Basics of Battery Technology

Size: px
Start display at page:

Download "Basics of Battery Technology"

Transcription

1 Basics of Battery Technology Tampere Kai Vuorilehto Adjunct professor, Director R&D,

2 Secondary batteries - chemistries Pb-PbO 2 NiOOH-Cd NiOOH-MH Li-ion (C-CoO 2 ) mostly forbidden

3 Secondary batteries - energy Pb-PbO 2 35 Wh/kg NiOOH-Cd 35 Wh/kg NiOOH-MH 75 Wh/kg Li-ion (C-CoO 2 ) 150 Wh/kg

4 Wh/kg and W/kg

5 Secondary Batteries - characteristics Voltage Wh/kg Wh/L W/kg W/L Min. temp Max. temp Voltage profile Shelf life Cost Safety Environment Cycle life Calendar life Charge retention Charge acceptancy Energy efficiency

6 Principle of the lithium-ion battery

7 Principle of the lithium-ion battery NOT a lithium battery, as there is no metallic lithium Metallic lithium could form dendrites and cause short circuit Lithium ions are intercalated in host lattices (graphite etc.) Each ion has its "own home"

8 Properties of lithium-ion batteries High energy density Rather high power density Long cycle life Good charge retention High energy efficiency

9 Positive electrode (cathode) Cobalt oxide standard material, 3.7V (combined with graphite) expensive, toxic and dangerous layered structure Co(IV) -> Co(III) at discharge can be charged only 50%, Li 0.5 CoO 2 for 7g of Li the electrode has 189g of extra Li 0.5 CoO 2 collapses without lithium thermal runaway positive potential at the upper end of the electrolyte stability window

10 Negative electrode (anode) Graphite LiC 6 standard material (earlier coke) Litium is intercalated between graphene layers for 7g of Li the electrode has 72g of extra C high voltage, 3.7V with CoO 2 negative potential can cause lithium plating Li + +e - -> Li(metal) negative potential is outside the electrolyte stability window

11 Electrolytes Ethylene carbonate & its derivatives as solvent Lithium hexafluorophosphate LiPF 6 as salt reaction with water gives HF Hardly any alternatives a strong solid electrolyte interphase (SEI) is needed on the graphite surface to prevent electrolyte decomposition Lithium polymer batteries can use polymer electrolytes

12 What should be better? Safety Lithium plating CoO 2 collapse Thermal runaway SEI layer destruction Price Cobalt Electrolyte Calendar life SEI layer destruction Environmental impact Cobalt

13 Positive electrodes (cathodes) Mixed oxides LiNi 1-x-y Co x M y O 2 Cobalt oxide like materials, about 3.7V NMC (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) less expensive & less dangerous NCA (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) higher capacity, dangerous Mn and Al do not react, but prevent overcharge LMO = Manganese oxide = LiMn 2 O 4 three-dimensional spinel structure, 3.8V cheap, environmentally friendly less dangerous Mn(IV) -> (III) at discharge 2Mn(III) -> Mn(II) + Mn(IV) soluble Mn 2+ destroys SEI layer on graphite

14 Positive electrodes (cathodes) LFP = Iron phosphate = LiFePO 4 three-dimensional olivine structure, 3.2V can be fully charged to almost Li 0.0 FePO 4 extremely stable, negligible lattice changes fast charge and discharge, Fe(III) -> Fe(II) at discharge natural product lower energy density low conductivity

15 Wrong positive electrode? Boeing dreamliner 2013

16 Negative electrodes (anodes) LTO = Titanate Li 4 Ti 5 O 12 extremely stable fast charge and discharge inside the electrolyte stability window, no SEI needed cheap when combined with Mn 2 O 4 low voltage, about 2V with CoO 2» (promising for hybrid use?) Tin Li 4.4 Sn alloy, not intercalating material for 7g of Li the electrode theoretically needs 27g of Sn extremely unstable due to volume change

17 Electrode material summary Positive electrodes LCO traditional, expensive, unsafe NMC cheaper, safer NCA cheaper, highest energy LMO very cheap & safe, short lifetime LFP cheaper, very safe, lower energy Negative electrodes Graphite traditional, unsafe Titanate very safe, very low energy Tin & silicon high energy, very short lifetime

18 Materials for electric cars NMC(+LMO) /graphite Most electric vehicles NCA/graphite Tesla, small cells LFP/graphite Fisker Karma NMC/titanate? Mitsubishi MiEV

19 Future materials Lithium-sulfur Lithium metal Sulfur is cheap After my retirement Lithium-air Oxygen is in the air Low mass Pure science fiction

The Lithium-Ion Battery. Service Life Parameters

The Lithium-Ion Battery. Service Life Parameters Advanced Rechargeable Batteries The Lithium-Ion Battery Service Life Parameters Geneva May, 2013 JP. Wiaux & C. Chanson RECHARGE aisbl 1 Li-ion battery ageing mechanisms The battery life duration is generally

More information

Second International Renewable Energy Storage Conference 19.-21. November 2007 Bonn/Germany. Overview on current status of lithium-ion batteries

Second International Renewable Energy Storage Conference 19.-21. November 2007 Bonn/Germany. Overview on current status of lithium-ion batteries Second International Renewable Energy Storage Conference 19.-21. November 2007 Bonn/Germany Overview on current status of lithium-ion batteries Andreas Jossen, Margret Wohlfahrt-Mehrens Zentrum für Sonnenenergie-

More information

Electric Battery Actual and future Battery Technology Trends

Electric Battery Actual and future Battery Technology Trends Electric Battery Actual and future Battery Technology Trends Peter Birke Senior Technical Expert Battery Systems Business Unit Hybrid Electric Vehicles Continental AG Co-authors: Michael Keller, Michael

More information

High Energy Rechargeable Li-S Cells for EV Application. Status, Challenges and Solutions

High Energy Rechargeable Li-S Cells for EV Application. Status, Challenges and Solutions High Energy Rechargeable Li-S Cells for EV Application. Status, Challenges and Solutions Yuriy Mikhaylik, Igor Kovalev, Riley Schock, Karthikeyan Kumaresan, Jason Xu and John Affinito Sion Power Corporation

More information

Advanced Secondary Batteries And Their Applications for Hybrid and Electric Vehicles Su-Chee Simon Wang

Advanced Secondary Batteries And Their Applications for Hybrid and Electric Vehicles Su-Chee Simon Wang Advanced Secondary Batteries And Their Applications for Hybrid and Electric Vehicles Su-Chee Simon Wang IEEE (Dec. 5, 2011) 1 Outline Introduction to batteries Equilibrium and kinetics Various secondary

More information

How To Understand The Chemistry Of A Lithium Ion Battery

How To Understand The Chemistry Of A Lithium Ion Battery SuperLIB DELIVERABLE Cell Specification with Cell Data Deliverable number: D4.1 Due date: 31.01.2012 Nature 1 : R Dissemination Level 1 : CO Work Package: WP4 Lead Beneficiary: European Batteries OY Contributing

More information

Inside the Nickel Metal Hydride Battery

Inside the Nickel Metal Hydride Battery Inside the Nickel Metal Hydride Battery John J.C. Kopera Cobasys 5 June 004 Inside the NiMH Battery Introduction The Nickel Metal Hydride (NiMH) battery has become pervasive in today s technology climate,

More information

A Comparison of Lead Acid to Lithium-ion in Stationary Storage Applications

A Comparison of Lead Acid to Lithium-ion in Stationary Storage Applications A Comparison of Lead Acid to Lithium-ion in Stationary Storage Applications Published by AllCell Technologies LLC March 2012 Contributors: Greg Albright Jake Edie Said Al-Hallaj Table of Contents 1. Introduction

More information

Sony s Energy Storage System. The Sony Lithium Ion Iron Phosphate (LFP) advantage

Sony s Energy Storage System. The Sony Lithium Ion Iron Phosphate (LFP) advantage Sony s Energy Storage System The Sony Lithium Ion Iron Phosphate (LFP) advantage Sony Overview & highlights Sony Corporation Founded May 7, 1946 Headquarters Tokyo, Japan Chairman, CEO and President Kazuo

More information

Practical Examples of Galvanic Cells

Practical Examples of Galvanic Cells 56 Practical Examples of Galvanic Cells There are many practical examples of galvanic cells in use in our everyday lives. We are familiar with batteries of all types. One of the most common is the lead-acid

More information

MAKING LITHIUM-ION SAFE THROUGH THERMAL MANAGEMENT

MAKING LITHIUM-ION SAFE THROUGH THERMAL MANAGEMENT MAKING LITHIUM-ION SAFE THROUGH THERMAL MANAGEMENT Greg Albright, Director of Product Development Said Al-Hallaj, CEO AllCell Technologies, Chicago, IL Abstract Lithium-ion batteries have revolutionized

More information

鋰 電 池 技 術 及 產 業 發 展 趨 勢

鋰 電 池 技 術 及 產 業 發 展 趨 勢 鋰 電 池 技 術 及 產 業 發 展 趨 勢 潘 金 平 E-mail: jppan@itri.org.tw Tel: 035-915148 工 業 技 術 研 究 院 材 料 與 化 工 研 究 所 2011/3/22 鋰 電 池 電 動 車 生 產 狀 況 EV Benefits: Cost saving (fuel and maintenance) Reduce/eliminate CO2

More information

lithium iron phosphate

lithium iron phosphate S a y G o o d b y e t o o l d b at t e r y t e c h n o l o g y. Say hello to the Hipower LiFePo4 battery. Presents the latest power solution...hipower LiFePo4 Through exciting innovation and research,

More information

Performance Testing of Lithium-ion Batteries of Various Chemistries for EV and PHEV Applications

Performance Testing of Lithium-ion Batteries of Various Chemistries for EV and PHEV Applications Performance Testing of Lithium-ion Batteries of Various Chemistries for EV and PHEV Applications Andrew Burke University of California-Davis Institute of Transportation Studies 2009 ZEV Symposium Sacramento,

More information

How Much Lithium does a LiIon EV battery really need?

How Much Lithium does a LiIon EV battery really need? How Much Lithium does a LiIon EV battery really need? by William Tahil Research Director Meridian International Research France Tel: +33 2 32 42 95 49 Fax: +33 2 32 41 39 98 www.meridian-int-res.com 5

More information

- Founded in Dec. 2004 by Dr. Volker Klein and Dipl.-Ing. Gerd Sievert.

- Founded in Dec. 2004 by Dr. Volker Klein and Dipl.-Ing. Gerd Sievert. 1 - Founded in Dec. 2004 by Dr. Volker Klein and Dipl.-Ing. Gerd Sievert. - Roots are Emmerich AG, cell manufacturer of batteries and rechargeable batteries 40 years of batteries experience - Headquarter

More information

1332 CHAPTER 18 Sample Questions

1332 CHAPTER 18 Sample Questions 1332 CHAPTER 18 Sample Questions Couple E 0 Couple E 0 Br 2 (l) + 2e 2Br (aq) +1.06 V AuCl 4 + 3e Au + 4Cl +1.00 V Ag + + e Ag +0.80 V Hg 2+ 2 + 2e 2 Hg +0.79 V Fe 3+ (aq) + e Fe 2+ (aq) +0.77 V Cu 2+

More information

Lithium Iron Phosphate High Current Rechargeable Lithium Ion Batteries

Lithium Iron Phosphate High Current Rechargeable Lithium Ion Batteries 1 of 5 8/21/2006 2:37 PM Lithium Iron Phosphate High Current Rechargeable Lithium Ion Batteries Lithium Iron phosphate batteries are safer than Lithium-ion cells, and are available in 10 and 20 AH packs

More information

Electrochemistry - ANSWERS

Electrochemistry - ANSWERS Electrochemistry - ANSWERS 1. Using a table of standard electrode potentials, predict if the following reactions will occur spontaneously as written. a) Al 3+ + Ni Ni 2+ + Al Al 3+ + 3e - Al E = -1.68

More information

Automotive Lithium-ion Batteries

Automotive Lithium-ion Batteries Automotive Lithium-ion Batteries 330 Automotive Lithium-ion Batteries Akihiko Maruyama Ryuji Kono Yutaka Sato Takenori Ishizu Mitsuru Koseki Yasushi Muranaka, Dr. Eng. OVERVIEW: A new of high-power lithium-ion

More information

The Copernican Moment for Electronic Devices

The Copernican Moment for Electronic Devices The Copernican Moment for Electronic Devices The Shift from Processors to Batteries as the Foundation for Electronic Devices Battery Power, 2013 Denver, CO June 7, 2013 2013 Navigant Consulting, Inc. Notice:

More information

High capacity battery packs

High capacity battery packs High capacity battery packs BRENT PERRY Energy storage and battery technologies are developing rapidly. There is a clear trend of integrating batteries in marine electric systems due to the additional

More information

Development of Materials for Mobile-use Lithium-ion Batteries and Fuel Cells

Development of Materials for Mobile-use Lithium-ion Batteries and Fuel Cells Development of Materials for Mobile-use Lithium-ion Batteries and Fuel Cells 40 Development of Materials for Mobile-use Lithium-ion Batteries and Fuel Cells Yasushi Muranaka, Dr. Eng. Atsushi Ueda Tatsuya

More information

Electrochemistry. Chapter 18 Electrochemistry and Its Applications. Redox Reactions. Redox Reactions. Redox Reactions

Electrochemistry. Chapter 18 Electrochemistry and Its Applications. Redox Reactions. Redox Reactions. Redox Reactions John W. Moore Conrad L. Stanitski Peter C. Jurs http://academic.cengage.com/chemistry/moore Chapter 18 Electrochemistry and Its Applications Stephen C. Foster Mississippi State University Electrochemistry

More information

Materials Issues in Energy Storage. G. Ceder 3/1/2015 APS workshop San Antonio, TX

Materials Issues in Energy Storage. G. Ceder 3/1/2015 APS workshop San Antonio, TX Materials Issues in Energy Storage G. Ceder 3/1/2015 APS workshop San Antonio, TX 1 Something about myself Materials design through computation and experiment 20 years in Li-ion. Programs in Na-ion, Li-air,

More information

A Guide to the Safe Use of Secondary Lithium Ion Batteries in Notebook-type Personal Computers

A Guide to the Safe Use of Secondary Lithium Ion Batteries in Notebook-type Personal Computers A Guide to the Safe Use of Secondary Lithium Ion Batteries in Notebook-type Personal Computers April 20, 2007 Japan Electronics and Information Technology Industries Association and Battery Association

More information

Steve Harris. UC Berkeley

Steve Harris. UC Berkeley Li Ion Batteries Steve Harris General MotorsR&D UC Berkeley 1 Outline Li battery basics Samples from my research What are the problems? Whither h Li batteries? 2 Some Basics AB + C A + BC G 3 Some Basics

More information

BATTERY CHEMISTRY RESEARCH IN KOKKOLA

BATTERY CHEMISTRY RESEARCH IN KOKKOLA BATTERY CHEMISTRY RESEARCH IN KOKKOLA Jorma Uusitalo PROFESSOR ULLA LASSI 14.11.2013 BATTERY CHEMISTRY RESEARCH IN KOKKOLA Research group Juho Välikangas, M.Sc.(Eng.) Janne Keränen, M.Sc.(Eng.) Toni Kauppinen,

More information

E-mobility Quarterly Index

E-mobility Quarterly Index Roland Berger Strategy Consultants Automotive Competence Center & Forschungsgesellschaft Kraftfahrwesen mbh Aachen E-mobility Quarterly Index Dr. Wolfgang Bernhart Dr. Thomas Schlick Dipl.-Kfm. Ingo Olschewski

More information

SAFETY PERFORMANCE OF A LARGE FORMAT, PHOSPHATE BASED LITHIUM-ION BATTERY

SAFETY PERFORMANCE OF A LARGE FORMAT, PHOSPHATE BASED LITHIUM-ION BATTERY SAFETY PERFORMANCE OF A LARGE FORMAT, PHOSPHATE BASED LITHIUM-ION BATTERY John Nguyen Business Development Manager Valence Technology Austin, TX ABSTRACT The use of lithium-ion batteries in many of today

More information

Storage technologies/research, from physics and chemistry to engineering

Storage technologies/research, from physics and chemistry to engineering Storage technologies/research, from physics and chemistry to engineering Professor Nigel Brandon OBE FREng Director, Sustainable Gas Institute Director Energy Storage Research Network Co-Director, ENERGY

More information

Materials Challenges Facing Electrical Energy Storage

Materials Challenges Facing Electrical Energy Storage CARRIERS, RECOURCES STORAGE SOLAR & TRANSFORMATION ELECTRICAL STORAGE Materials Challenges Facing Electrical Energy Storage M. Stanley Whittingham (Binghamton University, USA) SEE ALSO SIDEBAR: Flywheels

More information

Name Electrochemical Cells Practice Exam Date:

Name Electrochemical Cells Practice Exam Date: Name Electrochemical Cells Practice Exam Date: 1. Which energy change occurs in an operating voltaic cell? 1) chemical to electrical 2) electrical to chemical 3) chemical to nuclear 4) nuclear to chemical

More information

DESIGN AND SIMULATION OF LITHIUM- ION BATTERY THERMAL MANAGEMENT SYSTEM FOR MILD HYBRID VEHICLE APPLICATION

DESIGN AND SIMULATION OF LITHIUM- ION BATTERY THERMAL MANAGEMENT SYSTEM FOR MILD HYBRID VEHICLE APPLICATION DESIGN AND SIMULATION OF LITHIUM- ION BATTERY THERMAL MANAGEMENT SYSTEM FOR MILD HYBRID VEHICLE APPLICATION Ahmed Imtiaz Uddin, Jerry Ku, Wayne State University Outline Introduction Model development Modeling

More information

Safety of lithium-ion batteries

Safety of lithium-ion batteries Safety of lithium-ion batteries June 2013 The European Association for Advanced Rechargeable Batteries Foreword This publication is prepared to provide information regarding the subject matter covered.

More information

Galvanic Cells. SCH4U7 Ms. Lorenowicz. Tuesday, December 6, 2011

Galvanic Cells. SCH4U7 Ms. Lorenowicz. Tuesday, December 6, 2011 Galvanic Cells SCH4U7 Ms. Lorenowicz 1 Electrochemistry Concepts 1.Redox reactions involve the transfer of electrons from one reactant to another 2.Electric current is a flow of electrons in a circuit

More information

4 ARE ELECTRIC VEHICLES SAFER THAN COMBUSTION ENGINE VEHICLES?

4 ARE ELECTRIC VEHICLES SAFER THAN COMBUSTION ENGINE VEHICLES? 4 ARE ELECTRIC VEHICLES SAFER THAN COMBUSTION ENGINE VEHICLES? Fredrik Larsson Department of Applied Physics, Chalmers University of Technology* SP Technical Research Institute of Sweden** Petra Andersson

More information

State of Solid-State Batteries

State of Solid-State Batteries State of Solid-State Batteries Prof. Kevin S. Jones Department of Materials Science and Engineering University of Florida Acknowledgments Dave Danielson Program Director at ARPA-E Scott Faris, Richard

More information

Question Bank Electrolysis

Question Bank Electrolysis Question Bank Electrolysis 1. (a) What do you understand by the terms (i) electrolytes (ii) non-electrolytes? (b) Arrange electrolytes and non-electrolytes from the following substances (i) sugar solution

More information

LEAD-ACID STORAGE CELL

LEAD-ACID STORAGE CELL 3.14 MATERIALS LABORATORY MODULE BETA 1 NOVEMBER 13 17, 26 GEETHA P. BERERA LEAD-ACID STORAGE CELL OBJECTIVES: Understand the relationship between Gibbs Free Energy and Electrochemical Cell Potential.

More information

Energy Storage Systems Li-ion Philippe ULRICH

Energy Storage Systems Li-ion Philippe ULRICH Energy Storage Systems Li-ion Philippe ULRICH Manila - June 15 th, 2015 Agenda 1. Battery market Li-ion perspectives 2. Li-ion in the consumer market 3. Li-ion for Automotive 4. Li-ion in stationary applications

More information

Electrochemistry Voltaic Cells

Electrochemistry Voltaic Cells Electrochemistry Voltaic Cells Many chemical reactions can be classified as oxidation-reduction or redox reactions. In these reactions one species loses electrons or is oxidized while another species gains

More information

Cost and performance. of EV batteries. Final report. for. The Committee on Climate Change 21/03/2012. Project Name Document Name

Cost and performance. of EV batteries. Final report. for. The Committee on Climate Change 21/03/2012. Project Name Document Name Project Name Document Name Cost and performance of EV batteries Final report for The Committee on Climate Change 21/03/2012 Element Energy Limited 20 Station Road Cambridge CB1 2JD Tel: 01223 227764 Fax:

More information

Experimental Measurements of LiFePO 4 Battery Thermal Characteristics

Experimental Measurements of LiFePO 4 Battery Thermal Characteristics Experimental Measurements of LiFePO 4 Battery Thermal Characteristics by Scott Mathewson A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master

More information

Abuse Testing of Lithium Ion Cells: Internal Short Circuit, Accelerated Rate Calorimetry and Nail Penetration in Large Cells (1-20 Ah)

Abuse Testing of Lithium Ion Cells: Internal Short Circuit, Accelerated Rate Calorimetry and Nail Penetration in Large Cells (1-20 Ah) Abuse Testing of Lithium Ion Cells: Internal Short Circuit, Accelerated Rate Calorimetry and Nail Penetration in Large Cells (1-20 Ah) Battery Safety 2011, Nov 9-10, Las Vegas, NV Ann Edwards, PhD Kirby

More information

Clean and energy-efficient vehicles Advanced research and testing Battery systems

Clean and energy-efficient vehicles Advanced research and testing Battery systems Clean and energy-efficient vehicles Advanced research and testing Battery systems Flanders DRIVE Index: Flanders DRIVE 1 Optimising power / energy ratio of energy storage systems 4 Battery ageing research

More information

Comparative Issues of Cathode Materials for Li-Ion Batteries

Comparative Issues of Cathode Materials for Li-Ion Batteries Inorganics 2014, 2, 132-154; doi:10.3390/inorganics2020132 Article OPEN ACCESS inorganics ISSN 2304-6740 www.mdpi.com/journal/inorganics Comparative Issues of Cathode Materials for Li-Ion Batteries Christian

More information

K + Cl - Metal M. Zinc 1.0 M M(NO

K + Cl - Metal M. Zinc 1.0 M M(NO Redox and Electrochemistry This section should be fresh in your minds because we just did this section in the text. Closely related to electrochemistry is redox chemistry. Count on at least one question

More information

LITHIUM/AIR SEMI-FUEL CELLS: HIGH ENERGY DENSITY BATTERIES BASED ON LITHIUM METAL ELECTRODES

LITHIUM/AIR SEMI-FUEL CELLS: HIGH ENERGY DENSITY BATTERIES BASED ON LITHIUM METAL ELECTRODES LITHIUM/AIR SEMI-FUEL CELLS: HIGH ENERGY DENSITY BATTERIES BASED ON LITHIUM METAL ELECTRODES Steven J. Visco, Eugene Nimon, Bruce Katz, May-Ying Chu, and Lutgard De Jonghe PolyPlus Battery Company 2431

More information

A joint industry analysis of the technological suitability of different battery technologies for use across various automotive applications in the

A joint industry analysis of the technological suitability of different battery technologies for use across various automotive applications in the A joint industry analysis of the technological suitability of different battery technologies for use across various automotive applications in the foreseeable future From a technology-neutral standpoint,

More information

SAFE HARBOR STATEMENT

SAFE HARBOR STATEMENT SAFE HARBOR STATEMENT This presentation contains forward-looking statements within the meaning of the Federal Private Securities Litigation Reform Act of 1995 conveying management s expectations as to

More information

LEAD-ACID BATTERIES ARE NOT GOING AWAY A Technical Comparison of Lead-Acid and Lithium-ion Batteries

LEAD-ACID BATTERIES ARE NOT GOING AWAY A Technical Comparison of Lead-Acid and Lithium-ion Batteries LEAD-ACID BATTERIES ARE NOT GOING AWAY A Technical Comparison of Lead-Acid and Lithium-ion Batteries Michael Schiemann BAE Batterien GmbH Chris Searles BAE Batteries USA Introduction With the introduction

More information

How To Safely Use A Lithium Ion Cell

How To Safely Use A Lithium Ion Cell Hitachi Maxell Energy, Ltd. No. Issued date: Jan.06, 2012 No.PBA06234 Product Safety Data Sheet Maxell lithium ion cells are exempt articles and are not subject to the U.S Department of Labor OSHA Hazard

More information

A comparative analysis of Lithium Iron Phosphate and Lead-Acid (flooded, gel and AGM) battery technology for marine applications

A comparative analysis of Lithium Iron Phosphate and Lead-Acid (flooded, gel and AGM) battery technology for marine applications Lithium vs. Lead A comparative analysis of Lithium Iron Phosphate and Lead-Acid (flooded, gel and AGM) battery technology for marine applications Bruce Schwab Bruce Schwab Marine Systems Representative

More information

Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications

Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications Ahmad Pesaran, Ph.D. Shriram Santhanagopalan, Gi-Heon Kim National Renewable Energy Laboratory Golden,

More information

Chem 1721 Brief Notes: Chapter 19

Chem 1721 Brief Notes: Chapter 19 Chem 1721 Brief Notes: Chapter 19 Chapter 19: Electrochemistry Consider the same redox reaction set up 2 different ways: Cu metal in a solution of AgNO 3 Cu Cu salt bridge electrically conducting wire

More information

EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C

EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C Chapter 16 1. Burn sulfur in air to give sulfur dioxide. S(s) + O 2 (g) ----> SO 2 (g) Pass this with more air over

More information

State-of-Health Estimation of Li-ion Batteries: Cycle Life Test Methods JENS GROOT

State-of-Health Estimation of Li-ion Batteries: Cycle Life Test Methods JENS GROOT State-of-Health Estimation of Li-ion Batteries: Cycle Life Test Methods JENS GROOT Division of Electric Power Engineering Department of Energy and Environment CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg,

More information

Vehicle Battery Safety Roadmap Guidance

Vehicle Battery Safety Roadmap Guidance Vehicle Battery Safety Roadmap Guidance Daniel H. Doughty, Ph.D. Battery Safety Consulting, Inc. Albuquerque, New Mexico Technical Monitor: Ahmad A. Pesaran, Ph.D. National Renewable Energy Laboratory

More information

Chapter 4 Chemical Reactions

Chapter 4 Chemical Reactions Chapter 4 Chemical Reactions I) Ions in Aqueous Solution many reactions take place in water form ions in solution aq solution = solute + solvent solute: substance being dissolved and present in lesser

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chemistry 1C-Dr. Larson Chapter 20 Review Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) is reduced in the following reaction: Cr2O7

More information

Chapter 20. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 20. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 20 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The gain of electrons by an element is called. A) oxidation B) reduction C) sublimation

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

8 Cobalt in Electronics

8 Cobalt in Electronics 8 Cobalt in Electronic technology can be divided into 8 sectors: Integrated circuits (packages of components on a microchip); discrete semi-conductors; vacuum tubes; magnetic tapes, resistors; transformers;

More information

CHM1 Review Exam 12. Topics REDOX

CHM1 Review Exam 12. Topics REDOX CHM1 Review Exam 12 Topics REDOX REDOX Reactions Oxidation Reduction Oxidizing agent Reducing agent Galvanic (Voltaic) Cells Anode Cathode Salt bridge Electrolyte Half-reactions Voltage o Positive voltages

More information

Global. Vehicle LiB Market Study_August 2011_v2.pptx. Powertrain 2020. The Li-Ion Battery Value Chain Trends and implications

Global. Vehicle LiB Market Study_August 2011_v2.pptx. Powertrain 2020. The Li-Ion Battery Value Chain Trends and implications Global. Vehicle LiB Market Study_August 2011_v2.pptx 1 Powertrain 2020 The Li-Ion Battery Value Chain Trends and implications August 2011 2011 Roland Berger Strategy ConsultantsGlobal. Vehicle LiB Market

More information

Maritime Battery Technology. 22.05.2014, Lindholmen

Maritime Battery Technology. 22.05.2014, Lindholmen Maritime Battery Technology 22.05.2014, Lindholmen Vision and Mission Our Mission: Develop, sell and integrate large Li-Ion battery packs for maritime/offshore applications Deliver consultancy services

More information

Material Safety Data Sheet

Material Safety Data Sheet 1. Product & Company Identification: Product Manufacturer: Model: Nominal capacity: LiPo-Akku Conrad Electronic SE LiPo-Akku 3.7V 130mAh 130mAh Nominal voltage: 3.7V Address: Klaus-Conrad-Strasse 1, D-92242

More information

Chapter 2 Electric Vehicle Battery Technologies

Chapter 2 Electric Vehicle Battery Technologies Chapter 2 Electric Vehicle Battery Technologies Kwo Young, Caisheng Wang, Le Yi Wang, and Kai Strunz 2.1 Introduction As discussed in the previous chapter, electrification is the most viable way to achieve

More information

TRANSPORT OF DANGEROUS GOODS

TRANSPORT OF DANGEROUS GOODS Recommendations on the TRANSPORT OF DANGEROUS GOODS Manual of Tests and Criteria Fifth revised edition Amendment 1 UNITED NATIONS SECTION 38 38.3 Amend to read as follows: "38.3 Lithium metal and lithium

More information

Redox and Electrochemistry

Redox and Electrochemistry Name: Thursday, May 08, 2008 Redox and Electrochemistry 1. A diagram of a chemical cell and an equation are shown below. When the switch is closed, electrons will flow from 1. the Pb(s) to the Cu(s) 2+

More information

CHAPTER 21 ELECTROCHEMISTRY

CHAPTER 21 ELECTROCHEMISTRY Chapter 21: Electrochemistry Page 1 CHAPTER 21 ELECTROCHEMISTRY 21-1. Consider an electrochemical cell formed from a Cu(s) electrode submerged in an aqueous Cu(NO 3 ) 2 solution and a Cd(s) electrode submerged

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

CLEAN ENERGY COUNCIL INTRODUCTION TO THIS REPORT

CLEAN ENERGY COUNCIL INTRODUCTION TO THIS REPORT CLEAN ENERGY COUNCIL INTRODUCTION TO THIS REPORT Australian consumers are leading the world in installing solar panels, driven by rising electricity prices and a desire to take charge of their power bills.

More information

UK RESEARCH NEEDS IN GRID SCALE ENERGY STORAGE TECHNOLOGIES

UK RESEARCH NEEDS IN GRID SCALE ENERGY STORAGE TECHNOLOGIES UK RESEARCH NEEDS IN GRID SCALE ENERGY STORAGE TECHNOLOGIES A trolyte N P Brandon 1, J S Edge 1, M Aunedi 1, E R Barbour 2, P G Bruce 3, B K Chakrabarti 1, T Esterle 3, J W Somerville 3, Y L Ding 2, C

More information

Smart Batteries and Lithium Ion Voltage Profiles

Smart Batteries and Lithium Ion Voltage Profiles Smart Batteries and Lithium Ion Voltage Profiles Louis W. Hruska, Director Rechargeable Batteries Duracell Worldwide Technology Center, 37A Street, Needham MA 02194 Abstract: This paper addresses how the

More information

PROGRAMME OF WORK FOR THE BIENNIUM 2009-2010. Work on the inclusion of ultra capacitors in the UN Model Regulations

PROGRAMME OF WORK FOR THE BIENNIUM 2009-2010. Work on the inclusion of ultra capacitors in the UN Model Regulations COMMITTEE OF EXPERTS ON THE TRANSPORT OF DANGEROUS GOODS AND ON THE GLOBALLY HARMONIZED SYSTEM OF CLASSIFICATION AND LABELLING OF CHEMICALS Sub-Committee of Experts on the Transport of Dangerous Goods

More information

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions.

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions. 1. Using the Activity Series on the Useful Information pages of the exam write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as,

More information

Electrochemistry Worksheet

Electrochemistry Worksheet Electrochemistry Worksheet 1. Assign oxidation numbers to each atom in the following: a. P 4 O 6 b. BiO 3 c. N 2 H 4 d. Mg(BrO 4 ) 2 e. MnSO 4 f. Mn(SO 4 ) 2 2. For each of the reactions below identify

More information

12. REDOX EQUILIBRIA

12. REDOX EQUILIBRIA 12. REDOX EQUILIBRIA The electrochemical series (reference table) 12.1. Redox reactions 12.2. Standard electrode potentials 12.3. Calculations involving electrochemical cells 12.4. Using Eʅ values to predict

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/03 Paper 3 Theory (Core) For Examination from 2016 SPECIMEN PAPER 1 hour

More information

UN Manual of Tests and Criteria, Sub-section 38.3, Amendments to the 5 th edition, effective 2014 January 1 st

UN Manual of Tests and Criteria, Sub-section 38.3, Amendments to the 5 th edition, effective 2014 January 1 st 1 UN Manual of Tests and Criteria, Sub-section 38.3, Amendments to the 5 th edition, effective 2014 January 1 st 38.3 Lithium metal and lithium ion batteries 38.3.1 Purpose This section presents the procedures

More information

Electrochemical Half Cells and Reactions

Electrochemical Half Cells and Reactions Suggested reading: Chang text pages 81 89 Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various

More information

IEC 62133 2 nd Edition: All you need to know about the new standard

IEC 62133 2 nd Edition: All you need to know about the new standard IEC 62133 2 nd Edition: All you need to know about the new standard Laurie Florence Principal Engineer Batteries, Fuel Cells & Capacitors UL LLC THESE UPDATES ARE FOR INFORMATION PURPOSES ONLY AND ARE

More information

Chemistry 122 Mines, Spring 2014

Chemistry 122 Mines, Spring 2014 Chemistry 122 Mines, Spring 2014 Answer Key, Problem Set 9 1. 18.44(c) (Also indicate the sign on each electrode, and show the flow of ions in the salt bridge.); 2. 18.46 (do this for all cells in 18.44

More information

Supercapacitors in Micro- and Mild Hybrids with Lithium Titanate Oxide Batteries: Vehicle Simulations and Laboratory Tests

Supercapacitors in Micro- and Mild Hybrids with Lithium Titanate Oxide Batteries: Vehicle Simulations and Laboratory Tests Research Report UCD-ITS-RR-15-20 Supercapacitors in Micro- and Mild Hybrids with Lithium Titanate Oxide Batteries: Vehicle Simulations and Laboratory Tests December 2015 Andrew Burke Jingyuan Zhao Institute

More information

RECYCLING AND UPCYCLING SPENT LITHIUM-ION BATTERIES

RECYCLING AND UPCYCLING SPENT LITHIUM-ION BATTERIES RECYCLING AND UPCYCLING SPENT LITHIUMION BATTERIES The Growing Lithium ion Battery Market Creates Parallel Disposal Problem Advances in the commercial development of lithium ion batteries have spawned

More information

Atomic Structure. Atoms consist of: Nucleus: Electrons Atom is electrically balanced equal electrons and protons. Protons Neutrons

Atomic Structure. Atoms consist of: Nucleus: Electrons Atom is electrically balanced equal electrons and protons. Protons Neutrons Basics of Corrosion Performance Metals Sacrificial anode manufacturer Specialize in aluminum alloy anodes All products made in the USA (Berks county, PA) ISO9001/2001 Certified Quality System Also traditional

More information

Chapter 7: Chemical Energy

Chapter 7: Chemical Energy Chapter 7: Chemical Energy Goals of Period 7 Section 7.1: To describe atoms, chemical elements and compounds Section 7.2: To discuss the electromagnetic force and physical changes Section 7.3: To illustrate

More information

HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF LiMnPO 4 CATHODE MATERIALS. Bilen Aküzüm 1

HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF LiMnPO 4 CATHODE MATERIALS. Bilen Aküzüm 1 MATTER VOLUME 1 ISSUE1 1 HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF LiMnPO 4 CATHODE MATERIALS Bilen Aküzüm 1 1 Department of Metallurgical and Materials Engineering, METU, 06800 Ankara, Turkey ABSTRACT

More information

NAMING QUIZ 3 - Part A Name: 1. Zinc (II) Nitrate. 5. Silver (I) carbonate. 6. Aluminum acetate. 8. Iron (III) hydroxide

NAMING QUIZ 3 - Part A Name: 1. Zinc (II) Nitrate. 5. Silver (I) carbonate. 6. Aluminum acetate. 8. Iron (III) hydroxide NAMING QUIZ 3 - Part A Name: Write the formulas for the following compounds: 1. Zinc (II) Nitrate 2. Manganese (IV) sulfide 3. Barium permanganate 4. Sulfuric acid 5. Silver (I) carbonate 6. Aluminum acetate

More information

ELECTROCHEMICAL CELLS

ELECTROCHEMICAL CELLS 1 ELECTROCHEMICAL CELLS Allessandra Volta (1745-1827) invented the electric cell in 1800 A single cell is also called a voltaic cell, galvanic cell or electrochemical cell. Volta joined several cells together

More information

REPORT: WP1.1 ELECTRIC VEHICLE TECHNOLOGY

REPORT: WP1.1 ELECTRIC VEHICLE TECHNOLOGY ELECTRIC VEHICLES IN A DISTRIBUTED AND INTEGRATED MARKET USING SUSTAINABLE ENERGY AND OPEN NETWORKS REPORT: WP1.1 ELECTRIC VEHICLE TECHNOLOGY Type: Deliverable Identifier: D1.1.1 Classification: External

More information

Microstockage d énergie Les dernières avancées. S. Martin (CEA-LITEN / LCMS Grenoble)

Microstockage d énergie Les dernières avancées. S. Martin (CEA-LITEN / LCMS Grenoble) Microstockage d énergie Les dernières avancées S. Martin (CEA-LITEN / LCMS Grenoble) 1 Outline What is a microbattery? Microbatteries developped at CEA Description Performances Integration and Demonstrations

More information

Metals and Non-metals. Comparison of physical properties of metals and non metals

Metals and Non-metals. Comparison of physical properties of metals and non metals Metals and Non-metals Comparison of physical properties of metals and non metals PHYSICAL PROPERTY METALS NON-METALS Physical State Metallic lustre (having a shining surface) Mostly solids (Liquid -mercury)

More information

o Electrons are written in half reactions but not in net ionic equations. Why? Well, let s see.

o Electrons are written in half reactions but not in net ionic equations. Why? Well, let s see. REDOX REACTION EQUATIONS AND APPLICATIONS Overview of Redox Reactions: o Change in Oxidation State: Loses Electrons = Oxidized (Oxidation number increases) Gains Electrons = Reduced (Oxidation Number Reduced)

More information

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy. Chapter 13: Electrochemistry Redox Reactions Galvanic Cells Cell Potentials Cell Potentials and Equilbrium Batteries Electrolysis Electrolysis and Stoichiometry Corrosion Prevention Electrochemistry The

More information

Baterías de flujo: conceptos y aplicación futura. Catalonia Institute for Energy Research

Baterías de flujo: conceptos y aplicación futura. Catalonia Institute for Energy Research Baterías de flujo: conceptos y aplicación futura Cristina Flox Catalonia Institute for Energy Research 26 de Mayo del 2016, Barcelona ÍNDICE 1. DEFINICIÓN: Conceptos y arquitectura 2. VENTAJAS 3. APLICACIÓN

More information

The Future of Battery Technologies Part I

The Future of Battery Technologies Part I Dr. Annika Ahlberg Tidblad This paper is the first in our ongoing series about batteries. This installment provides an overview of battery technologies. In future installments, we will spotlight lithium

More information

Life Cycle Assessment LCA of Li-Ion batteries for electric vehicles

Life Cycle Assessment LCA of Li-Ion batteries for electric vehicles Life Cycle Assessment LCA of Li-Ion batteries for electric vehicles 1. Project goals Materials for Energy Technologies 2. Presentation of a typical battery from cradle to gate 3. LCA results graphics:

More information