an 802.11 Network VOIP 3
Solutions to Performance Problems in VOIP over 802.11 Wireless LAN Wei Wang, Soung C. Liew Presented By Syed Zaidi 1 Outline Introduction VOIP background Problems faced in 802.11 Low VOIP capacity in 802.11
Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network
Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Jianguo Cao School of Electrical and Computer Engineering RMIT University Melbourne, VIC 3000 Australia Email: [email protected]
VoIP in 802.11. Mika Nupponen. S-72.333 Postgraduate Course in Radio Communications 06/04/2004 1
VoIP in 802.11 Mika Nupponen S-72.333 Postgraduate Course in Radio Communications 06/04/2004 1 Contents Introduction VoIP & WLAN Admission Control for VoIP Traffic in WLAN Voice services in IEEE 802.11
Improving ertps Grant Allocation for VoIP Traffic in Silence Duration
Improving ertps Grant Allocation for VoIP Traffic in Silence Duration S. Amir. Hoseini, S. Saed Rezaie, and H. Taheri Abstract This paper proposes a new uplink scheduling algorithm that can increase the
Performance optimization of mobile WiMAX netwoks for VoIP streams
Performance optimization of mobile WiMAX netwoks for VoIP streams L Ortiz V Rangel J Gomez Department of Telecommunications UNAM Mexico City {lortiz victor javierg}@fi-bunammx R Santos School of Telematics
Performance Analysis of VoIP Codecs over Wi-Fi and WiMAX Networks
Performance Analysis of VoIP Codecs over Wi-Fi and WiMAX Networks Khaled Alutaibi and Ljiljana Trajković Simon Fraser University Vancouver, British Columbia, Canada E-mail: {kalutaib, ljilja}@sfu.ca Abstract
Performance Evaluation of Quality of VoIP in WiMAX and UMTS
Performance Evaluation of Quality of VoIP in WiMAX and UMTS Sheetal Jadhav, Haibo Zhang and Zhiyi Huang Department of Computer Science University of Otago, New Zealand Email: {sheetal;haibo;hzy}@cs.otago.ac.nz
Extended-rtPS Algorithm for VoIP Services in IEEE 802.16 systems
Extended-rtPS Algorithm for VoIP Services in IEEE 802.16 systems Howon Lee, Taesoo Kwon and Dong-Ho Cho Department of Electrical Engineering and Computer Science Korea Advanced Institute of Science and
QoE based Resource Management in Wireless Networks
Institute of Computer Science Department of Distributed Systems Prof. Dr.-Ing. P. Tran-Gia QoE based Resource Management in Wireless Networks University of Würzburg Chair of Distributed Systems www3.informatik.uni-wuerzburg.de
Circuit-Switched Voice Services over HSPA
Circuit-Switched Voice Services over HSPA 1 Qualcomm Incorporated, Corporate R&D San Diego, USA Abstract Circuit-Switched (CS) Voice Services over HSPA (CSoHS) was recently introduced for 3GPP WCDMA Release
VoIP in 3G Networks: An End-to- End Quality of Service Analysis
VoIP in 3G etworks: An End-to- End Quality of Service Analysis 1 okia etworks P.O.Box 301, 00045 okia Group, Finland [email protected] Renaud Cuny 1, Ari Lakaniemi 2 2 okia Research Center P.O.Box
TCP in Wireless Networks
Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems
Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc
(International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan [email protected]
Deployment Aspects for VoIP Services over HSPA Networks
Nash Technologies Your partner for world-class custom software solutions & consulting Deployment Aspects for VoIP Services over HSPA Networks Jens Mueckenheim, Enrico Jugl, Thomas Wagner, Michael Link,
Choosing the Right Audio Codecs for VoIP over cdma2000 Networks:
Choosing the Right Audio Codecs for VoIP over cdma2000 Networks: System capacity, Voice quality, Delay, and Transcoding issues Dr. Sassan Ahmadi NOKIA Inc. [email protected] February 8, 2005 1 2005
Capacity of VoIP over HSDPA with Frame Bundling
Capacity of VoIP over HSDPA with Frame Bundling Yong-Seok Kim Telecommunication Network Business Samsung Electronics Email: [email protected] Youngheon Kim Telecommunication Network Business Samsung
VoIP Shim for RTP Payload Formats
PITALS 50 pt 32 pt VoIP Shim for RTP Payload Formats draft-johansson-avt-rtp-shim Ingemar Johansson, Ericsson AB Outline MTSI in 3GPP Voice service requirements Problems with RTCP Why is inband signaling
Voice-Over-IP. Daniel Zappala. CS 460 Computer Networking Brigham Young University
Voice-Over-IP Daniel Zappala CS 460 Computer Networking Brigham Young University Coping with Best-Effort Service 2/23 sample application send a 160 byte UDP packet every 20ms packet carries a voice sample
Scheduling for VoIP Service in cdma2000 1x EV-DO
Scheduling for VoIP Service in cdma2000 1x EV-DO Young-June Choi and Saewoong Bahk School of Electrical Engineering & Computer Science Seoul National University, Seoul, Korea E-mail: {yjchoi, sbahk}@netlab.snu.ac.kr
Voice over Internet Protocol (VoIP) systems can be built up in numerous forms and these systems include mobile units, conferencing units and
1.1 Background Voice over Internet Protocol (VoIP) is a technology that allows users to make telephone calls using a broadband Internet connection instead of an analog phone line. VoIP holds great promise
Delivering reliable VoIP Services
QoS Tips and Tricks for VoIP Services: Delivering reliable VoIP Services Alan Clark CEO, Telchemy [email protected] 1 Objectives Clear understanding of: typical problems affecting VoIP service
VoIP Features Oriented Uplink Scheduling Scheme in Wireless Networks
10 VoIP Features Oriented Uplink Scheduling Scheme in Wireless Networks Sung-Min Oh and Jae-Hyun Kim School of Electrical and Computer Engineering, Ajou University Republic of Korea 1. Introduction VoIP
Measuring Data and VoIP Traffic in WiMAX Networks
JOURNAL OF TELECOMMUNICATIONS, VOLUME 2, ISSUE 1, APRIL 2010 Measuring Data and VoIP Traffic in WiMAX Networks 1 Iwan Adhicandra Abstract Due to its large coverage area, low cost of deployment and high
Basic principles of Voice over IP
Basic principles of Voice over IP Dr. Peter Počta {[email protected]} Department of Telecommunications and Multimedia Faculty of Electrical Engineering University of Žilina, Slovakia Outline VoIP Transmission
Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks
Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks Ayman Wazwaz, Computer Engineering Department, Palestine Polytechnic University, Hebron, Palestine, [email protected] Duaa sweity
Clearing the Way for VoIP
Gen2 Ventures White Paper Clearing the Way for VoIP An Alternative to Expensive WAN Upgrades Executive Overview Enterprises have traditionally maintained separate networks for their voice and data traffic.
VoIP Bandwidth Considerations - design decisions
VoIP Bandwidth Considerations - design decisions When calculating the bandwidth requirements for a VoIP implementation the two main protocols are: a signalling protocol such as SIP, H.323, SCCP, IAX or
VoIP Bandwidth Calculation
VoIP Bandwidth Calculation AI0106A VoIP Bandwidth Calculation Executive Summary Calculating how much bandwidth a Voice over IP call occupies can feel a bit like trying to answer the question; How elastic
VoIP on WIFI. Christian Hoene September 13 th, 2004 UNITN DIT, Trento. Motivation: Semantic data-link Determining VoIP Quality
VoIP on WIFI Christian Hoene September 13 th, 2004 UNITN DIT, Trento Technische Universität Berlin URL: www.tkn.tu-berlin.de 1 Content Motivation: Semantic data-link Determining VoIP Quality Perceptual
VoIP-Kapazität im Relay erweiterten IEEE 802.16 System
VoIP-Kapazität im Relay erweiterten IEEE 802.16 System 21. ComNets-Workshop Mobil- und Telekommunikation Dipl.-Ing. Karsten Klagges ComNets Research Group RWTH Aachen University 16. März 2012 Karsten Klagges
A study of Skype over IEEE 802.16 networks: voice quality and bandwidth usage
Iowa State University Digital Repository @ Iowa State University Graduate Theses and Dissertations Graduate College 2011 A study of Skype over IEEE 802.16 networks: voice quality and bandwidth usage Kuan-yu
Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction
Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit
Advanced Networking Voice over IP: RTP/RTCP The transport layer
Advanced Networking Voice over IP: RTP/RTCP The transport layer Renato Lo Cigno Requirements For Real-Time Transmission Need to emulate conventional telephone system Isochronous output timing same with
ANALYSIS OF VOICE OVER IP DURING VERTICAL HANDOVERS IN HETEROGENEOUS WIRELESS AND MOBILE NETWORKS
ANALYSIS OF VOICE OVER IP DURING VERTICAL HANDOVERS IN HETEROGENEOUS WIRELESS AND MOBILE NETWORKS Kire Jakimoski Ss. Cyril and Methodius University, Faculty of Electrical Engineering and Information Technologies
HSPA: High Speed Wireless Broadband From HSDPA to HSUPA and beyond. HSPA: High Speed Wireless Broadband From HSDPA to HSUPA and Beyond
HSPA: High Speed Wireless Broadband From HSDPA to HSUPA and beyond HSPA: High Speed Wireless Broadband From HSDPA to HSUPA and Beyond Introduction... 3 HSPA Explained... 3 HSPA Technology... 4 HSDPA...4
Comparative Study of VoIP over WiMax and WiFi
www.ijcsi.org 433 Comparative Study of VoIP over WiMax and WiFi M. Atif Qureshi* 1, Arjumand Younus* 2, Muhammad Saeed #3, Farhan Ahmed Sidiqui #4, Nasir Touheed* 5, and M. Shahid Qureshi* 6 * Faculty
Should Pakistan Leapfrog the Developed World in Broadband? By: Syed Ismail Shah Iqra University Islamabad Campus E-mail: [email protected].
Should Pakistan Leapfrog the Developed World in Broadband? By: Syed Ismail Shah Iqra University Islamabad Campus E-mail: [email protected] Should Pakistan Leapfrog the Developed World in Broadband?
Performance Analysis of Scheduling Algorithms
Performance Analysis of Scheduling Algorithms for VoIP Services in IEEE 82.1 6e Systems Howon Lee*, Taesoo Kwon*, Dong-Ho Cho*, Geunhwi Limt and Yong Changt *Department of Electrical Engineering and Computer
IAB CONCERNS ABOUT CONGESTION CONTROL. Iffat Hasnian 1832659
IAB CONCERNS ABOUT CONGESTION CONTROL Iffat Hasnian 1832659 IAB CONCERNS Outline 1- Introduction 2- Persistent High Drop rate Problem 3- Current Efforts in the IETF 3.1 RTP 3.2 TFRC 3.3 DCCP 3.4 Audio
Analysis of Quality of Service (QoS) for Video Conferencing in WiMAX Networks
ENSC 427 - COMMUNICATION NETWORKS Analysis of Quality of Service (QoS) for Video Conferencing in WiMAX Networks Spring 2010 Final Project Prepared for: Prof. Ljiljana Trajkovic Group #2 http://www.sfu.ca/~asc13/ensc427/
Index. Common Packet Channel (CPCH) 25 Compression 265, 279 82, 288 header compression 284
bindex.fm Page 296 Tuesday, March 22, 2005 7:17 AM Index 2G, 2.5G, 3G 13 3GPP 118 Release 5 (Rel 5) 124 Release 6 (Rel 6) 125 Release 97/98 (Rel 97/98) 119 Release 99 (Rel 99) 120 4 3GPP2 129 4G 13, 44
How To Determine The Capacity Of An 802.11B Network
Capacity of an IEEE 802.11b Wireless LAN supporting VoIP To appear in Proc. IEEE Int. Conference on Communications (ICC) 2004 David P. Hole and Fouad A. Tobagi Dept. of Electrical Engineering, Stanford
Unit 23. RTP, VoIP. Shyam Parekh
Unit 23 RTP, VoIP Shyam Parekh Contents: Real-time Transport Protocol (RTP) Purpose Protocol Stack RTP Header Real-time Transport Control Protocol (RTCP) Voice over IP (VoIP) Motivation H.323 SIP VoIP
Performance Analysis of VoIP Codecs over BE WiMAX Network
Performance Analysis of VoIP Codecs over BE WiMAX Network Muhammad Imran Tariq, Muhammad Ajmal Azad, Razvan Beuran, Yoichi Shinoda Japan Advanced Institute of Science and Technology, Ishikawa, Japan National
Combining Voice over IP with Policy-Based Quality of Service
TechBrief Extreme Networks Introduction Combining Voice over IP with Policy-Based Quality of Service Businesses have traditionally maintained separate voice and data networks. A key reason for this is
Voice over IP: RTP/RTCP The transport layer
Advanced Networking Voice over IP: /RTCP The transport layer Renato Lo Cigno Requirements For Real-Time Transmission Need to emulate conventional telephone system Isochronous output timing same with input
Simulative Investigation of QoS parameters for VoIP over WiMAX networks
www.ijcsi.org 288 Simulative Investigation of QoS parameters for VoIP over WiMAX networks Priyanka 1, Jyoteesh Malhotra 2, Kuldeep Sharma 3 1,3 Department of Electronics, Ramgarhia Institue of Engineering
No Ack in IEEE 802.11e Single-Hop Ad-Hoc VoIP Networks
No Ack in IEEE 802.11e Single-Hop Ad-Hoc VoIP Networks Jaume Barceló, Boris Bellalta, Anna Sfairopoulou, Cristina Cano, Miquel Oliver Abstract This paper analyzes the impact of the No Ack policy in VoIP
Requirements of Voice in an IP Internetwork
Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.
Modeling and Simulation of Quality of Service in VoIP Wireless LAN
Journal of Computing and Information Technology - CIT 16, 2008, 2, 131 142 doi:10.2498/cit.1001022 131 Modeling and Simulation of Quality of Service in VoIP Wireless LAN A. Al-Naamany, H. Bourdoucen and
EPL 657 Wireless Networks
EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing
VoIP codec adaptation algorithm in multirate 802.11 WLANs : distributed vs centralized performance comparison
VoIP codec adaptation algorithm in multirate 82.11 WLANs : distributed vs centralized performance comparison Anna Sfairopoulou, Carlos Macián, Boris Bellalta Network Technologies and Strategies (NeTS)
802.16 - Usage. Wireless Broadband Networks. Need for Speed WMAN
Wireless Broadband Networks - Usage WLAN: Support of mobile devices, but low data rate for higher number of users What to do for a high number of users or even needed QoS support? Problem of the last mile
Performance Evaluation of Quality of VoIP service over UMTS-UTRAN R99
Performance Evaluation of Quality of VoIP service over UMTS-UTRAN R99 Andrea Barbaresi, Andrea Mantovani Telecom Italia - Via G. Reiss Romoli, 274 I-1148 Torino (TO), Italy [email protected]
Performance Analysis Proposal
1. Title Performance Analysis Proposal Performance Analysis of P2P VoIP Applications 2. Objective To evaluate the dynamic behavior (i.e., CODEC usage) of VoIP P2P applications (e.g. Skype, Google Talk)
The future of mobile networking. David Kessens <[email protected]>
The future of mobile networking David Kessens Introduction Current technologies Some real world measurements LTE New wireless technologies Conclusion 2 The future of mobile networking
Can I add a VoIP call?
Can I add a VoIP call? Sachin Garg Avaya Labs Basking Ridge, NJ 07920 Email: [email protected] Martin Kappes Avaya Labs Basking Ridge, NJ 07920 Email: [email protected] Abstract In this paper, we study the
Adaptive Coding and Packet Rates for TCP-Friendly VoIP Flows
Adaptive Coding and Packet Rates for TCP-Friendly VoIP Flows C. Mahlo, C. Hoene, A. Rostami, A. Wolisz Technical University of Berlin, TKN, Sekr. FT 5-2 Einsteinufer 25, 10587 Berlin, Germany. Emails:
Encapsulating Voice in IP Packets
Encapsulating Voice in IP Packets Major VoIP Protocols This topic defines the major VoIP protocols and matches them with the seven layers of the OSI model. Major VoIP Protocols 15 The major VoIP protocols
HSPA+ and LTE Test Challenges for Multiformat UE Developers
HSPA+ and LTE Test Challenges for Multiformat UE Developers Presented by: Jodi Zellmer, Agilent Technologies Agenda Introduction FDD Technology Evolution Technology Overview Market Overview The Future
Study of the impact of UMTS Best Effort parameters on QoE of VoIP services
Study of the impact of UMTS Best Effort parameters on QoE of VoIP services Jose Oscar Fajardo, Fidel Liberal, Nagore Bilbao Department of Electronics and Telecommunciations, University of the Basque Country
White Paper. D-Link International Tel: (65) 6774 6233, Fax: (65) 6774 6322. E-mail: [email protected]; Web: http://www.dlink-intl.
Introduction to Voice over Wireless LAN (VoWLAN) White Paper D-Link International Tel: (65) 6774 6233, Fax: (65) 6774 6322. Introduction Voice over Wireless LAN (VoWLAN) is a technology involving the use
Voice over IP - WLAN, 3G and LTE issues
WIRELESS NETWORKS, CHALMERS 2011 1 Voice over IP - WLAN, 3G and LTE issues Baran Kiziltan, Majid Khan and Francesco M. Velotti Abstract The aim of this paper is to give a basic introduction on VoIP- WLAN,
Application Note How To Determine Bandwidth Requirements
Application Note How To Determine Bandwidth Requirements 08 July 2008 Bandwidth Table of Contents 1 BANDWIDTH REQUIREMENTS... 1 1.1 VOICE REQUIREMENTS... 1 1.1.1 Calculating VoIP Bandwidth... 2 2 VOIP
Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.
Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet
3GPP Wireless Standard
3GPP Wireless Standard Shishir Pandey School of Technology and Computer Science TIFR, Mumbai April 10, 2009 Shishir Pandey (TIFR) 3GPP Wireless Standard April 10, 2009 1 / 23 3GPP Overview 3GPP : 3rd Generation
Analyzing VoIP for 3G/4G Wireless Networks
Analyzing VoIP for 3G/4G Wireless Networks Nirupama Upadhyay Department of Electrical and Computer Engineering University of Florida Abstract An analysis has been done on the existing 3G wireless cellular
Priority-Coupling A Semi-Persistent MAC Scheduling Scheme for VoIP Traffic on 3G LTE
Priority-Coupling A Semi-Persistent MAC Scheduling Scheme for VoIP Traffic on 3G LTE S. Saha * and R. Quazi ** * Helsinki University of Technology, Helsinki, Finland ** University of Dhaka, Dhaka, Bangladesh
How To Improve A Wireless Phone Connection On A Wireless Network
Implementing VoIP Service Over Wireless Network BreezeACCESS VL White Paper July 2006 Introduction Voice over Internet Protocol (VoIP) technology facilitates packet based IP networks to carry digitized
Journal of Information
Journal of Information journal homepage: http://www.pakinsight.com/?ic=journal&journal=104 INFORMATION ABOUT SIMULATION SOFTWARE FOR TESTING OF WIRELESS NETWORK Kalpana Chaudhari 1 * --- P.T. Karule 2
Performance Analysis of VoIP Traffic in WiMAX using various Service Classes
Performance Analysis of VoIP Traffic in WiMAX using various Service Classes Tarik ANOUARI 1 Abdelkrim HAQIQ 1, 2 1 Computer, Networks, Mobility and Modeling laboratory Department of Mathematics and Computer
Triple Play Services over Mobile WiMAX
Triple Play Services over Mobile WiMAX Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] Presented at MWG Meeting, Athens, April 29, 2008 These slides are available
Performance Evaluation of Quality of VoIP Service over UMTS-UTRAN R99
Glasgow, June, 24 th -28 th 2007 Performance Evaluation of Quality of VoIP Service over UMTS-UTRAN R99 Andrea Barbaresi, Andrea Mantovani LAB Contacts: [email protected] Via G. Reiss Romoli,
Nokia Networks. Voice over LTE (VoLTE) Optimization
Nokia Networks Voice over LTE (VoLTE) Optimization Contents 1. Introduction 3 2. VoIP Client Options 5 3. Radio Network Optimization 6 4. Voice Quality Optimization 11 5. Handset Power Consumption Optimization
Supporting VoIP in IEEE802.11 Distributed WLANs
Supporting VoIP in IEEE802.11 Distributed WLANs Zuo Liu Supervisor: Dr. Nick Filer July 2012 1 Voice VoIP Applications Constant Streaming Traffic Packetize interval usually 10-30 ms 8 160 bytes each packet
FORTH-ICS / TR-375 March 2006. Experimental Evaluation of QoS Features in WiFi Multimedia (WMM)
FORTH-ICS / TR-375 March 26 Experimental Evaluation of QoS Features in WiFi Multimedia (WMM) Vasilios A. Siris 1 and George Stamatakis 1 Abstract We investigate the operation and performance of WMM (WiFi
ALL-IP CELLULAR NETWORK ARCHITECTURE FOR EFFICIENT RESOURCE MANAGEMENT
ALL-IP CELLULAR NETWORK ARCHITECTURE FOR EFFICIENT RESOURCE MANAGEMENT Young-June Choi, Kwang Bok Lee and Saewoong Bahk School of Electrical Engineering and Computer Science, INMC Seoul National University
VoIP over MANET (VoMAN): QoS & Performance Analysis of Routing Protocols for Different Audio Codecs
VoIP over MANET (VoMAN): QoS & Performance Analysis of Routing Protocols for Different Audio Codecs Said El brak Mohammed Bouhorma Anouar A.Boudhir ABSTRACT Voice over IP (VoIP) has become a popular Internet
Online course syllabus. MAB: Voice over IP
Illuminating Technology Course aim: Online course syllabus MAB: Voice over IP This course introduces the principles and operation of telephony services that operate over Internet Protocol (IP) networks
II. IEEE802.11e EDCA OVERVIEW
The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'7) CACITY IMPROVEMENT OF WIRELESS LAN VOIP USING DISTRIBUTED TRANSMISSION SCHEDULING Kei Igarashi,
Latency on a Switched Ethernet Network
Application Note 8 Latency on a Switched Ethernet Network Introduction: This document serves to explain the sources of latency on a switched Ethernet network and describe how to calculate cumulative latency
Active Queue Management for Real-time IP Traffic
Active Queue Management for Real-time IP Traffic Xiaoyan Wang SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Department of Electronic Engineering Queen Mary University of London October 2006 To my parents
How To Deliver High Quality Telephony Over A Network
Voice over Application Note Telephony Service over Satellite January 2012 Data Sells but Voice Pays In the early years of the industry, networks were deployed primarily for telephony services. As time
LTE, WLAN, BLUETOOTHB
LTE, WLAN, BLUETOOTHB AND Aditya K. Jagannatham FUTURE Indian Institute of Technology Kanpur Commonwealth of Learning Vancouver 4G LTE LTE (Long Term Evolution) is the 4G wireless cellular standard developed
