Be-In-Be-Out Payment Systems for Public Transport

Size: px
Start display at page:

Download "Be-In-Be-Out Payment Systems for Public Transport"

Transcription

1 Be-In-Be-Out Payment Systems for Public Transport Final Report July 2009

2 This report has been produced by GWT-TUD GmbH under a contract with the Department for Transport. Any views expressed in this report are not necessarily those of the Department for Transport. Queen's Printer and Controller of HMSO All enquiries relating to the copyright in the work should be addressed to HMSO, The Licensing Division, St Clements House, 2-16 Colegate, Norwich, NR3 1BQ.

3 Research Project Be-In-Be-Out Payment Systems for Public Transport TTS project reference number S 0613/V3 for Department for Transport Great Minster House 76 Marsham Street London SW1P 4DR Contract Number: PPRO 4/12/37 Final Report Date: Version: 3 July Editor: Company: GWT-TUD GmbH Name: Helge Lorenz Address: Chemnitzer Str. 48 b, Dresden, Germany Phone: Fax: in cooperation with:

4 BIBO Payment Systems in Public Transport Final Report page 3 Project Partner: Contractor: Name Address Phone / Fax / GWT-TUD GmbH Helge Lorenz (before 01/01/09 see below) Chemnitzer Str. 48b Dresden, Germany GWTonline.de Partners: Name Address Phone / Fax / Fraunhofer IVI Zeunerstr Dr. Torsten Gründel Dresden Germany Iosis 34 Strathmore Road Peter W Tomlinson Bristol BS7 9QJ United Kingdom T.C.L. GmbH Vorsterstr Klaus Philipp Wachtendonk TheTrainline.com Jeremy Acklam TCAC GmbH Helge Lorenz (since 01/01/09) Germany The Matrix, 9 Aldgate High Street London EC3N 1AH United Kingdom Buchenstr. 16b Dresden Germany staff.thetrainline.com Pictures on front page provided by Scheidt & Bachmann and GWT

5 BIBO Payment Systems in Public Transport Final Report page 4 Table of content Table of figures...7 Table of tables...9 Glossary and Abbreviations Executive Summary Abstract Introduction Background and objective Methodology Project team and expertise BIBO: a definition Status of development of BIBO technologies Academic theories to BIBO Technological approaches Historical overview of BIBO related developments WIWO demonstrator in EC projects ICARE/CALYPSO WIWO field test in EasyRide project BIBO field test in EasyRide project BIBO Bluetooth concept by Ericsson Statistical data Acti-Tag show case by Technopuce BIBO field test by Siemens VDO in ALLFA Project CIBO show case by ATRON BIBO demonstrator Esprit by Scheidt & Bachmann BIBO fasttrack project incl. Request for Information by SBB Status of development and implementation ALLFA Esprit Comparison of both approaches Current key stakeholders Innovations and lessons learned Future trends for long term sustainability Evaluation of BIBO technologies Evaluation approach Potential of BIBO to improve public transport ticketing...78

6 BIBO Payment Systems in Public Transport Final Report page Benefit for users Benefit for operators Benefit for authorities Technical risk and reliability Technical risks in the BIBO functional chain Impact of technical failures in BIBO Possible measures for reducing the technical risk Localisation of the vehicle s position Detection of a user media Detection of the Be-Out in a CIBO scheme Potential for fraud and resistance to fraud Classification of fraud in BIBO schemes Manipulation of system components and data Manipulation of handling and interaction processes Privacy and safety issues Health aspects Data security Commercial risks Comparison with other ticketing schemes Overview Comparison with paper based ticketing Comparison with CICO Comparison between CIBO and BIBO User interface and user actions Comparison of fraud potential and resistance to fraud Potential synergies with proximity and mobile phone based ticketing Dissemination potential Dissemination potential in public transport Dissemination potential beyond public transport BIBO standardisation in the UK environment Introduction Why standardisation is an issue Short introduction to Radio Frequency Identification (RFID) Definition Frequencies for RFID Conclusion Available Standards for RFID Technology Standards...115

7 BIBO Payment Systems in Public Transport Final Report page Application Standards Data Standards for Personal Identification in Public Transport Conformance Standards Conclusion The impact of interoperability on BIBO Definition of interoperability The impact of ITSO s interoperability approach on BIBO BIBO and ITSO in the UK Context Ticketing methods ITSO Products in a BIBO Environment RF-ID restraints/regulations Conclusions BIBO and the UK public transport market Introduction Customer Viewpoint Bus Operator Viewpoint Local Government (PTE) Viewpoint Rail Operator Viewpoint Academic Viewpoint UK Ticketing Regulations BIBO Impact on UK Fares BIBO Conflicts of Interest BIBO and Integrated Transport Conclusion and recommendations Conclusions and recommendations from the evaluation of BIBO technology and its status of development Conclusions and recommendations on BIBO and standardisation Conclusions and recommendations on BIBO and the UK market References and Links Annex A: UK Frequencies for Licence Exempt Short Range Devices Annex B: Standards details Annex C: Automatic fare calculation with ALLFA BeIn/BeOut Annex D: Productinfo esprit autumn 08

8 BIBO Payment Systems in Public Transport Final Report page 7 Table of figures Figure 1: Front end equipment and back office systems as main parts of a complete BIBO scheme...24 Figure 2: Critical fare-related processes (red) for today s manual ticket selection...26 Figure 3: Critical fare-related processes (red) for BIBO-based systems...27 Figure 4: Two basic concepts of electronic fare management...27 Figure 5: Two basic types of EFM entitlements...28 Figure 6: Chain of main EFM processes...28 Figure 7: Interaction of (user) device and EFM system...30 Figure 8: Fare Calculation Methods...31 Figure 9: Historical overview of BIBO related developments...32 Figure 10: Hands-free antenna on a bus door prototype installation in Lisbon (1998)...34 Figure 11: Card-like user device and example installation of WIWO antennas [Gyger-2001]36 Figure 12: Migration of card-like user devices as used in the BIBO scheme [Siemens VDO]37 Figure 13: BIBO concept using Bluetooth [GERDES-2001]...38 Figure 14: Acti-Tag overview [GUERINEAU-2002]...39 Figure 15: Acti-Tag picture [GUERINEAU-2002]...39 Figure 16: The ALLFA tickets (specific smart card or mobile phone)...44 Figure 17: Location of BIBO antennas inside a vehicle...45 Figure 18: BIBO detection based on a two-step approach...45 Figure 19: On-board equipment for a two-door bus...47 Figure 20: Different vehicle types equipped with BIBO technology in the ALLFA pilot...47 Figure 21: BIBO installation in a low-flow light rail vehicle in the ALLFA pilot...48 Figure 22: Details from the BIBO installation in a low-flow light rail vehicle in the ALLFA pilot Figure 23: BIBO installation in a multi-storey car park in the ALLFA pilot...50 Figure 24: Use of a BIBO pictogram in the ALLFA pilot trial...51 Figure 25: ALLFA pilot trial network...52 Figure 26: Overview of customer support system in the ALLFA pilot...53 Figure 27: Breakdown of individual journeys available via Internet...54 Figure 28: Breakdown of individual journeys available via surface mail on a monthly basis..54 Figure 29: Flexible structure of the ALLFA fare model for automatic fare calculation...55 Figure 30: Parameters of the ALLFA fare model for automatic fare calculation...56 Figure 31: Selection of individual fare parameters, such as 2 children / 2nd service class...56 Figure 32: Overview of ALLFA fare as a flyer, including further regulations and examples...57 Figure 33: Impression on accompanying marketing efforts...58 Figure 34: Esprit user device [AUGUSTYNIAK-2006]...59

9 BIBO Payment Systems in Public Transport Final Report page 8 Figure 35: Esprit overview [FEITER-2006]...60 Figure 36: Esprit vehicle infrastructure [AUGUSTYNIAK-2006]...61 Figure 37: Use of an add-on service display to select fare parameters [Scheidt & Bachmann] Figure 38: Incremental fare calculation concept of Esprit, part 1 [FEITER-2006]...62 Figure 39: Incremental fare calculation concept of Esprit, part 2 [FEITER-2006]...63 Figure 40: Ticket inspection concept of Esprit [FEITER-2006]...64 Figure 41: Possible evolution of EFM systems and fares [GRÜNDEL-2006]...73 Figure 42: The unique combination of benefits of BIBO ticketing schemes...81 Figure 43: BIBO RF antenna coverage in typical BIBO use cases...86 Figure 44: Comparison of user actions in paper ticket and BIBO schemes for occasional users...98 Figure 45: Comparison of user actions in paper ticket and BIBO schemes for season pass holders...98 Figure 46: Comparison of user actions in CICO and BIBO schemes for occasional users...99 Figure 47: Comparison of user actions in CICO and BIBO schemes for season pass holders Figure 48: Comparison of user actions in CIBO and BIBO schemes for occasional users..101 Figure 49: Comparison of user actions in CIBO and BIBO schemes for season pass holders Figure 50: Pictograms for CICO and BIBO for labelling vehicles and user devices developed by VDV Figure 51: RFID Classification by frequency ranges Figure 52: BIBO communication frequencies in relation to various types of user media...126

10 BIBO Payment Systems in Public Transport Final Report page 9 Table of tables Table 1: Comparison of ALLFA and Esprit approaches (overview from known information) 67 Table 2: Comparison of mitigation strategies for resistance to fraud in several ticketing schemes Table 3: References and links

11 BIBO Payment Systems in Public Transport Final Report page 10 Glossary and Abbreviations AFC Automated Fare Collection ASIC Application-specific integrated circuit APC Automatic Passenger Counting System ATOC Association of Train Operating Companies AVL Automatic Vehicle Location BIBO Be-In Be-Out CEN Comité Européen de Normalisation CI Check-In CIBO Check-In Be-Out CICO Check-In Check-Out (also called Tap-In Tap-Out or Tag-On Tag-Off) CIWO Check-In Walk-Out CTA Charge to Account CWA CEN Workshop Agreement DES Data Encryption Standard DfT Department for Transport EC European Commission ECC Elliptic Curve Cryptography ECMA European Computer Manufacturers Association (Ecma International) EFM Electronic Fare Management EIRP Equivalent Isotropic Radiated Power EMV Europay International MasterCard VISA EN European Norm ENCTS English National Concessionary Travel Scheme ETSI European Telecommunications Standards Institute GPRS General Packet Radio Service GPS Global Positioning System GSM Global System for Mobile communications HF High Frequency ICC Integrated Circuit Card ICNIRP International Commission of Non-Ionizing Radiation Protection ID Identification IEC International Electrotechnical Commission (www.iec.ch ) IEEE Institute of Electrical and Electronics Engineers IFM Interoperable Fare Management System Architecture ILOG ITSO Licensed Operators Group IPE ITSO Product Entity

12 BIBO Payment Systems in Public Transport Final Report page 11 IRPA International Radiation Protection Association ISM Industrial, Scientific, and Medical ISO International Organization for Standardization (www.iso.org ) ITCS Integrated Transport Control System ITT Invitation to Tender JTC Joint Technical Committee LF Low Frequency MAC Message Authentication Code MF Medium Frequency NFC Near Field Communication PKI Public Key Infrastructure PT Public Transport PTA Passenger Transport Authority PTE Passenger Transport Executive RATP Régie Autonome Des Transports Parisiens RF Radio Frequency RFI Request For Information RFID Radio Frequency Identification RSA algorithm for public-key cryptography SBB Swiss Federal Railways (Schweizerische Bundesbahnen) SC Subcommittee SIG Special Interest Group SHF Super High Frequency SRD Short Range Devices STR Stored Travel Rights TfL Transport for London TN Technical Note (ITSO) TOC Train Operating Company TS Technical Specification UHF Ultra High Frequency UMTS Universal Mobile Telecommunications System VDV German Association of Transport Operators (Verband Deutscher Verkehrsunternehmen) VHF Very High Frequency WiFi Wireless Fidelity WIWO Walk-In Walk-Out WLAN Wireless Local Area Network WPAN Wireless Personal Area Networks

13 BIBO Payment Systems in Public Transport Final Report page 12 3DES Triple DES

14 BIBO Payment Systems in Public Transport Final Report page 13 1 Executive Summary Authors: Helge Lorenz, GWT Dr. Torsten Gründel, Fraunhofer IVI Klaus Philipp, T.C.L. Jeremy Acklam, TheTrainline

15 BIBO Payment Systems in Public Transport Final Report page 14 1 Executive Summary With the Be-in Be-out scheme (BIBO) a new generation of interoperable fare management systems has become available. It has mainly been designed for open public transport networks, i.e. in non-gated environments. BIBO enables transport companies and PTEs to implement logically closed fare schemes in non-gated environments where the passenger is detected both on entry and on exit. BIBO combines an innovative and highly convenient presence detection technology and an automatic fare calculation on a secure platform. The study analyses the status of development of BIBO technologies in detail. At the beginning, terms and some theoretical concepts related to BIBO technologies as well as the position of BIBO within electronic fare management technologies are introduced. Second, a number of different technological approaches towards BIBO are described. Over the last decade the various approaches have reached different levels of achievement, ranging from pure concepts over show cases and demonstrators up to field tests in a real public transport environment indicating the technical feasibility of BIBO technologies. The two most advanced technological approaches are known as ALLFA Ticket, which has been developed by Continental Automotive (former Siemens VDO) and has already been tested in a large-scale public trial, and Esprit developed by Scheidt & Bachmann. Both approaches are therefore explained in more detail. Ongoing activities by key stakeholders in this field are described, amongst which also the current activities of Swiss Federal Railways are mentioned. A brief summary of lessons learned from past developments regarding BIBO technology follows, as well as an outlook on how a BIBO system could be introduced over the long term by transport operators who want to ensure maximum sustainability of their BIBO investments. It is suggested that BIBO systems are introduced step-by-step to reduce initial investment costs, to obtain the necessary expertise and trust in the technology, to monitor early returns on investment (e.g. by gaining precise and comprehensive usage data) and to provide the flexibility for developing and adopting the BIBO technology during that introduction process as necessary. After that process is completed, BIBO-based automatic fare calculation could be introduced, providing the advantages of more freedom when designing fares while making travelling easier for passengers. There are BIBO technologies that allow the reduction of the detection range down to proximity distance of about 10 cm, thus allowing an intentional user action such as Check-In. Therefore, the same BIBO technology that works without any user-required actions could be used in Check-In Check-Out or in Check-In Be-Out schemes as well. In contrast to proximity-based Check-In Check-Out systems, such a BIBO approach would provide the unique possibility of serving the requirements of gated and non-gated public transport environments with a single technology. The evaluation of BIBO leads to the conclusion that BIBO has a high potential for improving passenger convenience. Moreover BIBO offers the opportunity of

16 BIBO Payment Systems in Public Transport Final Report page 15 combining the implementation of a secure ticketing technology and more flexible fare calculation methods that provide both more transparency for the user and potentially increased fare revenues for the operators. BIBO offers also a unique combination of benefits for users, operators and authorities. It provides significant advantages compared to other ticketing schemes with respect to benefits for users: in comparison with paper tickets mainly occasional customers and regular users travelling beyond the area of their season pass benefit from the convenience of BIBO and from new possibilities in terms of tariff design and fare calculation, in comparison with CICO and CIBO schemes mainly season pass holders, but also other groups of customers, benefit from the highly convenient handling without any intentional user action while travelling. However BIBO requires a very sophisticated technology to achieve these benefits. In the two existing BIBO systems data security, safety and privacy have been solved on an up-to-date technical level that complies with existing standards and meet the functional requirements of public transport companies and customers. The risk of fraud is a common problem for all ticketing schemes. The risk level can be reduced to an acceptable level by proven methods. Nevertheless occasional ticket inspections remain necessary in BIBO schemes. The reliability of BIBO gains importance, in particular with regard to resistance to fraud, user acceptance and ensuring the fare revenues. Major measures for increasing the reliability have been tested during the field trial of the ALLFA-Ticket; further ones are to be implemented during roll-out. However, reliability seems to be resolvable with a careful system design and implementation at roll-out. Moreover BIBO is the only electronic ticketing technology that can be used both in BIBO schemes as well as in closed networks with fare gates or in other proximity environments like parking. Thus the implementation of BIBO could also contribute to motivating car drivers to shift from car to a more frequent use of public transport. BIBO encourages the position of public transport in the transport choice and enables seamless travel in intermodal networks. The study shows that BIBO has a large dissemination potential for public transport in non-gated public transport networks and beyond. BIBO is a fundamental paradigm shift because of the major change from manual ticket purchase to real-time electronic measurement of actual usage. Therefore the commercialisation of BIBO aiming at a reduction of the commercial risk of a roll-out of BIBO in integrated transport networks is the major challenge for BIBO in the coming years. The study aims to analyse the extent to which the approaches and related requirements described in the study are subject to standardisation and regulation,

17 BIBO Payment Systems in Public Transport Final Report page 16 support interoperability both for user smart ticketing media and their ticket products across UK schemes, and relate to the design of smart media and equipment. After a short introduction to RFID where the classification of RFID frequencies is given, the regulatory requirements are described, the applicable frequencies for BIBO are derived, and the available standards for RFID in the context of BIBO are listed. This follows the ISO/OSI Layer scheme and comprises Technology, Application, Data and Conformance Standards. After an in-depth consideration of the term interoperability the impact of ITSO s interoperability approach on BIBO technology is analysed followed by a thorough view on BIBO and ITSO in the UK context. This view is based on ITSO s products, and on existing, planned and potential development by scheme owners of the processes to be used in terminals that handle ITSO products. As far as regulatory restraints in the application of BIBO systems are concerned the relevant Directives, Standards and/or Recommendations are listed in the study. With BIBO there are completely new possibilities for design of tariffs and fare calculation not currently available in ticketing systems. It is expected that a BIBO scheme can be designed to use the ITSO data layer (and associated security methods), while applying a different technology layer for communication between the terminals and the user BIBO device, together with suitable modified application processes in the terminals. Taking the viewpoints of key stakeholders in the UK public transport market, chapter 7 outlines the concerns and opportunities expressed during interviews. It assesses the likelihood of interest in BIBO across the UK and likely impacts. Whilst passenger research might indicate that there is support for what appears to be a simple ticketing system as far as the passenger is concerned, there are also enough concerns about BIBO in relation to the fares architectures and operational processes in the UK to dampen nascent support. BIBO has to be understood not only as a specific technology for ticketing. The way, how the system is implemented, has to be adapted to the specific requirements of the UK public transport market for a successful dissemination. The fact that similar concerns and opportunities have been raised despite the underlying technologies and operation of BIBO being understood, indicates that the UK transport industry is on the one hand wary of changes to ticketing methods and on the other, looking to Government to take a lead. After taking into account UK transport operators requirements to reduce ticketing costs, and the desires of PTEs and Rail service providers not to introduce new fraud opportunities, the outlook in the UK for BIBO in the short term is not positive. In the medium and longer term, which undoubtedly means in association with fairly widespread reform of fares setting and management, the opportunities for BIBO do indeed exist in the UK. To ensure that the environment for such an implementation is fully understood well in advance, the study recommends the introduction of a carefully managed BIBO pilot scheme.

18 BIBO Payment Systems in Public Transport Final Report page 17 2 Abstract Authors: Helge Lorenz, GWT Dr. Torsten Gründel, Fraunhofer IVI Jeremy Acklam TheTrainline

19 BIBO Payment Systems in Public Transport Final Report page 18 2 Abstract This desk study aims at a comprehensive investigation of the scope of applicability of Be-In Be-Out (BIBO) systems to payments and ticketing in the UK. Currently BIBO is considered as the ticketing technology for non-gated public transport networks that has the highest potential in terms of user friendliness and acceptance. Compared to other ticketing schemes, BIBO provides advantages and a highly convenient solution for various groups of customers that only season ticket holders enjoyed until now. Therefore, in principle, BIBO is also relevant for public transport operators and authorities in the UK. The potential of BIBO to improve public transport ticketing is closely linked to the benefits that BIBO provides for customers, operators and authorities in general. The comprehensive analysis of the status and future trends of development shows that several concepts have been designed, but only two systems have reached a significant level of development: the ALLFA-Ticket field test and the Esprit demonstrator. Both of these BIBO systems have been evaluated under various aspects in particular data privacy, safety and security. The applicability of BIBO for all modes of surface transport has been proven during the first BIBO pilot testing in Dresden/Germany. However BIBO is a very sophisticated technology. Therefore special considerations on technical risk and reliability, potential for fraud and resistance to fraud are examined in this study. The evaluation shows that BIBO is feasible and functionally proven; however the development of BIBO has not yet been completed. For commercial exploitation of BIBO further developments are necessary in the future. Therefore also special considerations of the commercial risk and the dissemination potential of BIBO are subject of the study. Both available BIBO systems have been designed for interoperable usage and for compliance with German electronic fare management standards. The impact of ITSO s interoperability approach on BIBO technology is analysed followed by a thorough view on BIBO and ITSO in the UK context. This view is based on ITSO s products, and on existing, planned and potential development by scheme owners of the processes to be used in terminals that handle ITSO products. It is expected that a BIBO scheme can be designed to use the ITSO data layer (and associated security methods), while applying a different technology layer for communication between the terminals and the user BIBO device, together with suitable modified application processes in the terminals. The deregulated and franchised public transport markets in the UK do not easily lend themselves to widespread adoption of new ticketing technologies. Chapter 7 makes an assessment of the general market demand for BIBO in the UK, examines the challenges facing BIBO in the UK market and draws conclusions on a possible pilot implementation in the context of assessing a business case in practice.

20 BIBO Payment Systems in Public Transport Final Report page 19 3 Introduction Author: Helge Lorenz, GWT

21 BIBO Payment Systems in Public Transport Final Report page 20 3 Introduction 3.1 Background and objective Supporting the economy through the provision of efficient and reliable transport systems is an important element of the strategy of the Department for Transport (DfT). Therefore it is in the interest of the DfT to deliver improvements to the accessibility of Public Transport and to improve its cost-effectiveness in order to balance the transport modes in a multimodal transport market. Therefore the DfT has been supporting interoperability between smartcard schemes by the ITSO specification. The development of innovative, smart media based ticketing solutions for seamless travel is an important element in enabling transport choice. Smartcards have been applied in Public Transport ticketing for about 15 years. With smartcard based automated fare collection systems public transport operators will be given an opportunity to benefit from new technologies in their fare collection systems. Contact cards were replaced by proximity cards 10 years ago enabling seamless travel and allowing the introduction of new added value services to the public. However, in integrated transport networks and in non-gated environments like bus and light rail networks new requirements came up for solutions that do not require user actions while boarding or alighting. First experimentations with so called hands free solutions are known from RATP in Paris in Meanwhile, there have been several approaches, significant developments, trials and even first pilot projects to introduce so-called Be-In Be-Out (BIBO) solutions across Europe with different levels of success. Well functioning and highly convenient ticketing schemes on integrated transport networks are of concern to the transport operators, the users and to Government in promoting accessibility and facilitating innovative demand and revenue management solutions. This in conjunction with the generated electronic data on the public transport usage will help to effectively manage transport infrastructure and to improve transport services. Ticketing schemes accepted by users are important elements in enabling transport choice. The Department for Transport is keen to understand the relevance of BIBO systems to Public Transport in the UK and what impact they could have on Integrated Transport Systems. Therefore this desk study investigated the scope of applicability of BIBO systems to payments and ticketing in the UK.

22 BIBO Payment Systems in Public Transport Final Report page Methodology The defined objective of the desk study required that the team conduct a comprehensive analysis of the situation. The approach of the study is based on five major steps: 1. Analysis of the status of development of BIBO technologies 2. Evaluation of BIBO technologies 3. Analysis of standardisation of BIBO technologies on both the International and European level as well as on national level in the UK 4. Analysis of the UK Public transport market and the potential of BIBO for the UK 5. Conclusion and recommendations The study takes into account relevant policies and technical or research initiatives that are known. Due to confidentiality reasons the study did not get access to sensitive information from ongoing projects. 3.3 Project team and expertise The complexity of the study required the participation of experts from various fields. Therefore the study was carried out by a group of international experts in electronic ticketing. The experts are consultants and researchers that are independent from any supplier and technology providing industry. The project team consisted of the following partners: GWT-TUD GmbH (Helge Lorenz) as the lead partner Fraunhofer IVI (Dr. Torsten Gründel) IOSIS (Peter Tomlinson) T.C.L. GmbH (Klaus Philipp) TheTrainline.com (Jeremy Acklam) The project team has been involved in many electronic ticketing projects and activities such as:

23 BIBO Payment Systems in Public Transport Final Report page 22 EC R&D project Calypso ( ) Development of the ITSO Specification and Environment ( ) VDV core application: Standardisation of eticketing in Germany ( ) EasyRide: Feasibility Study on BIBO for Swiss Railways SBB (2000) ALLFA-Ticket Dresden: First Be-In/Be-Out Demonstration Project ( ) TransITS: WG electronic ticketing for public transport within the International Study on future European research plan ( ) Transmobil: Standardisation of eticketing in Austria ( ) Active participation in EU committees (EC-DG TREN) and EU Initiatives (eeurope SmartCardCharter CWA 14838: 2003 FASTEST) Participation in international standardisation and membership in international standardisation bodies like CEN/TC224/WG11 (EN1545, EN15320), CEN/ISSS MUSST pre-standard (multi-application schemes for secure citizen e-services, including the use of smart cards) Membership in UK and German Mirror Group for development of joint CEN and ISO Standard EN ISO Integrated Fare Management Architecture and for development of CEN IOPTA standard EN15320 for the terminal to media interface in a transport ticketing environment 3.4 BIBO: a definition Various names have been used for BIBO technologies in the past. First approaches became known as hands free solutions because the user does not need to have the smartcard in his hands while carrying out a transaction. A more systematic approach for naming various electronic ticketing technologies is based on the user actions that are required. The following schemes of user actions are commonly used: Check-In (CI) Check-In Check-Out (CICO also called Tap-In Tap-Out or Tag-On Tag-Off) Be-In Be-Out (BIBO) Check-In Be-Out (CIBO) Walk-In Walk-Out (WIWO)

24 BIBO Payment Systems in Public Transport Final Report page 23 In comparison to Check-In Check-Out schemes (also called Tap-In Tap-Out or Touch-In Touch-Out) using proximity smart cards, where the user has to check in while boarding and to check out while alighting, Be-In Be-Out became the common name for ticketing technologies that detect and register automatically the presence of a smartcard in a public transport vehicle. BIBO schemes do not require any user action and are therefore hands free. The Walk-In Walk-Out approach can be considered as similar to BIBO in terms of no user actions required and therefore may be called hands free as well. However, from the technical point of view WIWO systems are based on the recognition of the direction of passenger movement while passing the vehicle s doors: walking in or walking out. Check-In Be-Out is a combination of a user action at entrance and an automatic detection of the duration before alighting. For a common understanding of this report, it seems to be necessary to define what a BIBO system comprises of: front end communication technology and / or backoffice functions. The different schemes of user actions mentioned above are first of all related to the technical infrastructure in use in the vehicles or at stops and stations as the front end equipment of an electronic ticketing system. Each technology uses specific terminals or readers at the front end. Compared to other ticketing technologies BIBO provides a specific wide range communication technology at the front end. However, even in the back office the different schemes require specific functions for data processing because the data provided by the front end terminals are different for the various schemes. CICO systems provide data of the point of entrance and exit that defines explicitly the individual journey of the user with his smartcard. BIBO front end terminals collect data on sections between two neighbouring stops only. Therefore specific routines and procedures are necessary in BIBO back office systems for processing journey data from linking information on consecutive sections. While BIBO may be understood primarily as a specific front end technology a complete BIBO scheme covers also a specific BIBO back office system providing dedicated data processing functions for BIBO (see Figure 1).

25 BIBO Payment Systems in Public Transport Final Report page 24 BIBO system for electronic fare management Front end equipment User device BIBO reader BIBO: a specific wide range communication technology + Back office systems of involved entities e.g.: Journey processing Fare calculation Data recording System monitoring Payment Security dedicated BIBO data processing functions Figure 1: Front end equipment and back office systems as main parts of a complete BIBO scheme

26 BIBO Payment Systems in Public Transport Final Report page 25 4 Status of development of BIBO technologies Authors: Dr. Torsten Gründel, Fraunhofer IVI Helge Lorenz, GWT

27 BIBO Payment Systems in Public Transport Final Report page 26 4 Status of development of BIBO technologies 4.1 Academic theories to BIBO Technical terms and concepts related to electronic ticketing in general or specifically to BIBO technologies often vary between different authors. Therefore, and since it has been required for this study, this section is intended to give a brief insight into some of the terms and abstract concepts related to BIBO technologies. Information for this section has been taken from [GRÜNDEL-2006]. A comparison between present ways of fare collection in public transport, with a BIBO-based passenger presence detection in conjunction with an automatic fare calculation reveals two fundamentally different paradigms. Today s passengers select their tickets manually regardless of whether these are conventional paper tickets, tickets stored on smartcards or, for instance, tickets sold via mobile phones. Therefore, passengers also have to obtain a sufficient tariff knowledge, including the corresponding rules of how to use the ticket correctly (e.g. performing a manual ticket validation), before they start their journey. This means, all critical fare-related processes lie with the customer (see Figure 2). If he makes any mistake, he will be faced with a penalty, such as an increased fare. prior to a journey: obtaining tariff information selection of suitable ticket while travelling: validation PT usage critical fare-related processes lie with the passenger Figure 2: Critical fare-related processes (red) for today s manual ticket selection Compared to that, a BIBO-based passenger presence detection in conjunction with an automatic fare calculation leads to a fundamental paradigm shift: both the tariff knowledge and the fare-related processes lie almost completely with the electronic system, and are not relevant for the passenger unless he has actually made his journey (see Figure 3).

28 BIBO Payment Systems in Public Transport Final Report page 27 prior to a journey: obtaining tariff information selection of suitable contract * fare-related actions only needed in a few cases and from time to time while/after travelling: PT usage usage measurement automatic fare calculation critical fare-related processes mainly lie with the system Figure 3: Critical fare-related processes (red) for BIBO-based systems Occasionally, in some cases, it may be necessary (or desired by the customer) to select a specific fare offer or fare parameter manually before using a public transport service. This applies only when there are specific fare offers (e.g. bonus programmes) beyond the standard offers or when a specific fare parameter cannot be measured automatically (e.g. riding with a bike for which extra costs have to be paid). A major distinction can thus be made between the concept of manual ticket purchase for a desired usage of public transport in the future, and the concept of a real-time electronic measurement of the actual public transport usage: Manual Ticket Purchase Electronic Usage Measurement Conventional Technology Mobile Phone & Smartcard Check-In/ Check-Out Be-In/ Be-Out Electronic Fare Management (EFM) Figure 4: Two basic concepts of electronic fare management The first concept, as already mentioned, comprises today s conventional technology based on paper tickets as well as newer technologies where tickets are stored on smart cards or distributed via mobile phones. However, all of them apply the same principle of manual ticket purchase. The most popular approaches to the second principle (i.e. the real-time electronic measurement of the actual public transport usage) are Be-In Be-Out (BIBO) and Check-In Check-Out (CICO) technologies, and

29 BIBO Payment Systems in Public Transport Final Report page 28 to a less degree also Walk-In Walk-Out (WIWO) or combinations of these different approaches (see below). Thus, when speaking about electronic ticketing or more precisely, electronic fare management, a clear distinction between these fundamental concepts is necessary as they have, for instance, different technical, fare-related, legal and practical implications. This distinction leads to two corresponding types of public transport usage entitlements: Electronic Entitlement as pre-defined description of PT usage ( ticket ) = fare parameters are defined before using PT with PT usage measurement = fare parameters are defined while using PT Figure 5: Two basic types of EFM entitlements Looking at the concept of manual ticket purchase, there is always a pre-defined description of the desired public transport usage, either as a conventional paper ticket or as an electronic ticket, which normally comprises the same or similar data as its paper counterpart. In contrast, in the concept of public transport usage measurement there are no such tickets describing in advance a specific transport performance. The corresponding entitlement (contract) allows a passenger to make any journey within a larger area, such as an integrated public transport network, a country or ideally many countries, and within a larger period of time, such as a month, a year or ideally with a consecutive extension of the contract s validity. The main processes of electronic fare management, and for BIBO, are illustrated in the following figure: PT Usage Data Exchange Technologies / Interaction Procedures on Usage Descripti Fare Calculation Methods Price Methods of Settlement Payme nt Amount Payment Procedures Fare Revenue Figure 6: Chain of main EFM processes

30 BIBO Payment Systems in Public Transport Final Report page 29 In order to establish a specific fare in electronic fare management systems (EFM), the respective journey, or more generally, the respective usage of public transport must be described in an electronic format (called usage description in Figure 6). This requires on the one hand data exchange technologies and on the other what will be called here interaction procedures. Data exchange technologies allow a transfer of fare-related data between an electronic user device (e.g. smart card, mobile phone) and the corresponding fixed system components, in vehicles or at stations/stops. Typically, one distinguishes between proximity technologies, vicinity technologies and long-range technologies, of which at least proximity and vicinity protocols are internationally standardised (see chapter 6). Interaction procedures, in contrast, define at which point(s) in the process of using public transport such a data exchange takes place. The electronic usage description for a specific journey or parts of it is the necessary precondition for calculating the appropriate fare. The actual amount that a passenger has to pay at once (payment amount in Figure 6) may be the price for one single journey or parts of it (case one), or refer to a number of journeys which the passenger needs to pay for all at once (case two). Based on this distinction, different methods of payment are applicable, such as on-board payment with an electronic purse in case one or, for instance, monthly payment from the passenger s debit account in case two. Thus, from a technological point of view, there are many different scenarios in which a transport company can generate its fare revenue based on an EFM system. From the author s perspective, decisions about the type of interaction procedures and of fare calculation methods have the most fundamental impact on EFM or, respectively, BIBO systems as they influence the complete system architecture to a large degree. Both aspects are therefore explained with reference to the following two figures in more detail below. Figure 7 shows the fundamental characteristics according to which different types of interaction procedures can be distinguished from each other. Basically, interaction procedures may be classified in two respects: first, considering the way according to which the usage of a public transport vehicle is determined and second (left hand path in the figure), considering the fact whether or not an intentional user action is systematically required (right hand path in the figure). The individual public transport usage of a single person or a group of persons may be pre-defined and thus anticipated for the future. This is the case for conventional electronic tickets stored on smart cards, which the user needs to select or configure, for instance on a vending machine, before he starts his journey.

31 BIBO Payment Systems in Public Transport Final Report page 30 Interaction Procedures accordingto theway of determining the usage according to fact of integrating user-required actions Pre-defined Description Electronic Measurement with user action without user action at begin & end of using a vehicle while using a vehicle CICO WIWO BIBO Figure 7: Interaction of (user) device and EFM system By contrast, the actual public transport usage must be measured during the journey using specific electronic means: The measurement can, on the one hand, take place at the beginning and the end using a certain vehicle. This again may refer to the entrance to / exit from one single vehicle (a single bus, tram, train etc.) or the entrance to / exit from the vehicle used first or last, respectively, in a complete journey using more than one vehicle. In the first case the transfer from one to another vehicle will be electronically recorded while this is obviously not possible in the second case. In order to distinguish interaction procedures in this way, it is not important whether this measurement is carried out on-board, i.e. within a vehicle, or at the respective platforms or stations. On the other hand, the measurement can be done while a public transport vehicle is being used, i.e. between two neighbouring stops. In this way the passengers who are on board at these times (better: their user devices) can be registered, and from those measurements the complete journey may be reconstructed using the data from one or more vehicles that have been used by a certain passenger. The three basic types of interaction procedures CICO, BIBO and WIWO can be derived from these criteria as shown in Figure 7. Adding new combinations, of which the most interesting is probably Check-In Be-Out (CIBO), is also possible. This refers to a BIBO system that requires an intentional user action in order to prove the correct functioning of the BIBO user device and the validity of the BIBO entitlement (contract) stored on the device each time a public transport vehicle is being used (e.g. by

32 BIBO Payment Systems in Public Transport Final Report page 31 presenting the BIBO user device to a validator or by pressing a button on the BIBO device). Therefore, an attempt should be made to develop a BIBO technology that works in both cases; without any user-required actions as well as in CIBO or even in CICO schemes. In contrast to proximity-based CICO schemes (which cannot be extended to BIBO without technological breaks), this would provide the unique possibility of serving the requirements of gated and non-gated environments in integrated public transport networks with a single BIBO technology. Finally, Figure 8 shows different fare calculation methods since they have also a major effect on the fare systems that may be established in an EFM system. Fare Calculation Methods according to the way of execution according to the place of execution one-step two-step incremental central decentral Figure 8: Fare Calculation Methods Fare calculation methods may be distinguished according to the place of execution and according to the way of execution. The first criteria distinguishes between the central processing of electronic usage descriptions (data records) for complete journeys in the background facility of an EFM system compared to the de-central (real-time) fare processing in vehicles, or at platforms or stations. The second criteria has a different focus: One-step execution means that the final fare is calculated at once and will not be modified at a later point in time. The term two-step execution is used here to describe the case that a fare is calculated in two steps, e.g. first during a Check-In process the fare is calculated until the vehicles final destination - just in case the user does not carry out a necessary Check-Out process at the end of a journey. If the user does carry out this Check-Out process, the fare will be finally calculated in this second step taking into account the calculation of the first step. In a third fare calculation method the fare is to be calculated incrementally for each stop or station on a vehicle s route. This would be needed in BIBO systems if there were the requirement that the fare is to be calculated in real time on-board a vehicle. In this case the precise fare needs to be (re-)calculated each time between two neighbouring stops or stations, under the assumption that the respective passenger

33 BIBO Payment Systems in Public Transport Final Report page 32 is going to exit the vehicle at the next following stop or station (because of the fact of whether the passenger has actually left will only be known at the time the following BIBO transaction takes place after that stop or station, and in case he had left, there will be in fact no such transaction that could charge the fare from the user device). 4.2 Technological approaches Historical overview of BIBO related developments Recently, the BIBO approach has been attracting attention in the public transport arena. There have been a number of suggestions on how to develop a BIBO scheme from a technological point of view; ranging from simple proposals of how certain wireless communication technologies could be used for BIBO schemes, up to public tests of comprehensive EFM systems using a BIBO technology. Field Test WIWO EasyRide BIBO EasyRide BIBO ALLFA Demonstrator Show Case Concept WIWO ICARE, Calypso Statistical Data ActiTag BIBO Bluetooth Ericsson CIBO Atron BIBO Esprit RFID AeroScout BIBO fasttrac focus on communication BIBO-based further activities technology only EFC System in preparation Figure 9: Historical overview of BIBO related developments

34 BIBO Payment Systems in Public Transport Final Report page 33 Therefore, the above Figure 9 giving an overview of various BIBO approaches distinguishes between different levels of research and development: concept (just a presentation of a certain BIBO approach without any technological or functional test being documented) show case (a BIBO concept that is accompanied by a technological set of components at laboratory level, such as presented on fairs) demonstrator (a BIBO concept that has been already technologically implemented to a certain extent and presented under conditions near to practice e.g. in a real public transport vehicle) field test (a BIBO concept that has been realised to a high extend from a technological point of view and tested under real condition in the public) The second distinguishing point in the overview is the comprehensiveness of the BIBO approach; i.e. whether it is focussed just on the pure RF communication technology or has a wider scope of using a BIBO technology in a comprehensive EFM scheme, including data transfer and data processing, security aspects, business processes, fares as well as user acceptance, costs etc. As can be seen from the overview, there are singular attempts as well as developments that build on earlier activities. All attempts will be characterised briefly in the following sections to the extent of the available information WIWO demonstrator in EC projects ICARE/CALYPSO Aim: Use of an ISO/IEC smartcard for Walk-In Walk-Out (WIWO) and/or Check-In Walk-Out (CIWO) Approach: Extension of the usual communication range of an ISO/IEC smartcard (without battery) beyond proximity towards hands-free usability (vicinity range) Stakeholders: RATP, Innovatron, ASK, OTLIS, CARRIS Status: Prototype implementation in EC funded R&D projects (laboratory tests and tests in real operation environment in Lisbon) Duration: Place: Lisbon, Portugal

35 BIBO Payment Systems in Public Transport Final Report page 34 Result: Detection reliability not sufficient in real operation environment (about 80%) The public transport operator in Paris, RATP, had started first developments on hands free reading devices for fare management as far back as the mid 1990s in the ICARE project and its follow-up project CALYPSO, both EC funded R&D projects. In co-operation with the French company Innovatron, a pioneer in contactless smartcard development and business, RATP developed prototypes of hands free antennas for ISO/IEC (proximity) smartcards. These developments aimed at an extension of the coverage of contactless smartcards up to the width of a vehicle s door frame. First practical experimentations on vehicles were part of the ICARE project in Figure 10: Hands-free antenna on a bus door prototype installation in Lisbon (1998) In the subsequent CALYPSO project RATP and the transport authority of Lisbon have done further developments towards a hands free system, based on contactless smartcards without a power supplied smartcard. The demonstration testing within CALYPSO led to a detection rate of about 80% in a real vehicle environment [CALYPSO]. Vibration and moisture mainly influenced the gain of the hands free antennas, and therefore the detection rate.

36 BIBO Payment Systems in Public Transport Final Report page 35 Meanwhile the ISO/IEC (vicinity) standard exists for contactless smartcards with a communication range of up to 1 m. However, a wider range is required in practice for a hands-free or WIWO based EFM system in public transport. RATP has stopped the developments of hands-free systems because the reliability of the approach was not sufficient for a roll-out. However, the approach might be used for exit data recording for statistic purposes only. Such an approach was the main idea behind the Acti-Tag activities later on. The information on the developments in ICARE/CALYPSO has been collected from [ICARE], [CALYPSO], and the author s personal experience and material from his participation in the CALYPSO project WIWO field test in EasyRide project Aim: Ticketing without user actions for validation Approach: Automatic detection of boarding or disembarking by antennas located in the door area using a smartcard with power supply based on a WIWO scheme Stakeholders: SBB, TPG, Swatch/Hayek/EM Marin, Siemens Status: Field test in (about 900 participants) Duration: Spring 2001 Place: Geneva, Switzerland Result: Detection reliability not sufficient (in comparison to the alternative BIBO test in Basle within EasyRide) In Switzerland, at the end of the 1990s the project EasyRide was set up. After an extensive provider selection process, two industry consortia began in early 2000 in parallel with the development of two hands-free approaches; one based on a WIWO scheme (as described in this section) and the other based on a BIBO scheme (as described in 4.2.4). Both approaches were tested with respect to their concept s feasibility in Geneva and Basle in Each test involved about 30 equipped public transport vehicles of different types (suburban trains, three and four door buses and cable cars) and approximately 900 test users.

37 BIBO Payment Systems in Public Transport Final Report page 36 Figure 11: Card-like user device and example installation of WIWO antennas [Gyger-2001] Unlike in the ICARE/CALYPSO approach, the WIWO test in EasyRide was based on an active user device, i.e. containing a small battery. The scheme was designed to detect entrance and exit movements at each door of a vehicle by using low-frequency antennas (125 khz) and high-frequency antennas (433 MHz). The first type of antenna activates the user device from sleep mode and sends specific data to it. Two different zones of electromagnetic fields in the entrance or exit area allow the user device to recognise the walking direction of its holder. Having been activated, the user device communicates with the high-frequency antenna in order to send the information as to whether the respective passenger has boarded or alighted the vehicle. The on-board equipment is then able to construct the data record for this journey, although it was noticed that there are complex algorithms needed to cope with different exceptional situations that may occur. The information for this section has been taken from [Gyger-2001] BIBO field test in EasyRide project Aim: Ticketing without user actions for validation Approach: Two-step detection process at the entrance and inside the vehicle using a BIBO scheme Stakeholders: SBB, Siemens, Ascom Status: field test (about 900 participants) Duration: spring 2001 Place: Basle, Switzerland Result: Conceptual feasibility proven (detection reliability 99,2%)

38 BIBO Payment Systems in Public Transport Final Report page 37 For more information about the project EasyRide see previous section Figure 12: Migration of card-like user devices as used in the BIBO scheme [Siemens VDO] The comparison of both WIWO and BIBO approach in EasyRide demonstrated that the latter had more potential for further developments. In the mean time, the BIBO approach as tested in EasyRide has been developed much further in the ALLFA project in Dresden, Germany. This concept is described further below. At the time the EasyRide project was completed, it had been decided not to take a BIBO system to large-scale implementation. The main reasons for that can be summarised as follows: the user device technology was not yet ready for industrial production; the main EFM processes around BIBO had not been part of the project and thus not yet proven from the transport operators point of view; there had been differing positions amongst the transport operators on how, if at all, the introduction of BIBO should take place. Finally, it was decided to introduce step-by-step new electronic forms of ticketing, such as tickets based on conventional smart cards, mobile phones and the Internet. However, the long-term vision of a BIBO system is still alive at Swiss Federal Railways [FLÜCKIGER-2006], and is underlined through their recent activities (see below: RFI by SBB, section ). The information for this section has been taken from [GYGER-2001], [FLÜCKIGER 2006] and interviews with Siemens VDO BIBO Bluetooth concept by Ericsson Aim: Bluetooth-based ticketing Stakeholder: Ericsson Consulting (Germany) Status: Concept Duration: 2001 Result: Initial concept presentation, no follow-up activities

39 BIBO Payment Systems in Public Transport Final Report page 38 A BIBO approach that tried to use standard Bluetooth technology was presented at the 10th kontiki Conference in Duisburg, Germany. However, after that presentation no further activities had become known in the community (although tests had been announced for 2001). Figure 13: BIBO concept using Bluetooth [GERDES-2001] The information for this section has been taken from [GERDES-2001] Statistical data Acti-Tag show case by Technopuce Aim: User activity at entrance (Check-In) plus statistical exit data recording Approach: Active smart card with RFID technology (868 MHz) and ISO/IEC B proximity interface Stakeholder: Technopuce (France) Status: Show case, card prototype Duration: 2002 Result: Demonstrated at fairs, no further developments known Under the brand name Acti-Tag an active smart card with a flexible battery has been developed and demonstrated at fairs by the French company Technopuce (www.technopuce.com). How far Acti-Tag has already been tested in practice is not known, although this could be assumed from the company s fact sheet.

40 BIBO Payment Systems in Public Transport Final Report page 39 Due to its two interfaces it is on the one hand able to work in Check-In schemes over its proximity interface, and on the other hand to record statistical data over its RF interface. The latter may happen without any user actions within a range of up to 150m when a passenger is exiting a transport vehicle. With its ISO/IEC B interface the card is claimed to be compatible with the Calypso standard. Like the former activities in the CALYPSO project (see above), this development has also been carried out in collaboration with RATP, the Paris public transport operator MHz transponder coil Primary LiMnO 2 battery. Flexible. Quartz for RF transmission. Wire-bonded microprocessor chip Calypso MHz transmitter MHz antenna flexible substrate Figure 14: Acti-Tag overview [GUERINEAU-2002] Figure 15: Acti-Tag picture [GUERINEAU-2002] The information for this section has been taken from [GUERINEAU-2002].

41 BIBO Payment Systems in Public Transport Final Report page BIBO field test by Siemens VDO in ALLFA Project Aim: Comprehensive EFM system concept based on BIBO technology and its test in a large-scale public trial Approach: Further developments on the EasyRide BIBO technology; integration of BIBO technology with EFM business processes, data transfer and data processing, security architecture, automatic fare calculation etc. Stakeholders: VVO, Siemens VDO, Fraunhofer IVI, GWT etc. Status: Field test (nearly 2000 users) Duration: May October 2005 Place: Dresden, Germany Result: Reliable function and user acceptance proved under real operation in a limited pilot network; more than individual journeys registered via BIBO during the pilot phase This approach will be explained in greater detail in section CIBO show case by ATRON Aim: Combination of a user activity at entrance (Check-In) and automatic exit recording (Be-Out) using standard communication protocols Approach: Active user device with ISO/IEC and WLAN interface Stakeholder: ATRON (Switzerland) Status: Showcase Duration: 2004 Result: Prototype for laboratory tests and demonstrations; function and reliability not yet proved in real operation Check-In Be-Out (CIBO) systems are considered by several transport companies as an interesting alternative to Check-In Check-Out with contactless smartcards. The company ATRON (www.atron-systems.ch) has developed a laboratory set-up of a Check-In Be-Out scheme in Other CIBO implementations are not known.

42 BIBO Payment Systems in Public Transport Final Report page 41 The CIBO approach of ATRON uses two different communication protocols; these are ISO/IEC for Check-In and WLAN (2.45 MHz) for Be-Out. After a Check-In process the user device receives periodic data packages from the WLAN antenna in order to stay active, and to answer the communication request from the WLAN antenna. As long as the WLAN antenna receives these answers, the user device is still in the field of the antenna, i.e. assumed to be in the vehicle. The Check-In terminals have to be located inside the vehicles to make sure that only user devices are being registered that have been Checked-In on the same vehicle before. ATRON s laboratory set-up has been publicly used so far only at exhibitions and for marketing activities in order to promote the idea of CIBO systems. Data on reliability under real operation conditions are not yet available. Specifically, it has not been proven whether a Be-Out function based on WLAN is reliable yet. Currently, the development of CIBO at ATRON is on hold. ATRON is very interested in a pilot scheme or implementation project for its CIBO technology. The necessary product and system development would, according to the company, take at least one year. The information for this section has been provided by Helge Lorenz after a personal interview with ATRON. There is no information available on the company s website BIBO demonstrator Esprit by Scheidt & Bachmann Aim: EFM system based on BIBO Technology with the use of stored values, time based entitlements or combination thereof Approach: Broadcast (fare) information to intelligent user devices that automatically calculate the fare themselves Stakeholder: Scheidt & Bachmann Status: Demonstrator / show case for fairs and exhibitions; on-going in-house tests Result: Different approach to ALLFA Ticket; proven in bus environment during closed area test; not yet proven in public transport environment Under the acronym Esprit, which stands for encoding scheme for programmable intelligent tickets, Scheidt & Bachmann is promoting a complete BIBO-based EFM system concept. Because this is alongside the ALLFA scheme at present the only approach that seriously aims at a comprehensive EFM system, it will be presented in more detail in section

43 BIBO Payment Systems in Public Transport Final Report page BIBO fasttrack project incl. Request for Information by SBB Aim: Solution for a comprehensive and innovative ticketing system based on the initial idea of the former EasyRide project Approach: To be defined after evaluation of different solutions Stakeholder: Swiss Federal Railways (SBB) in co-operation with other public transport operators in Switzerland Status: Different proposed solutions being under evaluation Duration: Ongoing since 2007 Result: Not yet known As can be seen from Figure 9 some years ago the first field test of BIBO technology worldwide was carried out by Swiss Federal Railways (SBB) within the EasyRide project. Despite the fact that the developments had been stopped at that time, a new project called fasttrack has been set up in Switzerland. It is mentioned as a followup of the former EasyRide project by [SCHIESSER-2007], which is a presentation of the Swiss Association of Public Transport Operators. The project is carried out under the leadership of Swiss Federal Railways in co-operation with other public transport operators in Switzerland. It aims at a comprehensive, BIBO-based ticketing system. As part of this project, SBB issued a formal Request for Information (RFI) to the industry in June A number of companies were asked to provide suggested solutions for a comprehensive and innovative ticketing system based on the initial idea of the former EasyRide project. A fundamental requirement of the RFI has been, for instance, that the access to railway and local public transportation should be possible without purchasing a ticket beforehand. This should be achieved by capturing travel data based on the detection of the passenger s mobile phone or device. According to [SCHIESSER-2008] almost 20 of three dozen companies invited, finally answered to the RFI. Amongst the proposed solutions one could find approaches and technologies such as RFID/NFC, WLAN, GPS, radio cell (GSM) based location. Having selected the most promising industry responses to the RFI, SBB invited a number of companies in the first half of 2008 to perform practical tests with their solutions. This process of evaluation is an ongoing process at present. However, it can already be seen that none of the suggested solutions is available yet as a commercial system or product. Despite the remaining development effort, it has been pointed out in [SCHIESSER-2008] that SBB plans to tender a fasttrack BIBO system in 2009.

44 BIBO Payment Systems in Public Transport Final Report page 43 For a personal contact to SBB in this matter please contact: Dr. Torsten Gründel Fraunhofer Institute for Transportation and Infrastructure Systems IVI Zeunerstrasse 38, D Dresden, Germany Phone: +49 (0) 351 / mailto:

45 BIBO Payment Systems in Public Transport Final Report page Status of development and implementation Because the ALLFA and the Esprit scheme are at present the only approaches that seriously aim at a comprehensive EFM system, they will be presented in more detail ALLFA The first comprehensive BIBO-based EFM system was tested in a large pilot project with about users in the year 2005 under the name ALLFA in Dresden, Germany. It took up the basic BIBO radio technology that was developed earlier in the EasyRide field test in Switzerland. For the application in Dresden this BIBO technology had been developed further by its provider Siemens VDO (www.vdo.de, today: Continental Automotive) and embedded into an overall fare management system with an automatic fare calculation based on a newly developed electronic fare model. The ALLFA project was a sub-project of the intermobil Region Dresden project, partly funded by the German Ministry of Education and Research (BMBF), within the framework of its Mobility in Urban Areas initiative. When enrolling, the customer receives an electronic user device a specific smart card in ISO format (but thicker) or a mobile phone; both so-called ALLFA tickets: Figure 16: The ALLFA tickets (specific smart card or mobile phone) Each ALLFA ticket contains a small battery and a radio frequency communication interface (6.78 MHz and 868 MHz ISM frequency). It provides a display and two buttons to enable the user to select whether he is accompanied by additional passengers, bikes, dogs etc. or has chosen the first or second service class. The user device can be detected in a public transport vehicle with a specific BIBO technology developed by Siemens VDO. It uses two different types of antennas;

46 BIBO Payment Systems in Public Transport Final Report page 45 which are so-called wake-up antennas above each door and usually one central access antenna per vehicle (Figure 17). wake-up antenna access antenna wake-up antenna Figure 17: Location of BIBO antennas inside a vehicle With these antennas, the process of detection is based on a two-step approach to achieve maximal detection reliability, and to prevent wrongly detected user devices outside the vehicle. This is illustrated in the following figure: step 1: wake up phase (activation at entrance) step 2: access phase (secured transaction betweenen stops) Figure 18: BIBO detection based on a two-step approach When the user gets on the vehicle the ALLFA ticket receives an initial wake-up call from an electromagnetic field emitted by the wake-up antenna. During this first wakeup phase the ALLFA ticket is activated from sleep-mode, which saves energy when the electronic ticket is not being used. Despite the fact that the ticket at that stage already recognises the vehicle s identification code and is thus assigned to the

47 BIBO Payment Systems in Public Transport Final Report page 46 vehicle, its holder is not yet registered as a passenger. This allows him to enter or leave a vehicle waiting at stops or stations as often as is necessary, e.g. to assist a mobility-impaired person to get on the vehicle. Furthermore, due to its frequency of 6.78 MHz the antenna s field range is so narrow that only devices right in the entrance area are activated. As soon as the vehicle leaves a stop the second so-called access phase begins. All ALLFA tickets situated inside the vehicle enter into a sophisticated communication dialogue with the vehicle s access antenna. During that process each ticket s identification code is transferred to the vehicle, accompanied by the user-selected fare parameters mentioned above. The holder of the ticket is now registered as a passenger. Only the user devices that have received the correct identification code of the vehicle during the initial wake-up phase are able to communicate with the access antenna. This prevents detection of ALLFA tickets outside the vehicle despite the larger field range of an 868 MHz access antenna. The second phase lasts as long as the vehicle is moving. During that time all tickets complete their data dialogue with the access antenna in parallel using individual time slots. The system has been designed for up to 200 tickets per vehicle unit being processed while the vehicle moves from one stop to another. Because this process is repeated between each pair of subsequent stops, the complete journey of all passengers on board will be recorded. When a passenger leaves the vehicle, the communication with that specific ticket is finished, which indicates the end of the journey. Thus, each passenger s journeys are registered fully automatically without user-required actions. The passenger is nevertheless able to inspect ticket to ensure its correct detection while travelling since the ticket s display indicates the current station/stop name. The current position of the vehicle is detected by a GPS positioning system. The two-step BIBO process guarantees that only passengers who actually travel on the vehicle are being registered. Through the system management, the registration data is cyclically transmitted to the back-office system by GSM/GPRS. All data transmitted between ticket and vehicle as well as between vehicle and backoffice system is secured against manipulation by electronic signatures in accordance with the security architecture defined by the VDV Core Application standard for electronic fare management, which is provided by the Association of German Transport Operators. The ALLFA tickets can be used for all types of public transport vehicles. The complete on-board equipment for a two-door German standard bus is shown below (Figure 19), comprising of: 2 wake-up antennas, 1 access antenna 1 BIBO reader controlling the antennas 1 GSM/GPRS modem 1 standard on-board computer with GPS location functionality

48 BIBO Payment Systems in Public Transport Final Report page 47 Figure 19: On-board equipment for a two-door bus The on-board equipment had been installed on 54 public transport vehicles, such as modern urban and regional buses, low-floor trams and double-decker trains: Articulated bus Mercedes Regional bus Setra Low floor light rail Double-decker train Figure 20: Different vehicle types equipped with BIBO technology in the ALLFA pilot

49 BIBO Payment Systems in Public Transport Final Report page 48 The following pictures give an impression on how the equipment was installed in those vehicles: BIBOBO installation on low-flow light rail 19 Rack installation on-board computer & BIBO read er wake-up & access antenn ennas Figure 21: BIBO installation in a low-flow light rail vehicle in the ALLFA pilot flexible, dividable connection in the articulation area control lamp signalling the correct function of the BIBO system Figure 22: Details from the BIBO installation in a low-flow light rail vehicle in the ALLFA pilot

50 BIBO Payment Systems in Public Transport Final Report page 49 For all BIBO-related technical components which were tested in the public ALLFA pilot (e.g. on-board computer, GSM/GPRS modem, BIBO reader and antennas), the following certification was obtained: CE norm / E1 / Railways standard EN The on-board computer was proven according to ENV with respect to its electromagnetic compatibility. The approval to such a BIBO installation was obtained from the manufacturers of all affected vehicles, since some of them were still under a valid manufacturer's warranty. The BIBO technology also complies with the following standards: CENELEC ENV Human exposure to electromagnetic fields. High frequency (10 khz to 300 GHz) Germany: Norm VDE 0848 Teil 392 / DIN EN (0 Hz to 300 GHz) Beyond that, the BIBO technology complies with the following standards concerning the effects on pacemakers: EN 50061:1988 Swiss regulation concerning the protection against ionising radiation (NISV) In addition to the BIBO installation in public transport vehicles, a multi-storey car park was also one of the tested objects:

51 BIBO Payment Systems in Public Transport Final Report page 50 Figure 23: BIBO installation in a multi-storey car park in the ALLFA pilot Car drivers could operate the entry and exit gates hands-free with their ALLFA ticket and let their parking fee be registered by the system. Thus, the system can encourage car drivers to switch to public transport more easily. From a technical point of view, it has therefore been demonstrated that this technology is not restricted to the on-board BIBO mode as described above but also suitable for proximity applications at gated entries as often encountered in metro stations. Therefore, the same BIBO technology that works without any user-required actions could be used in Check-In Check-Out or in Check-In Be-Out schemes as well. In contrast to proximitybased Check-In Check-Out EFM systems, the ALLFA approach would provide the unique possibility of serving the requirements of gated and non-gated public transport environments with a single technology. The functions and user acceptance of the complete system have been proved during a public pilot trial in the integrated public transport network of the city of Dresden and the surrounding Upper Elbe Valley region (Verkehrsverbund Oberelbe VVO). Four different public transport operators were involved in the pilot trial ranging from large operators, such as German Railways and the major transport operator in Dresden DVB AG, to smaller enterprises. The pilot network comprised eleven innercity lines in Dresden as well as sub-urban public transport lines and one car park. It

52 BIBO Payment Systems in Public Transport Final Report page 51 allowed complex journeys, thus providing the possibility to investigate the BIBO technology in specific situations, such as the transfer from one line to another, with many passengers, and under complex conditions concerning the fare system. Despite the large number of vehicles equipped with BIBO technology (54 vehicles), it could not be ensured during the daily operation that only BIBO test vehicles operate on the pilot network. For that reason all BIBO vehicles were marked with a specific pictogram for easy recognition. Figure 24: Use of a BIBO pictogram in the ALLFA pilot trial

53 BIBO Payment Systems in Public Transport Final Report page 52 Figure 25: ALLFA pilot trial network The processing and storage of data and the building of journeys was carried out in the central back-office system. A sophisticated, Internet-based customer support

54 BIBO Payment Systems in Public Transport Final Report page 53 system (Figure 26) offered a customer-oriented communication platform to the users of the electronic fare management system: from the enrolment and distribution of tickets to the outline of journeys made as well as the blocking of ALLFA tickets in case of loss. About 20 business processes could be carried out by service staff using specifically designed and secured Internet-clients. Support in Support via Service e Centers Service e Teleph one Informat ation via Customer Letters Informat ation via Home PC/Termina nal Internet-based Business Processes Electronic Fare Management System for ALLFA Pilot Data Transmi smissision via GSM/ M/GPRS from vehicles & parking Central Data Processi essing Information via SMS Figure 26: Overview of customer support system in the ALLFA pilot Also, customers could retrieve their individual, password-protected breakdown of BIBO-recorded journeys on request via the Internet, at public information terminals or home PC s, during the ALLFA pilot (Figure 27). All data privacy regulations were complied with. In particular, personal user data and data concerning the use of public transport were processed and stored separately.

55 BIBO Payment Systems in Public Transport Final Report page 54 Home PC (Test Data) Public Information Termina inal Figure 27: Breakdown of individual journeys available via Internet Figure 28: Breakdown of individual journeys available via surface mail on a monthly basis

56 BIBO Payment Systems in Public Transport Final Report page 55 The registered travel data also made an automatic fare calculation possible. Developed by Fraunhofer IVI, a so-called tariff server in the background system provided the algorithms and computational power to calculate the fare for each of the electronically registered journeys. For many reasons, such as technical, economical and psychological aspects, the fare calculation was not done real-time in the vehicles. Beyond that, the central approach provides the flexibility needed to adjust fares in a rather flexible way; for instance for short-term discounts on selected lines, section of lines and even vehicles. The fare calculation in the background system was based on a newly designed, market and customer oriented electronic fare. Structured as a two-part tariff with basic price and journey price, the fare model may include a basic monthly charge and/or a usage-dependent charge per journey. The journey price can comprise a fixed amount and/or a distance-related amount. All those fare components can be combined according to Figure 29 to build specific fare offers for certain user groups; such as offer B, which uses a relatively small basic price to reduce the journey price for occasional users, or offer C2, which combines a higher basic price for frequent users with a flat fare for selected cities and a low distance-related journey price elsewhere. (a) for rare users: s: fare offer A (b) for occ ccasional use sers: fare offer B basic price + journey price basic price fixed amount + distance-related ~ + journey price fixed amount + di distance-relat ated ~ (c) for frequent users: fare offe fers C1 and C2 basic price + journey pric e fare offe ffer C1 fixed amount fare offe fers C3 basic price + jo + dist stan ance-relat ated ~ = 0 fare offe ffer C2 = 0 flat rate area, journey pric e = 0 e.g. Dres esde den fixed amount + distan ance-related ed ~ whole PT region Figure 29: Flexible structure of the ALLFA fare model for automatic fare calculation The journey price usually depends on service and market parameters like distance covered, type of passenger (adult, child, etc.), weekday or time of day, for example (Figure 30).

57 BIBO Payment Systems in Public Transport Final Report page 56 Marketing (e.g. special fare) User Typ(s) (e.g.. child, number of passengers) Comfort (e.g. 1st/2nd class) Quality (e.g. express bus) determined by vehicle determined by passenger Discount (e.g. individual frequency of usage) Distance (section between two neighbouring stops) related to journey Day & Time (e.g.. mo-fr, 6:00-9: 9:00) Fixed Amount per trip (once per vehicle used) Figure 30: Parameters of the ALLFA fare model for automatic fare calculation According to individual usage behaviour a suitable fare offer can be chosen by the customer such as special flat fares, e.g. for city areas. The abolition of today s complex fare zones, variety of ticket types, etc. assures a high degree of transparency. From the operators perspective, a new methodology provided the possibility of evaluating the new electronic fare regarding its profitability in comparison with the presently applied tariff. The pilot participants were able to select individual fare parameters using the ALLFA ticket s buttons and display: Figure 31: Selection of individual fare parameters, such as 2 children / 2nd service class The complete fare, including additional fare regulations and examples, has been included into a flyer (Figure 32). It could be shown that the fare model is feasible and provides a high degree of transparency. The automatic fare calculation has been done with the large number of transaction data recorded with the BIBO system. However, the passengers did not pay according to this fare, due to reasons related to the limited extent of the pilot network and to the approach of optimising the fare parameters with real data before the fare being published to the passengers.

58 BIBO Payment Systems in Public Transport Final Report page 58 Figure 33: Impression on accompanying marketing efforts The information on ALLFA has been collected from [ALLFA-2005], [ALLFA-2005a], [ALLFA-2006], [ALLFA-2006a], [ALLFA-2006b] as well as from personal experience and material.

59 BIBO Payment Systems in Public Transport Final Report page Esprit Scheidt & Bachmann (www.scheidt-bachmann.com) has a long-standing tradition in the fields of fare collection systems, parking and leisure centre systems (e.g. access control), petrol station systems and signalling systems. Beyond a wide range of components, systems and services in its fare collection portfolio, Scheidt & Bachmann has also been developing and promoting a BIBO-type system concept called Esprit, which is the acronym for encoding scheme for programmable intelligent tickets. The concept is built around an electronic user device in a key fob style, as shown in the following figure: Figure 34: Esprit user device [AUGUSTYNIAK-2006] Like many smart cards, the device contains a contactless ISO/IEC A proximity interface, a microprocessor and a memory chip that can be used for stored values or time-based tickets as well as for transaction data. Additionally, it is equipped with an alphanumeric user display, a battery, an on/off-switch and a wide-range radio-based communication interface in the open ISM 2.4 GHz band for its BIBO functionality. The battery status can be checked via the display. The battery is an off-the-shelf available CR button cell, rated for an average lifetime of approximately three years at 400 hours travel time / year. Scheidt & Bachmann recommends that the cell should only be replaced by service centres, because the device is protected against dust and splash water up to protection class IP 54 (DIN IEC 60529). The following figure gives an overview of the basic idea behind the Esprit concept. First, a customer obtains his user device. In the pre-paid scheme promoted by Scheidt & Bachmann, he then needs to load stored values and / or time based tickets onto the device before using it for the first time (Figure 35-1). A transport operator may also decide to bring already pre-loaded stored value user devices into circulation at any authorized sales point. The esprit sales and distribution concept supports both of these.

60 BIBO Payment Systems in Public Transport Final Report page 60 When a passenger is using a public transport vehicle, there will be a broadcast data transmission from an on-board antenna to all user devices that are inside the vehicle (Figure 35-2). The user devices keep being activated in a so-called wake-up mode as long as it is within the range of the vehicle signal, and up to 15 minutes thereafter. If the signal is not present for 15 minutes the device switches into a sleep-mode in order to save battery capacity. This signal provides all the user devices in the vehicle with enough information to allow them to automatically calculate the correct fare incrementally, from one stop or station to the next during the entire journey (see further below for more details), but only up to the maximum amount according to the applicable fare rules. Scheidt & Bachmann says that the user device also interprets transfer rules during a journey on different routes and computes the applicable fare. The amount of stored value on the user device will be deducted accordingly step-bystep. The remaining amount is shown on the display (Figure 34). The transaction data is also stored on the user device. During the entire process no user actions are required as would be expected in a BIBO scheme. Each time a passenger uses a terminal, for instance to top-up his stored value, the recorded transaction data is transferred automatically into the background system (Figure 35-3). Figure 35: Esprit overview [FEITER-2006] As the technology uses an open ISM band, there is the possibility of external radio interference, caused by other devices along the street or inside the transport vehicle. In order to minimise such interference, the on-board antenna always operates on two of 32 available radio channels in parallel, and uses frequency change-over in case of low transmission quality. Sixteen channels are dedicated for broadcasting data, the

61 BIBO Payment Systems in Public Transport Final Report page 61 other sixteen channels are available to receive data, including monitoring a possible channel collision with another vehicle nearby. The antenna s transmission range is large enough to cover an articulated bus. In very long vehicles or in trains, more than one antenna can operate in parallel. However, as the electromagnetic field is not restricted to the vehicle, there are additional measures necessary to prevent user devices outside the vehicle (moving nearby or at platforms) being activated and charged with any fare. Besides the collision detection and management as described above, the user devices consider the field strengths received from the antennas, e.g. at bus stops with parallel lanes. A user device at the platform may receive a Wake-up signal from bus A, but the passenger boards bus B. Then bus B is selected and the user device synchronises itself to the data channel of bus B, and stores the bus number, date, time, location. No fare is charged at the time of boarding. Fare charge is possible only if the vehicle has left the bus stop location in the right direction, the fare signal data for the next bus stop has been received and the signal strengths remain within the default settings. As of today, this has been proven in bus environments during closed area tests, (i.e. with Scheidt & Bachmann s test bus and buses borrowed from a transport operator on selected lines with own personnel acting as passengers in standard and nonstandard situations), but not yet in a public transport environment. The actual fare processing is carried out entirely in the user device. To allow this, the on-board component contains a so-called fares engine that creates a comprehensive radio signal from program code that describes the respective tariff system, providing all information required by the user device for the computation of the exact fare: Figure 36: Esprit vehicle infrastructure [AUGUSTYNIAK-2006] Since the fare usually depends on user-specific attributes or selections, such as normal / reduced fare or using the 1st / 2nd train class, the Esprit concept contains a

62 BIBO Payment Systems in Public Transport Final Report page 62 display component (the so-called add-on service display ) that allows such individual adjustments to be selected via the ISO/IEC proximity interface, and can then be taken into account when the fare is being calculated there. Figure 37: Use of an add-on service display to select fare parameters [Scheidt & Bachmann] An example of how the fare is calculated stepwise during a journey is given below by Scheidt & Bachmann: Figure 38: Incremental fare calculation concept of Esprit, part 1 [FEITER-2006]

63 BIBO Payment Systems in Public Transport Final Report page 63 Figure 39: Incremental fare calculation concept of Esprit, part 2 [FEITER-2006] The example comprises a zonal fare system with three fare stages: Kurzstrecke = 0,60 EUR, Preisstufe 1 = 1,10 EUR and Preisstufe 2 = 1,80 EUR. After boarding the lowest fare of 0,60 EUR is deducted. As soon as the next fare stage is reached, the difference amount of 0,50 EUR is deducted. Within the same fare stage, there is no new fare being calculated. This approach of sending all the relevant fare information (see also Figure 36 for details) as a broadcast signal to all user devices has, according to Scheidt & Bachmann, the advantage of an increased robustness compared to a bi-directional communication between user device and on-board component, which would need sophisticated anti-collision mechanisms. It has not yet been proven so far in a public transport environment the extent to which existing, and more complex, fare systems can be used with this approach. However, Scheidt & Bachmann claims that - for the upcoming public transport tests - they have accomplished the entire regional fare model of the Rhine Main Area, which is one of Germany s most comprehensive fare models. According to Scheidt & Bachmann, it is equally possible to store conventional prepaid tickets such as day tickets or season tickets on the user device. A combination of stored value and time-based tickets is also possible. The pre-paid scheme is their preferred approach in the development of the Esprit system, because of the option for the regular passenger to travel as an unregistered or as a registered person. A transport operator may also wish to offer a selection of post-paid ticket products. The Esprit concept considers such an approach - for example time-based tickets for registered frequent travellers.

64 BIBO Payment Systems in Public Transport Final Report page 64 Independent of the question of whether or not a post-paid scheme is used, a data transfer from the user device to the on-board component is claimed to be always possible between a pair of subsequent stops or stations to obtain statistical data; including location information, deducted fare, ticket type etc. This data can then be transferred from the vehicle to the background system in various ways, such as GSM/GPRS or WLAN. During normal operation, the user can see the message Ticket OK on the display of his user device. For ticket inspection, the following method is suggested (Figure 40): When a ticket inspector is entering a vehicle, its driver activates the so-called inspection mode. In this mode a dedicated signal is sent out by the on-board antenna and all active user devices display a certain control number, which allows the inspector to decide whether the device is being used correctly. Correctly means that a valid ticket is stored on the device, or the device had been activated in time and is functioning in the automatic fare calculation. There is also the future possibility to send black lists to the on-board component, which in turn includes information about all black-listed user devices in the vehicle signal. The affected user devices acknowledge the receipt of this information. Figure 40: Ticket inspection concept of Esprit [FEITER-2006] The complete Esprit concept is based on a public key infrastructure (PKI) with asymmetric RSA and ECC data encryption. This security concept has been discussed with the VDV KA organisation, which manages the VDV Core Application standard in Germany, but has not yet been included. However, the Esprit concept has been successfully investigated by TNO with focus on data security and external attacks. According to Scheidt & Bachmann, parts of Esprit already conform to the VDV Core Application, such as the role model, while others are not yet up to this standard, such as the unidirectional broadcasting of tariff data and the handling of black lists. Scheidt & Bachmann also claims that Esprit could be in principle developed further in order to comply with ITSO.

65 BIBO Payment Systems in Public Transport Final Report page 65 The above information concerning Esprit has been collected from [FEITER-2006], [AUGUSTYNIAK-2006] and from discussions and interviews. The facts on the Esprit concept in this chapter have been proven by Scheidt & Bachmann before being incorporated into this study. From the author s perspective, it needs to be pointed out that due to the status of the Esprit development it is sometimes not clear, which parts of the concept have already been developed and successfully tested, and which parts are at present still at the conceptual level. A practical demonstration in conjunction with a more in-depth analysis could help to clarify this Comparison of both approaches The following comparison should give a brief overview of the main characteristics from a technological point of view. The selection of criteria and its evaluation must be, to a certain extent, a subjective matter since there is no established procedure yet; or comprehensive fact sheets as for off-the-shelf products. User device ALLFA active device, proprietary, with RF interface ISM 6.78 MHz and 868 MHz Esprit User action without without BIBO wake-up dedicated, uni-directional process at entrance plus wake-up scheme during normal operation active device, proprietary, with RF interface ISM 2.4 GHz and ISO A no specific process, active during the entire journey BIBO measurement while moving while moving Type of RF communication Transaction data security bi-directional between onboard equipment and user devices, anti-collision protocol, multiple times between stops electronic signature (symmetric scheme, 3DES), encoding and public key infrastructure (PKI) possible mainly uni-directional from on-board component to user devices, anti-collision protocol then not needed, multiple times between stops (exception: in some cases reverse data transfer from user device to on-board component) asymmetric scheme (RSA, ECC ) and public key infrastructure (PKI)

66 BIBO Payment Systems in Public Transport Final Report page 66 Data transferred via RF to user device Data stored on user device, relevant for RF Data transferred via RF from user device Place of fare calculation Time of fare calculation sequence numbering, date, time, location, boardcomputer ID, blacklist data, service messages and other data transaction data, BIBO entitlement, user-defined fare parameters and other data complete transaction data, blacklist confirmation, status information about user devices central (background system) off-line (e.g. end of month) operator ID, sequence numbering, date, time, location, vehicle ID, fare information, blacklist data stored values, transaction data, user-defined fare parameters, conventional tickets and other data transaction data upon request, blacklist confirmation decentral (user device) real-time in vehicle (between neighbouring stops) Type of fare calculation one-step incremental Fare models Conventional fares and tickets Payment Human-machine interface on user device Ticket inspection high flexibility (because fare centrally and off-line calculated) possible pre-paid/post-paid (via background system) menu-based display to confirm correct functioning, battery status, ticket inspection plus 2 buttons to select fare parameters control number on user device display theoretically less flexible compared to fares calculated off-line in background system (however, no experience as yet to the extent to which this is relevant in real applications) time-based tickets pre-paid (with incremental deduction from stored value purse on user device); post-paid also possible display to confirm correct functioning, battery status, ticket inspection; no user input control number on user device display

67 BIBO Payment Systems in Public Transport Final Report page 67 Way of data transfer to independent of place/time via stationary terminal background system via GSM/GPRS or other when re-loading user (e.g. transaction data) existing data communication channels such as ITCS during operation device; also via RF and on-board component plus GSM/GPRS or other existing data communication channels such as ITCS in future Way of data transfer to independent of place/time via GSM/GPRS or other vehicle (e.g. blacklists) via GSM/GPRS or other existing data communication channels such as ITCS during operation existing data communication channels such as ITCS in future Development status proven in large-scale pilot; certified on-board components; user device needs further development and economies of scale level of in-house testing; not yet proven in public transport environment Table 1: Comparison of ALLFA and Esprit approaches (overview from known information) 4.4 Current key stakeholders As can be seen from the overview in Figure 9, there are at present three main axes of development: the evolution of the ALLFA system the evolution of the Esprit system the on-going evaluation by Swiss Federal Railways One of the main results of the ALLFA project was that the on-board equipment is almost at industry product level, i.e. the basic functioning could be validated and the necessary certification has been obtained. By contrast, the same level has not yet been reached for the active user device, the ALLFA Ticket. There is still a large effort needed to reach the required degree of miniaturisation of the user device and a minimisation of production costs. The combination of the BIBO interface and possibly also an ISO/IEC or NFC interface with the microprocessor on one single integrated circuit, which can be used in a smart card, is the fundamental task here. An additional task is the use of a flat and flexible battery in such a smart card, which however is a general development in the smart card industry and not specific to

68 BIBO Payment Systems in Public Transport Final Report page 68 public transport applications. For this reason, a follow-up project is currently being planned aiming at a BIBO chip for large-scale production at acceptable costs per unit suitable for such a smart card or any other user device, such like the Esprit key fob. Two associations of integrated public transport networks; one of Dresden and the surrounding Upper Elbe Valley region Verkehrsverbund Oberelbe (VVO) and the other of Frankfurt and the surrounding Rhine Main Area Verkehrsverbund Rhein- Main (RMV) have recently agreed to join their efforts in order to prepare this project. As industrial partners the two key players have joined this initiative: Continental Automotive, which took over Siemens VDO with its EasyRide and ALLFA expertise, and Scheidt & Bachmann, which currently develops with their Esprit concept the second advanced BIBO approach. After a phase of adjusting concepts and technological approaches, the project preparation has gained momentum with a joined meeting in August Apart from that development regarding the user device and its mass production, Scheidt & Bachmann has announced a field test of its Esprit scheme in Frankfurt, [FEITER-2006] and has confirmed that plan recently. A second pilot project is planned in another large city, with support of German Railways in the German Rhine Ruhr Area [NEWS-2007], [Leenen-2007]. Beyond its continuing marketing efforts, ATRON as well seems willing to prove their CIBO approach in a public pilot. A very active stake-holder in the public transport arena is Swiss Federal Railways, as described in section The present fasttrack project with its ongoing BIBO evaluation shows that with SBB another major transport operator with in-depth experience from a real BIBO application is still convinced of its potential, and aims at a future BIBO system in co-operation with other Swiss public transport operators. Furthermore, the broad response to the SBB Request for Information indicated a great interest in the industry beyond the companies named above. 4.5 Innovations and lessons learned Apart from other advantages of BIBO schemes (see also chapter 5), the main innovations that are linked with BIBO, are: User required actions are not necessary, thus making the use of public transport much easier than today (but possible, if desired by the transport operator, like in CIBO schemes). BIBO is always linked with automatic fare calculation; with two major consequences: first, unlike today, fare knowledge is not necessary for passengers (therefore making the use of public transport easier) and

69 BIBO Payment Systems in Public Transport Final Report page 69 secondly, automatic fare collection leads to a higher degree of freedom for fare systems design, since there will be no technical restrictions concerning vending machines etc. and less restrictions from the user s perspective. The latter means that in contrast to the present situation of occasional or seldom users being forced to select tickets before a journey, often under time pressure and without advice by service staff the fares in automatic fare calculation schemes will have the form of a long-term fare offer or contract: Either the passenger uses a default fare offer for all journeys, or he selects a specific fare offer that is valid until he switches to another fare offer, e.g. after a few months or after a fixed minimum contract term. This means, that fares do not have to be designed to enable passengers to quickly select the appropriate ticket. Therefore, there is more flexibility to allow a stronger focus on price differentiation for different user groups without making the use of public transport more complicated. However, as it is the case with any innovation, its practical realisation affects the established systems, business procedures and practices etc. From the previous projects the following issues have been identified as those which should amongst others receive greater attention from a technological view point: User behaviour that is allowed Beyond the normal usage of a public transport vehicle (entrance stay on board exit) there are specific types of user behaviour. For example, entering a vehicle and leaving it at the same stop or station. A BIBO scheme must be capable of avoiding wrongly registered passengers in such a situation or in others, like riding on a public transport vehicle that is moving in parallel to another one over a certain time span. Another example is moving between the carriages of a train while travelling. Hence, a BIBO system must be able to cope with such situations, i.e. to avoid double registration by antennas in different coaches or, on the contrary, gaps in the recording of the BIBO transaction sequence due to the passenger s walk through the train. What is more, each coach autonomously needs highly reliable location information in order to perform BIBO transactions correctly or, alternatively, must be connected with a train-wide central master component. The complete BIBO detection must be functioning too, if a train is divided at a certain station into two separate portions, each of which going to different destinations (or vice versa, coaches from different origins are coupled and go as one train to a common destination). Another example of allowed user behaviour that needs to be accounted for is carrying one s own user device (which is operating correctly) plus another person s device, which must not be charged with a fare if it is just being transported for that third person (e.g. for one s children). It may even happen, that a user leaves his user device in a vehicle (e.g. forgotten or lost luggage) and wants to obtain it back without being charged for the whole distance that the user device was on-board.

70 BIBO Payment Systems in Public Transport Final Report page 70 User behaviour that is not allowed When a BIBO system is used in an open (i.e. non-gated) environment such as in buses, ticket inspection will still be necessary since a passenger who rides without a ticket today may then ride without a user device. There is for instance the question of whether user devices should contain an on/off switch (in order to give the holder control over its operation outside public transport and possibly to ensure data privacy) or not. In the second case there may be the danger that the holder forgets to switch it on before entering a public transport device (this would not be the case in a CIBO system). Furthermore, a fare dodger may try to shield its user device with a metal casing to prevent it being detected by the BIBO antennas. Due to the use of radio frequencies in BIBO schemes, specific measures are therefore necessary to enable ticket inspectors to check the correct operation and the correct usage of BIBO user devices. External RF interference BIBO systems based on RF communication can be subject to external interference. Today, RF systems are widely used alongside the road or in mobile devices. A BIBO system must be robust enough to work correctly in such an environment. However, a specific case is someone trying intentionally to disturb the RF communication, e.g. a technically experienced fare dodger carrying a suitable mobile device interfering with the BIBO system. In this way he might prevent a vehicle s complete BIBO system from operating, thus evading the fare for him and the other passengers. Clarification is required as to whether in such a case that person can be held liable for the damage, or at least forced to cease such interference. This question needs to be examined for both the use of an open frequency by the BIBO system and the interfering device, and the use of a specifically licensed frequency by the BIBO system. Availability and reliability of BIBO components BIBO components must be highly available in different aspects: First, each vehicle must be equipped with such components (also in case vehicles are borrowed from other operators for peak times or to substitute a damaged vehicle on a temporary basis). A specific problem with respect to BIBO coverage in continental Europe is the cross-border exchange of trains between national railways operators. Second, each vehicle s BIBO components must be operating reliably. This means that third party components that are linked to BIBO systems (such as vehicle location systems, power supply, data transmission systems etc.) and the data provided by those components (such as location data, stop/station names, vehicle routes, line numbers etc.) must also be of the same high reliability. Hence, an overall analysis for instance of the mean-time-between-failure should be carried out with respect to the complete system environment, not only for BIBO components. In case of failure of

71 BIBO Payment Systems in Public Transport Final Report page 71 BIBO components specific procedures have to be set up to ensure an instant detection, a fall-back solution and a rapid repair. Use of vehicle routes in BIBO schemes In some BIBO schemes that use incremental fare calculation, there is the need to make the vehicle s planned route available to the BIBO components. This is due to the fact that in such a BIBO scheme the fare needs to be calculated in advance, before the next stop or station is reached because the passenger may exit at that stop or station. He would then not be available for another BIBO registration, since a BIBO transaction is usually made between a pair of subsequent stops or stations. Thus, there must be no alteration from the route that is made available to the BIBO system, or other measures must be taken to avoid fares that are calculated stop-bystop in advance becoming incorrect when the vehicle deviates from its planned route. BIBO load tests under unusual conditions Normally, a BIBO system would be designed to cope with a certain number of passengers within a certain time span while the vehicle is moving between two neighbouring stops. It is obvious that for testing the maximal load an (over-)crowded vehicle must be taken into account between two stops with minimal travel time in the network (i.e. the BIBO registration of all those passengers must be fast enough for this case). However, because radio wave propagation depends on different factors, the correct functioning must not only be proven in the normal environment but also under unusual conditions. These include the effects of different vehicle types, weather conditions, and passengers wearing wet clothes inside the vehicle on radio wave propagation. Thus, load test must not be done under laboratory conditions only, but also with real people because even their bodies have an influence. User devices User devices play a central role in BIBO schemes. There are different aspects to be considered, such as the user interface, the technical interfaces, its shape, the battery, etc. So far, there is no serious approach that does not use an active user device, i.e. one with a battery. It has also become clear that the user needs a certain feedback on the user device s correct functioning. Therefore, often a display is part of the device. This holds true for the ticket inspector if he is expected to do his work without additional technical means. If the device would have a standard ISO/IEC interface (or future NFC interface), the display may be omitted. Furthermore, with such an interface it would be possible to establish CIBO or combined CIBO/BIBO schemes (e.g. BIBO in mass transit vehicles with ticket inspectors and CICO in buses with front entry and no ticket inspectors), which offers some advantages to BIBO-only schemes. This additional interface could also be used to operate gates in closed (metro) systems, thus leading to a seamless integration of such systems into a BIBO

72 BIBO Payment Systems in Public Transport Final Report page 72 scheme. In the ALLFA project a single RF interface was used for long-range and proximity-range data transmission. Therefore, the same BIBO technology that worked without any user-required actions can be used in Check-In Be-Out schemes or even in Check-In Check-Out schemes without a second interface. In contrast to proximitybased Check-In Check-Out systems, such BIBO approach would provide the unique possibility of serving the requirements of gated and non-gated public transport environments with a single technology. Regarding the shape of a user device it can be seen from the ALLFA project that the users had no specific preference for mobile phones or smart cards as user devices. Furthermore they did not really care about the ALLFA ticket s thickness of almost 4mm. On the contrary, some stated that they would see the ALLFA ticket as something special and valuable compared to a cheap plastic card. This indicates that users are open to other shapes such as key fobs or thicker smart cards. The same may hold true for mobile phones as user devices. However, they must contain a suitable RF interface whose specification has to be open and stable for a long duration oriented on investment cycles of more than a decade as usual in public transport. Furthermore, the mobile phone s security architecture must support the BIBO requirements. The question is, whether there will be such features on all mobile phones on the market over such a long time, and if not, whether another type of user device must be made available for that part of public transport users who choose a mobile phone not compatible with BIBO. BIBO technology and fare model Unlike today, with BIBO-enabled automatic fare calculation, there are almost no restrictions when using public transport: within a certain area passengers should be able to travel where and when they like and with the operator of their choice. Today, however, tickets often contain restrictions, i.e. it is valid on certain lines/with certain operators only, or can be used only at certain times of the day, does not allow a change in the mode of transport or to transfer from one vehicle to another. All these cases must be foreseen when designing automatic fare calculation algorithms. For this task, it would be very useful to have a kind of generic fare model as a modular fare system based on a common basic structure and thus a common underlying data model, from which each operator can take the parts he needs for his specific fare model, and adjust the relevant fare parameters to his purposes. Thus, the fare calculation algorithm would be able to work on that common data model. Having stated above that BIBO offers greater freedom for the design of fare systems, it is also true that there are still some dependencies between the desired fare system and a BIBO system s overall system architecture. One example is the fact that for one fare or ticket usually more than one vehicle can be used (when the passenger transfers from one to another vehicle). Such a fare has far-reaching consequences: From the perspective of an automatic fare calculation it would mean that a BIBO system must be able to store all historical journeys on the user device in case the fare calculation is done de-centrally in each vehicle possibly over a month for a monthly fare, which would put very high requirements on storage and the speed of

73 BIBO Payment Systems in Public Transport Final Report page 73 fare calculation. In case the fare is to be calculated in the background system it would have to be ensured that the data from all those vehicles are available before the fare could be calculated (or would need to be re-calculated in case a data record is received late e.g. from a defect vehicle). In both cases, however, the most complicated question is: Which data records can be linked to a single fare? This is a question that seems very simple at first glance but is not in practice. Despite the issues listed above, which seem to the author resolvable with a careful system design and the willingness to adopt business procedures and possibly fare systems to the new opportunities as well, especially the public trial in the ALLFA project has shown that BIBO suits many requirements from the operators and the customers point of view, and is technically feasible, too. However, there is not yet an off-the-shelf BIBO system available on the market. Especially the user device needs further development towards mass production and cost minimisation. It should be noted that the issues listed above are a brief summary of the findings from investigating into the different BIBO approaches. Some of them are discussed in more detail in chapter 5, such as reliability and security issues. 4.6 Future trends for long term sustainability A commercial BIBO system is neither available on the market yet, nor proven beyond pilot implementations over a longer time in real public transport applications. Hence, it seems difficult to foresee which technology will lead to long-term sustainability. Therefore, an approach will be discussed below that allows a step-wise introduction and extension of potential BIBO schemes, thus reducing initial risks and allowing a flexible adjustment to the emerging BIBO technologies. The following figure shows how EFM systems and fares may evolve: manual ticket purchase with conventional technologies manual ticket purchase Fare Collection with smartcards/ mobile phones electronic measurement closed & open PT networks tickets / fares less differentiated Evolution of Fares fares more differentiated than today Figure 41: Possible evolution of EFM systems and fares [GRÜNDEL-2006]

74 BIBO Payment Systems in Public Transport Final Report page 74 Today, the manual ticket purchase (see Figure 41) is usually found in public transport. There are already many systems using smartcards with electronic tickets or even mobile phones. In both cases passengers have to select the appropriate ticket and know the fare system exactly, the fares should be easy to understand and must not be too complex or differentiated. However, by some electronic means it will be possible in the future to measure public transport usage and to calculate the fares automatically, as it is already the case today in some closed (gated) systems, e.g. with the TfL s Oyster Card pay as you go scheme based on Check-In and Check-Out. Accordingly, the fares may become more differentiated with such systems (e.g. a different fare for each possible pair of entry/exit stations), because unlike today this will not affect the ease of travel in such EFM systems. BIBO technology aims at establishing such systems without user-required actions. It will be difficult to implement such systems in a certain area at once. This would require a high number of on-board components and an even higher number of user devices (let alone all the other questions of adapting business processes, integrating with existing systems etc.). This would lead to extremely high investment costs (as the experience from the EasyRide project shows), which had to be justified with a BIBO technology widely unknown to those practitioners and decision makers that would implement the first BIBO system worldwide. Thus, a step-wise approach over some years would reduce initial investment costs, provide the necessary expertise and trust in the technology, show first returns on investment and provide the flexibility for developing and adopting the BIBO technology as necessary. Such an approach could comprise the following steps: A certain number of vehicles are equipped with BIBO on-board components; allowing to test the BIBO approach in the specific environment and to define requirements for the next steps. Building up the necessary expertise to provide an overview of the effect BIBO can have on existing systems, business processes, etc. Mass produced BIBO user devices are not needed at this stage. Roll-out of BIBO components on more vehicles. Establish the data transmission capabilities as well as the data processing facilities in the background systems for the higher number of transaction data now being generated. First use of that data for statistical data recording with friendly users carrying BIBO devices beside her usual (paper or smart media) ticket. All BIBO components can be tested and adopted as long as necessary. Development and mass production of BIBO devices that are able to store tickets. Passengers use tickets that have a long validity such as season passes on their BIBO device (with a normal manual ticket selection). An even higher amount of transaction data is recorded giving a precise and comprehensive picture of ticket usage and passenger flows for those frequent users. In this step, the data is still used only for statistical purposes, offering a

75 BIBO Payment Systems in Public Transport Final Report page 75 high potential for optimisation of the transport network and time tables far beyond today s possibilities. All BIBO components are now tested under real load conditions but without consequences for passengers or operators in case adjustments need to be made. In parallel, fare systems based on automatic fare calculation can be developed and tested with the extremely high number of recorded real journeys. This provides the unique chance of evaluating a shadow fare in the background system before it is published and comes into effect. The tested automatic fare calculation can now be offered to those passengers that already use BIBO devices with season passes. They can use that fare beyond the area that is covered by their season pass, e.g. beyond their city. Thus, the complete process of BIBO detection in conjunction with automatic fare collection can be tested and optimised with well-defined user groups. BIBO devices plus automatic fare collection are now made available to other user groups. Additional fare offers for those user groups may be added. Additional distribution channels for occasional users are established. This step-wise approach can only be sketched roughly in this study. It may last over a decade or longer but provides the necessary flexibility and further advantages named above. Other emerging technologies like NFC-equipped mobile phones can be integrated into that approach at a very late stage, possibly not before the final step (because user-required actions are neither necessary during the first steps, nor for the use of season pass in the later steps), leading finally to a CIBO scheme. This approach also takes into consideration a private public market situation with various competing operators that are free to implement electronic ticketing or not; i.e. BIBO infrastructure has to be established in parallel with existing technologies over the long term.

76 BIBO Payment Systems in Public Transport Final Report page 76 5 Evaluation of BIBO technologies Author: Helge Lorenz, GWT

77 BIBO Payment Systems in Public Transport Final Report page 77 5 Evaluation of BIBO technologies 5.1 Evaluation approach As shown in chapter 4 (see Figure 9) only two BIBO systems have already reached the development status of a demonstrator or field test that enables their evaluation: ALLFA-Ticket Esprit Since it is impossible to evaluate conceptual BIBO approaches, showcases or systems that have not been successfully tested yet in detail, the evaluation had to be focused on the two systems mentioned above. Other concepts, showcases and systems are not subject of the evaluation. The evaluation in this chapter was done on a generic level. The result of dedicated investigations and considerations for the UK market are described in chapter 7. The evaluation was carried out based on the following list of criteria: Potential of BIBO to improve public transport ticketing Technical risk and reliability Potential for fraud and resistance to fraud Privacy and safety Health aspects Data security Commercial risk Comparison of BIBO with paper based ticketing, CIBO and CICO Potential synergies with proximity and mobile phone based ticketing Dissemination potential An analysis of benefits of BIBO for the different parties gives an indication for the potential of BIBO to improve public transport ticketing. A major part of the evaluation focuses on the technical risk of the BIBO technology. Most concerns about BIBO technology are related to the potential for fraud and resistance to fraud as well as to data security and integrity and privacy and safety issues including environmental and health aspects. Therefore these criteria are considered in more detail.

78 BIBO Payment Systems in Public Transport Final Report page 78 The study assesses the commercial risk for operators when introducing the BIBO technology. The BIBO technology needs to be compared with advanced technologies for electronic ticketing in order to highlight the advantages and disadvantages of the different technologies. This comparison focuses on paper tickets on one side and on proximity based ticketing on the other side. The comparison includes not only smartcard based proximity ticketing, but also other user devices, especially mobile phones with NFC interfaces. The study moreover highlights possible synergies between BIBO and proximity based ticketing that may result e.g. from the use of mobile phones for ticketing. Finally the evaluation provides an analysis of the dissemination potential of BIBO technologies in Public Transport ticketing in countries outside the UK. The dissemination potential indicates the speed of expected technological improvements and possible reductions in the costs of the technology. It seems to be important before taking decisions for introducing a new technology that the risk of investments is limited. A large dissemination potential would speed-up the introduction process. 5.2 Potential of BIBO to improve public transport ticketing Benefit for users Buying the right ticket for public transport and its correct validation is one of the critical processes for getting access to public transport systems. Therefore this process has to be considered as an important way of influencing the behaviour of people in the competition between private car use and public transport. The position of public transport in the competing market can be strengthened by reducing existing access barriers to public transport. BIBO technology has been designed and developed primarily for increasing the convenience for the users in open (i.e. non-gated) public transport networks, because inconvenient ticketing is considered as one of the important access barriers to public transport. As many public transport networks are open networks without gates (all bus and tram networks, many rail and some underground networks as well) BIBO is highly relevant for improving public transport ticketing in general. BIBO provides the following two major benefits for users in non-gated networks: It enables much more convenient ticketing for occasional users BIBO is at least as convenient as existing paper ticket based ticketing schemes for season pass holders. In particular, if season pass holders do not have to validate their paper based passes and do not have to show it while boarding,

79 BIBO Payment Systems in Public Transport Final Report page 79 the pass has to be shown only in case of ticket inspection. In CICO and CIBO systems this level of convenience can t be provided to the user. Moreover, BIBO provides a unique combination of benefits for the user in non-gated networks: High convenience in combination with automatic fare calculation. Automatic fare calculation opens up the option to bill fares on the basis of usage and distance. Such fares allow new price differentiations which depend on service and market parameters like distance covered or types of passengers etc. According to the individual user behaviour the user can chose a suitable fare right up to special flat fares. Moreover the user does not need fare literacy any more and he can use the public transport network more easily. The acceptance analysis in the ALLFA-Ticket project has shown that BIBO has a high potential for reducing access barriers to public transport resulting from the ticketing process (see [ALLFA-2006]): 87% would prefer the BIBO ALLFA-Ticket compared to the existing paper based ticketing. 57% of the users consider the ALLFA-Ticket as something that facilitates the transfer from car to public transport. 42% of the users would use public transport (probably) more often than before if the ALLFA-Ticket would be rolled out. The benefits of BIBO for users vary for different user groups: Occasional users using single and multiple trip tickets benefit most of all from the BIBO technology. 90% of those occasional users that participated in the ALLFA-Ticket pilot testing would prefer a roll-out of the system whereas the number is significantly lower for season pass holders: 57% for students, 70% for other season passes. These figures reflect that the gain of convenience is higher for occasional users because they do not have to buy and validate tickets anymore for each trip. Further details of an evaluation of BIBO from the user s point of view are described later (see 5.9) Benefit for operators In the intermodal transport market public transport operators can strengthen their position compared to private car use, if a complex strategy for increasing attractiveness of public transport is applied. Ticketing including fares and sales of tickets is an integrative part of such a strategy.

80 BIBO Payment Systems in Public Transport Final Report page 80 Operators may benefit from increased convenience for users if those user benefits may be transformed in increasing fare revenues. However increased fare revenues can be achieved only as a result of a complex strategy integrating the fare policy as well as other criteria that significantly influence the decision of using public transport more or less often. More usage oriented fares are considered as an important measure that may contribute to increased fare revenues. BIBO provides the technical and functional basis for the implementation of those usage oriented fares without decreasing the convenience for users in non-gated public transport networks. This advantage cannot be provided by CICO or CIBO systems at the same level. As many public transport networks are open networks without gates (all bus and tram networks) BIBO is highly relevant for public transport operators operating those networks. The new methodology of flexible fares in combination with BIBO provides operators the possibility of evaluating and adjusting the fare system, regarding profitability in comparison with presently applied fares. Moreover, operators have a strong desire to decrease the operation costs by optimising their transport network and its operation. Better data on passenger flows and exact demand is considered an important precondition for optimising operation costs. Operators can benefit from BIBO, because BIBO can provide a comprehensive set of usage data, for example: Exact data on origin, destination, time, type of entitlement and customer, fare of each passenger itinerary as a basis for a complex transport demand model Exact degree of utilisation of certain fares (e. g. subsidised fares) Exact degree of utilisation of sales infrastructure in relation to the use of the entitlements, to fares and customer segments Exact degree of transport capacity utilisation (vehicle load) by time, line and vehicle Exact degree of changes in customer behaviour and transport capacity utilisation after fare and tariff modifications Exact degree of changes in customer behaviour and transport capacity utilisation after changes in the transport offer (e. g. timetable, lines, connections, frequency of service etc.) This data can be provided not only by BIBO schemes, but also by CICO or CIBO schemes, however, compared to them, BIBO is the only scheme in which the required data can be collected automatically without a negative impact on the convenience for frequent users in non-gated networks. As the majority of passenger journeys are undertaken by season ticket holders and other frequent users it seems to be mandatory that public transport operators keep the convenience for their main users in mind.

81 BIBO Payment Systems in Public Transport Final Report page Benefit for authorities In certain cases authorities may have a specific demand for collecting exact usage data on public transport in general or on the usage of specific fares, e. g. subsidised concessionary passes. Several ticketing schemes including CICO and CIBO are able to provide this data. However, BIBO is the only ticketing scheme that enables collecting usage data without decreasing the convenience for users in non-gated public transport networks. As shown above in more detail, BIBO provides a unique combination of benefits for users, operators and authorities for non-gated networks that no other ticketing scheme can provide: Be-In Be-Out: Key features of top level eticketing convenience Be-In Be-O ut = Exact measuring of journeys as a basis for revenue sharing etc. in an integrated network of operators + Convenient ticketing in open systems without gates - especially for frequent travellers + automatic fare calculation and fair billing in complex fare systems (network of operators) Figure 42: The unique combination of benefits of BIBO ticketing schemes

82 BIBO Payment Systems in Public Transport Final Report page Technical risk and reliability Technical risks in the BIBO functional chain Since a BIBO scheme is a very complex system the different steps or components of the functional chain in a BIBO scheme have to be considered for an evaluation of the technical risk: 1. Localisation of the vehicle s position 2. Supply of basic data (coordinates of stops, itinerary) 3. Failure of the user media (esp. power supply) 4. Detection of a user media (BIBO-distinction in relation to a vehicle) 5. Data recording (in the BIBO reader or the user media) 6. Data transmission (from the BIBO terminals in the vehicle to the back office and between back office systems) 7. Data processing (in the terminals and back office systems) It seems to be sufficient for the purpose of this study to focus on the BIBO specific aspects of the technical risk in comparison to other electronic fare management technologies. Among the functions listed above, functions 3, 4 and 7 comprise BIBO specific functions while the functions 1, 2, 5 and 6 are generic functions based on standard technologies used for various electronic fare collection systems: e.g. GPS for AVL, ITCS, GSM/UMTS data transmission. For example the technical risk for a secure data recording in a terminal or the user media or data transmission in a BIBO scheme does not necessarily differ from the risk in a CICO system. The following criteria influence the technical risk: accuracy of function availability and reliability That means that any breakdown or malfunction of a BIBO component has to be avoided to reduce the technical risk. Compared to other AFC systems BIBO creates new challenges in terms of availability and accuracy, because the whole process of measuring the public transport usage runs automatically. Significant statistics and data from the commercial operation of BIBO are not yet available for a detailed numeric analysis of the technical risk. A first rough analysis on the technical risk has been made in the ALLFA-Ticket pilot testing. However the failure rate from the pilot testing has no significance for a commercial operation. The

83 BIBO Payment Systems in Public Transport Final Report page 83 results of this analysis prove that dedicated technical measures are necessary and feasible to reduce the technical risk Impact of technical failures in BIBO The breakdown or malfunction of each component on a BIBO scheme may lead to incorrect or incomplete BIBO data. The BIBO data contains information on the usage of public transport as a result of the automated usage measurement. Therefore incorrect or incomplete BIBO data may have the following implications if this data is used in automated fare calculation: a loss of fare revenues for the transport operator in case of journeys (or parts of) not detected generating unjustified fare revenues for the transport operator in case of detected journey (or part of it) not really done unjustified savings of fares for the customer in case of journeys (or parts of) not detected false claims to the customer in case of detected journey (or part of it) not taken loss of user s trust and acceptance Possible measures for reducing the technical risk Due to the significant impact of failure shown above, a set of common measures has to be taken in BIBO schemes to reduce the technical risk and the probability of impact, especially: the use of proven, certified, reliable components the use of redundant components where appropriate a comprehensive system monitoring clear indication of correct function for the user organisational measures to ensure permanent maintenance of the BIBO data base and a fast exchange of components after breakdown exchange of user media (or battery) in case of low power comprehensive analysis of test cases

84 BIBO Payment Systems in Public Transport Final Report page 84 careful migration strategy for the BIBO technology (roll out step by step after internal tests and public pilot testing) In both existing BIBO schemes ALLFA-Ticket and Esprit dedicated measures have been taken for improving reliability. For example the communication signals sent from the BIBO antennas are monitored by user media installed permanently in the vehicles in both systems. This enables a permanent verification of the BIBO signals and detection of malfunction of BIBO antennas. A monitoring system has been implemented to ensure the function of the battery of the active BIBO user device. In case the battery power goes below a limit the system recognises this state and informs the user in advance that he has to change the battery or the user device. Moreover the two existing BIBO implementations use a display on the user device for a clear indication of the correct function of the BIBO system for the user. Hence, the user receives a visual receipt for the Be-In detection during his journey. This makes sure that the user accepts the BIBO technology because at any time he has the certainty that the system works correctly. The screen can also be used to provide information on fare parameters, etc. Based on the experience of the pilot testing of the ALLFA-Ticket, it seems to be realistic to reduce the technical risk to an acceptable level in commercial operation by these measures. Therefore design and implementation of appropriate measures will be part of the commercialisation process. These measures aim at a highly available BIBO system. If necessary the Reliability, Availability, Maintainability, Safety methodology (RAMS) and the related standard EN 50126, e. g. known for highly available applications in the rail sector, should be applied as an appropriate approach for implementing a highly available commercial BIBO scheme Localisation of the vehicle s position A very precise automatic vehicle localisation (AVL) is compulsory for BIBO in particular with respect to the exact identification of stops even at short stop distances. Standard AVL systems are available on the market and in use that meet the BIBO requirements in general: GPS (in the future also Galileo) Specific ITCS localisation technologies (infrared etc.)

85 BIBO Payment Systems in Public Transport Final Report page 85 The AVL function for BIBO can be an integrated function of a complex Integrated Transport Control System (ITCS) or a separate function for localisation only. However, the accuracy of localisation depends, of course, on the specific implementation and the defined requirements. Therefore a generic evaluation of the technical risk of AVL for BIBO is not possible. A detailed evaluation of accuracy and technical risk has to be carried out in any case for the implementation of a specific BIBO scheme. Moreover BIBO schemes also require a very reliable and highly available AVL system, because any failure of the AVL system will cause incorrect localisation data that lead to incorrect BIBO data. It is normally impossible or extremely difficult to adjust this incorrect data afterwards. It has to be mentioned that GSM and UMTS are not suitable AVL methods for providing localisation information for BIBO Detection of a user media The automatic detection of each and every user media presented is the core function of BIBO. This function requires a precise Be-In Be-Out distinction: only devices that are clearly inside a vehicle shall be detected. For the Be-In detection, a link between the user media and the vehicle has to be established. For the Be-Out detection this link has to be maintained as long as the user media is in the coverage of the detection antenna. The reliability and accuracy of the detection determines all subsequent data processing steps. Due to the given physical characteristics of any electromagnetic field of the RF detection antenna, the field of the antenna is not necessarily limited exactly to the inside of the vehicle interior. In fact, adjustments of the field coverage are possible, but do not solve the problem completely. Changing propagation conditions due to moisture and passenger utilisation have also a significant influence on the coverage of the antenna. Specific technical risks may result from the following typical use cases for the detection of user media in BIBO schemes, if appropriate measures have not been taken into consideration: a user (e. g. a cyclist or a car driver) moves in parallel very closely to a bus and might be covered by the detection field a customer boards and alights a vehicle at the same stop a user moves along a multi-carriage train

86 BIBO Payment Systems in Public Transport Final Report page 86 vehicle car RF field of the BiBo detection antenna BiBo detection antenna cyclist wake-up field covering the door areas Figure 43: BIBO RF antenna coverage in typical BIBO use cases Additional technical measures are mandatory to ensure a sufficient level of reliability of an automatic detection of user media. The BIBO approaches analysed in chapter 4 show that only for the BIBO approach of the ALLFA-Ticket that is based upon a two step detection scheme (using wake-up antennas as a second communication technology in addition to the long range BIBO detection) the potential for a sufficient detection accuracy and reliability under commercial operation conditions has been successfully proven. Several dedicated measures for increasing the detection reliability have been implemented in Esprit. For example the Esprit user media is woken up only if a certain field strength of the BIBO antenna has been reached. Moreover software measures on a logical level shall ensure that only user media that are inside the vehicle are detected by the BIBO antenna. However, a comprehensive testing still has to be done for the Esprit system. As a reverse conclusion it may be assumed that BIBO schemes using a single RF antenna only, do not provide sufficient detection accuracy and reliability. Significant tests of these schemes have not been successfully carried out yet under real operation conditions. The risk of malfunction of that step can be described by the following typical failure types that can occur: Be-In not detected Be-Out not detected No continuous detection during the itinerary (fragmentary detection) Be-Out detected too late (detected itinerary too long)

87 BIBO Payment Systems in Public Transport Final Report page 87 The Reliability of the BIBO detection depends also on the propagation conditions of the radio waves in the vehicle. Therefore only frequencies may be used for BIBO that ensure a reliable detection even under conditions with high attenuation like (over)crowed vehicles and passengers wearing wet coats. The frequencies used for the ALLFA-Ticket have been selected for this reason and the pilot result proved correct detection even under those conditions. The evaluation of the BIBO approaches described in chapter 4 leads to the following conclusion for different detection technologies: Only the suitability of the specific BIBO detection technology used for the ALLFA-Ticket has been successfully proven. For the Esprit system a similar testing still has to be done. No available standard communication or localisation technologies, e. g. from telematics applications, mobile phones or smartcards, are suited for BIBO detection because of insufficient detection accuracy: GPS / Galileo not suited GSM / UMTS not suited WLAN not suited Bluetooth not suited NFC not suited As long as only specific BIBO detection technologies meet the detection requirements, user media with specific BIBO communication interfaces are mandatory Detection of the Be-Out in a CIBO scheme In a CIBO scheme the requirements for detecting the Be-Out of a user media are less, because during the Check-In process the passenger establishes a clear link to the vehicle manually by a transaction at the check in terminal. After this link has been created it is technically less sophisticated to maintain this link until the end of the trip. Therefore in CIBO schemes, standard communication technologies like WLAN and Bluetooth could also be taken into consideration for further investigations.

88 BIBO Payment Systems in Public Transport Final Report page Potential for fraud and resistance to fraud Classification of fraud in BIBO schemes Cases of fraud can be caused not only by passengers travelling in a BIBO scheme, but by all involved parties like transport operators etc. Since interoperability increases the number of involved parties in general, interoperable AFC schemes have at least a theoretically higher potential for fraud. This requires dedicated and efficient measures to encounter fraud in interoperable BIBO schemes. In AFC schemes in general fraud can be accomplished mainly through various intended manipulations of a system (no matter who causes the fraud): Manipulation of system components Manipulation of data and information flows Manipulation of handling and interaction processes Manipulation of system components and data The risk of manipulating system components and data is not specific to BIBO schemes. As described above these manipulations have an unacceptable impact on the system, not depending on which AFC technology is applied. Considerations that have been made in BIBO schemes for reducing the technical risk do not distinguish between accidental or intended manipulations. Therefore the measures for ensuring the accuracy of function, availability and reliability described above (see 5.3) also resist fraud by manipulation of system components. Dedicated security schemes covering technical and organisational measures are in use in BIBO schemes to resist fraud by manipulation of data and information flows. These aspects are covered in the description of data security in 5.7. The ALLFA-Ticket and the Esprit system design and security concept ensure that a manipulation of system components that may lead to malfunction can be detected by a verification of data integrity. Moreover all transactions carried out between the user media and the terminal are stored in data records both in the user media and in the BIBO terminal. The transaction data in the user device can be considered as an electronic receipt of a BIBO transaction and can be used for ticket inspections etc. The risk of manipulation of system components by users is much lower in BIBO schemes compared to CICO or CIBO schemes because there are no visible

89 BIBO Payment Systems in Public Transport Final Report page 89 components in the vehicles for BIBO detection. This also significantly reduces the risk of vandalism. The most endangered system component for fraud by users is the user media itself because it is the only component where the handling is fully under control of the user. Dedicated measures for mitigating manipulation are necessary; however sufficient technical measures are known to avoid that manipulation. The use of a secure microcontroller chip as for the ALLFA-Ticket and Esprit is considered as effective mitigation strategy. Moreover black lists are another important element of mitigating fraud. Esprit has implemented black lists and for the ALLFA-Ticket an implementation could be done easily Manipulation of handling and interaction processes It seems to be sufficient for the purpose of this study to focus on the BIBO specific aspects of the potential for fraud in comparison to other AFC technologies. Therefore specific considerations are intended to focus on the potential for fraud by operators and users. The potential for fraud in BIBO is higher than the one in CICO or CIBO systems in principle, due to the fact that there are no user actions required at all for a BIBO detection, and therefore public awareness can t be considered as a factor for reducing the risk of fraud. In a CICO or CIBO system where each passenger would have to check-in and check-out public awareness of other passengers could help to reduce the risk of fraud, because of defined user actions. Someone doing other or no user actions would be considered as suspicious in CICO or CIBO schemes. A passenger doing nothing in a BIBO scheme is not considered suspicious because he behaves totally regular in relation to the common user. A user that intends to defraud the BIBO system has the interest to avoid the collection of usage data by manipulating the detection process through dedicated actions. The following specific BIBO fraud cases related to the passengers shall be evaluated: Fraud case 1: shielded user media or user media switched off while boarding Fraud case 2: shielded user media or user media switched off during the ride Fraud case 3: passenger without any user media These three fraud cases are specific to BIBO because the BIBO detection requires no user actions under public awareness like in CIBO or CICO systems. The BIBO

90 BIBO Payment Systems in Public Transport Final Report page 90 advantage of providing a highly convenient ticketing scheme without user actions provides additional fraud opportunities. Moreover the data privacy requirement of having the opportunity to switch the BIBO detection off on the user media increases the potential for fraud. Despite these BIBO specific challenges it is possible to mitigate fraud through dedicated measures. The ALLFA-Ticket scheme includes several system features that hamper the fraud cases 1 and 2 by technical measures (range of radio frequency and detection cycles and protocol). Dedicated fraud test cases have been used during the technical approval. For the Esprit system similar measures are not known and would have to be subject to an evaluation of a future pilot testing. It is mandatory to check the fraud resistance of future BIBO schemes against various fraud cases to be defined specifically for each BIBO scheme. Independent from all fraud mitigation measures a residual risk of fraud remains, because intentional fraud can t be avoided completely through technical measures. Therefore ticket inspections have to be retained even in BIBO schemes as a basic fraud mitigation principle. Moreover Automatic Passenger Counting Systems (APC) could be used for a systematic matching of data collected from BIBO and from APC. Fraud by manipulation of handling is mainly relevant for users, but in the following fraud situation operators could also generate revenue from deception: Fraud case 4: Generating additional usage data by transport service providers In a BIBO scheme a transport company acts as issuer of entitlements and user media as well as transport service provider at the same time. Such a company could benefit from generating unjustified fare revenues under the following circumstances: The company could issue a number of entitlements to itself and carry the related user devices with these entitlements on its vehicles on scheduled services all the time. The BIBO detection generates unjustified usage data from these entitlements. However, the data is from existing entitlements and therefore the security and integrity checks do not necessarily show irregularities. If the company receives the exact or less revenues from the fare for the related service charged to the entitlement, the company gains nothing and fraud is impossible. However, if such a company operates lines in an integrated transport network and if the fare revenue splitting rules or public subsidies for certain fares would increase the fare revenue the company might abuse the data collected from these entitlements for claiming additional fare revenues. Of course, it depends on the fare policy and the

91 BIBO Payment Systems in Public Transport Final Report page 91 revenue splitting regulations for a specific case, and if the fraud scenario has relevance for a certain project or not. The main problem in this BIBO specific fraud case is that due to the hidden detection of entitlements on user media in a BIBO scheme additional user media can be carried in a vehicle invisibly and generate usage data automatically, and without any effort as well as without generating public awareness. For other AFC technologies like CICO or CIBO generating additional usage data needs dedicated user actions at terminals and cannot (or only with some effort) be done automatically. The described fraud case could be avoided by comparing the data from BIBO with data from Automatic Passenger Counting Systems. However, in principle BIBO schemes are intended to replace APC, because they should provide better data than APC. Therefore there is no need for APC in a BIBO scheme anymore. Moreover replacing APC could be considered as a part of the commercial impacts of BIBO. 5.5 Privacy and safety issues In order to meet common data privacy and safety requirements BIBO systems shall offer the following opportunities: Choice of payment: pre-paid or post-paid: The user has the opportunity to take the decision whether he wants to participate as an anonymous customer (prepaid) or he provides personal data for later payment (post-paid). Usage data (itineraries, fares etc.) and user data (e. g. payment information, name, and address) are to be processed and stored separately. Only for the final step of billing the usage information may be combined with the user data. The user can switch off the BIBO detection of his user device. The user has the opportunity to remove the data stored on his user device Transparency of data: The user has to be informed about what data are stored for what time period and he has to agree on that. Statistical data shall be collected as anonymous data. Suitable technical and organisational measures to ensure data security and integrity (as described in 5.7). Minimising data recording: Only data that is really necessary for the system function is stored, and data is deleted if not needed anymore or after a defined time period. The ALLFA-Ticket system fully supports these features. It has been designed in accordance with the German data privacy law and regulations.

92 BIBO Payment Systems in Public Transport Final Report page 92 Since the Esprit system has only been partly implemented, not all of the mentioned data privacy and safety requirements have been covered yet. The existing Esprit implementation supports the following features: Esprit uses anonymous stored values for payment. Usage data and user data are stored and processed separately. A post-paid payment function could be implemented if required A switch off function could be added easily if required. The opportunity to remove data stored on the user device has not yet been implemented. For the existing prototype systems or other approaches it would be required to implement the related feature during system implementation. There are no BIBO specific challenges known that would prevent the implementation of the listed data privacy and safety requirements in general. However as shown above (see 5.4) some data privacy requirements and mitigation of fraud requirements may be contradictory. A decision on the priority of one or the other contradictory requirement can be taken only on a project basis taking all specific conditions into account. 5.6 Health aspects The use of high frequency radio technologies for BIBO requires considerations of electromagnetic radiation emitted from antennas applied for BIBO detection. A detailed evaluation was made for the BIBO technology used for the ALLFA-Ticket. This evaluation covers the emitted radiation from both the BIBO detection antenna and the wake-up antenna. Compared to electromagnetic radiation in mobile communication the situation for BIBO is much less critical [ALLFA]: Radiated power of a mobile phone (900 MHz): 2 W Radiated power of a BIBO detection antenna (868 MHz): 0,025W The radiated power of the BIBO detection antennas is only about one hundredth of that of a single mobile phone. Magnetic field strength in a distance of 10 m from the wake-up antenna: 15dB ma/m compared to a limit of 42 db ma/m for the magnetic field strength in a distance of 10 m from the radiation source defined in ETSI ETS (Radio

93 BIBO Payment Systems in Public Transport Final Report page 93 Equipment and Systems (RES); Short Range Devices (SRDs); Technical characteristics and test loop systems in the frequency range 9 khz to 30 MHz) The BIBO technology applied for the ALLFA-Ticket complies also with the limits for electromagnetic emission defined in ENV Human exposure to electromagnetic fields. High frequency (10 khz to 300 GHz). Moreover the protection criteria defined for pacemakers by the European standard EN 50061:1988 are significantly higher than the limits mentioned above, i.e. the compliance with ETS ensures that patients fitted with pacemakers are not endangered. 5.7 Data security After severe security problems with the Mifare system were reported in public in 2008 ([TNO], [SMARTCARD]), the aspect of data security gains greater importance in electronic ticketing applications. Since the data collected in a BIBO system is to be used for fare calculation a high level of data security is mandatory for BIBO systems. Data security aims at preventing the BIBO system from manipulation or loss of data. The intrusion analysis identified especially the following components where manipulation or loss of data may happen: in the user media on the air interface on wired interfaces between several devices in BIBO terminals in the back office systems. Manipulation or loss of data may be caused by: users transport operators transport authorities (PTE, PTA) third parties. The impact of insufficient data security is in general similar to the consequences of technical risk, i.e.:

94 BIBO Payment Systems in Public Transport Final Report page 94 Loss of fare revenue or generation of unjustified revenue Generation of unjustified claims of fares to the user Generation of unjustified claims of revenue by operators / PTE / PTA Misuse of data (e. g. user data as described under point 5.5) Loss of user s trust in the system Two general aspects of data security have to be considered: Authenticity of data: ensuring that data is originated by the right partner Integrity of data: ensuring that data is valid and complete (no compromise of data: either by malicious or by accidental altering) Authenticity of data can be ensured by mutual authentication where the user media and the BIBO reader authenticate each other suitably in such a way that both are assured of belonging to the same system. The use of a Message Authentication Code (MAC) is considered a common method to ensure data integrity and mutual authentication. Therefore secure electronic ticketing should be built upon MAC secured transactions using microcontroller chips only. For data security reasons this method shall also be applied in BIBO schemes. If applied consequently for all interfaces and components, the risks of manipulation or loss of data as listed above may be successfully mitigated. The feasibility of a MAC secured BIBO transaction has been successfully proven by using symmetric cryptography (3DES based MAC) in the ALLFA-Ticket system as specified by the VDV core application standard. The Esprit BIBO System uses asymmetric cryptography based on elliptic curves. Both, the 3DES based MAC and the elliptic curves, provide a fully sufficient level of data integrity for electronic ticketing. As described both BIBO systems, ALLFA-Ticket and Esprit, have been designed as secure ticketing systems that use microcontroller chips and meet the current data security requirements. Therefore their data security is up-to-date and designed even for the future. For Esprit a security analysis has been carried out by TNO in The Netherlands. Lower data security requirements could be met by modified implementations, but it is strictly not recommended to reduce the security level below 3DES. 5.8 Commercial risks

95 BIBO Payment Systems in Public Transport Final Report page 95 The technical effort for a reliable BIBO system is higher than for a CIBO system because existing standard communication interfaces like ISO/IEC and 2.45 GHz communication could be used for CIBO. However, various investigations have proven that so far the well known and widely spread standard communication interfaces can t meet the reliability requirements for BIBO. Therefore the ALLFA- Ticket BIBO scheme uses dedicated communication interfaces. This implies higher costs for the user devices and for the communication interface between user device and terminal in BIBO systems than in CIBO systems. On the other hand BIBO schemes provide less opportunity for vandalism by passengers compared to CICO or CIBO schemes, since there are no visible terminals or other BIBO components at all in the vehicles. This leads to a reduction of wear and finally to lower maintenance costs. BIBO has a high potential for application in AFC, however no BIBO system is ready for commercial exploitation yet. Therefore it is not possible yet to quantify the commercial risk for an exploitation of BIBO. Regarding the development activities of BIBO over the past 10 years the AFC industry has already invested a lot into this new technology. However, since the development has not been completed yet, a return of investment may not be expected in a short term. This makes further investments into the commercialisation of BIBO difficult at the moment without dedicated expressions of interest from transport operators and PTE / PTA. Based on the existing approaches and their potential there are three options for commercialisation: 1. Development of a BIBO smartcard at reasonable costs 2. Extension of mobile phones as user media for BIBO: integration of necessary interfaces and applications as standard functions 3. Development of a BIBO converter: an active wrapper that would interface with an ISO/IEC smart card as well as with the vehicle equipment (see also and 6.8) Option 1 focuses on a development of a dedicated BIBO smartcard. For interoperability reasons the card should also integrate a proximity interface based on ISO/IEC This option provides the advantage that the public transport sector could drive further developments towards a commercialisation of BIBO on its own and develop a tailor made and cost effective BIBO solution. The expenditure for commercialisation of the most advanced BIBO scheme has been estimated with 10 to 15 million. If stakeholders from various regions join their strength these development costs could be shared.

96 BIBO Payment Systems in Public Transport Final Report page 96 Option 2 provides other benefits for transport operators because it would mean that neither the transport operator nor the issuer of the transport entitlement has to pay for the user media. Moreover the issuers would not be in charge of organising the distribution of the user media. On the other hand the whole development in the mobile phone market cannot be controlled by public transport unless there would be a global market for a standardised BIBO application on mobile phones. Option 2 creates a significant dependency of public transport and BIBO (as a future ticketing scheme) on the global players in the mobile phone business. Option 3 focuses on the development of an active wrapper. The user could insert a smart card (in the UK an ITSO compliant card) into the converter to create a complete BIBO device. Thus the user could use the same smart card on both BIBO equipped and non-bibo services. Further considerations on the commercial potential and user acceptance of such a converter would be necessary. 5.9 Comparison with other ticketing schemes Overview Assuming that back-office systems of various ticketing schemes provide a similar functionality, level of privacy, safety and security a comparison of BIBO with other ticketing technologies may be focused on the front end technology (cf. Figure 1). For the purpose of this desk study the comparison is limited to the following useroriented criteria: User actions / Gain in user convenience Potential for fraud Resistance to fraud In some cases a differentiated view of various user groups is necessary because of specific aspects for occasional users and season pass holders. The evaluation of the differences stated below has to take into account the proportion of user groups in the various transport schemes. The majority of trips are normally done by season pass holders. Therefore providing convenience for them is considered a major advantage of BIBO in comparison to all other electronic ticketing schemes. However, occasional users are important in terms of their flexibility for changing for alternative transport modes. Thus the convenience of ticketing for occasional users may directly increase or decrease the fare revenues.

97 BIBO Payment Systems in Public Transport Final Report page Comparison with paper based ticketing In general it depends also on the particular fare and ticketing schemes what gain in convenience can be achieved by BIBO compared to other ticketing schemes. As shown in Figure 44 occasional users benefit from a significant gain in convenience in BIBO compared to paper based ticketing due to simplified pre-trip and on-trip processes and less fare literacy needed. In particular occasional users no longer need to inform themselves about the available products, to buy and pay for each ticket and to validate the ticket for each trip. As shown in Figure 45 the fact that BIBO does not reduce the convenience for season pass holders compared to paper based ticketing seems to be the most important for the evaluation of BIBO with regard to CICO. Moreover a significant advantage could be provided to season pass holders in a BIBO scheme compared to paper based ticketing if the fare of a BIBO scheme allows travelling outside the valid zone of the season pass under defined fare conditions. The BIBO technology enables the automatic collection of data from trips outside the valid zone. In a BIBO scheme the season pass holder benefits from the fact that his entitlement could allow travelling in the valid zone and outside without the need to buy additional tickets. Depending on the level of interoperability and the fare conditions travelling may be possible not only in adjacent zones, but also in other regions and cities. Occasional User: Th e user has to Pa per tick et Pre- tri p Inform himself about fares Per each journey: Decide for a tick et Find a point of sales Buy and pa y the ticket On-trip Validate the ticket if necessary Know and recognise the validity of ticket (area covered and time) If necessary buy further tickets for transfer Show ticket for inspection Post - trip Be- In Be-Out Once: Inform himself about fares Register for BIBO: decide for a fare offer and get a user device N o d ecision for a ded ica ted tick et Simply hop on and go No user a ctions at boarding or alighting If necessary: select additional riders or 1st class Show ticket for inspection Check invoice and account

98 BIBO Payment Systems in Public Transport Final Report page 98 Figure 44: Comparison of user actions in paper ticket and BIBO schemes for occasional users Season pass holder: Th e user has to Pa per tick et Pre- tri p Once: Inform himself about fares Decide for a ticket Find a point of sales Sign the season pass contract On-trip Validate the ticket if necessary Know and recognise the validity of ticket (area covered and time) If necessary buy further tickets for travelling outside the validity area Show ticket for inspection Be- In Be-Out Once: Inform himself about fares Register for BIBO: decide for a fare offer and get a user device including an entitlement N o d ecision for a ded ica ted tick et Simply hop on and go No user a ctions at boarding or alighting If necessary: select additional riders or 1st class Show ticket for inspection Post - trip Check invoice and account Check invoice and account Figure 45: Comparison of user actions in paper ticket and BIBO schemes for season pass holders Comparison with CICO The pre-trip and post-trip user processes are in general the same for BIBO and CICO. The major difference between CICO and BIBO is related to the on-trip processes as shown in Figure 46 and Figure 47. In a CICO system checking-in and checking-out are mandatory for each trip, in most cases even for each part of a chained journey (depending on the fare and the corresponding fare calculation rules that apply to transfers) and for all types of users from occasional to frequent users. This means that CICO is much less convenient especially for season pass holders as existing paper based ticketing. Moreover specific problems are caused in CICO schemes each time a user forgets to check-out. CICO implementations have solved this problem with more or less user friendly regulations and with more or less success. If customers do not check themselves out of the bus, then, for example, they have to take the consequences of being charged a higher fare. BIBO schemes have the advantage that the be-out is done automatically. Hence, the problems caused by a missed check-out do not apply to BIBO schemes.

99 BIBO Payment Systems in Public Transport Final Report page 99 Occasional User: Th e user has to Check-In Check-Out Pre- tri p Once: Inform himself about fares Register for CICO: decide for a fare offer and get a user device No decision for a dedicated ticket On-trip Check-In and Check-Out for each part of a chained journey (even at transfers) Show ticket for inspection Be- In Be-Out Once: Inform himself about fares Register for BIBO: decide for a fare offer and get a user device No decision for a dedicated ticket Simply hop on and go No user actions at boarding or alighting If necessary: select additional riders or 1st class Show ticket for inspection Post - trip Check invoice and account Special procedures in case of missed check-out Check invoice and account Figure 46: Comparison of user actions in CICO and BIBO schemes for occasional users Season pass holder: Th e user has to Check-In Check-Out Pre- tri p Once: Inform himself about fares Register for CICO: decide for a fare offer and get a user device No decision for a dedicated ticket On-trip Check-In and Check-Out for each part of a chained journey (even at transfers) Show ticket for inspection Be- In Be-Out Once: Inform himself about fares Register for BIBO: decide for a fare offer and get a user device No decision for a dedicated ticket Simply hop on and go No user actions at boarding or alighting If necessary: select additional riders or 1st class Show ticket for inspection Post - trip Check invoice and account Special procedures in case of missed check-out Check invoice and account Figure 47: Comparison of user actions in CICO and BIBO schemes for season pass holders

100 BIBO Payment Systems in Public Transport Final Report page Comparison between CIBO and BIBO The pre-trip and post-trip user processes are in general the same for BIBO and CIBO. The major difference between CIBO and BIBO is illustrated in Figure 48 and Figure 49 showing that in CIBO schemes all users have to check-in while boarding. This is comparable to the validation procedure in paper based ticketing schemes for occasional users (see Figure 44), however it is less convenient for season pass holders compared to paper based ticketing (see Figure 45). CIBO provides more convenience to users compared to CICO. Occasional User: Th e user has to Check-In Be-Out Pre- tri p Once: Inform himself about fares Register for CIBO: decide for a fare offer and get a user device No decision for a dedicated ticket On-trip Check-In for each pa rt of a chained journey (even at tra n sfers) No action at exit required Show ticket for inspection Be-In Be-Out Once: Inform himself about fares Register for BIBO: decide for a fare offer and get a user device No decision for a dedicated ticket Simply hop on and go No user a ctions at boarding or alighting If necessary: select additional riders or 1st class Show ticket for inspection Posttrip Check invoice and account Check invoice and account Figure 48: Comparison of user actions in CIBO and BIBO schemes for occasional users

101 BIBO Payment Systems in Public Transport Final Report page 101 Season pass holder: Th e user has to Check-In Be-Out Pre- tri p Once: Inform himself about fares Register for CIBO: decide for a fare offer and get a user device No decision for a dedicated ticket On-trip Check-In for each pa rt of a chained journey (even at tra n sfer s) No action at exit required Show ticket for inspection Be- In Be-Out Once: Inform himself about fares Register for BIBO: decide for a fare offer and get a user device No decision for a dedicated ticket Simply hop on and go No user a ctions at boarding or alighting If necessary: select additional riders or 1st class Show ticket for inspection Post - trip Check invoice and account Check invoice and account Figure 49: Comparison of user actions in CIBO and BIBO schemes for season pass holders Reliability As described above a significant technical effort is required to achieve an acceptable reliability level for the automatic detection of user devices in a BIBO scheme. This effort is mainly caused due to the various special cases that need to be considered like e. g. a user that drives in his car or rides on his bike in parallel to a bus. The twostep-registration of BIBO ensures that the different cases can be distinguished, if the coverage of the door antennas is well adjusted to the door area respective the the coverage of the detection antennas to the vehicle area only. Therefore the reliability of BIBO depends on the adjustment and the coverage of the door antennas and the detection antennas. In a CIBO system the boarding is clearly identified by the voluntary Check-In procedure of the user. All cases of failure are therefore limited to the second step of CIBO, i.e. to find out whether a user device is still on the vehicle or not. This could limit the failure rate compared to BIBO User interface and user actions In interoperable electronic fare management schemes various operators may use different technologies: CICO, CIBO and BIBO. All three technologies imply different types of user actions:

102 BIBO Payment Systems in Public Transport Final Report page 102 CICO: voluntary gesture both at check-in and at check-out CIBO: voluntary gesture at check-in only (no action required when leaving the vehicle) BIBO: no user actions required at all From the user s perspective it is necessary to make sure that the user recognises what actions are required in what system, in particular if several interoperable ticketing schemes co-exist in a country. Assuming that CICO systems do exist in any case and that in addition to that BIBO or CIBO would be implemented the following cases may be differentiated: Case 1: Coexistence of CICO and BIBO (without CIBO) In that case the user should easily be able to recognise that he has to Check-In and Check-Out as soon as there are terminals at platforms / stations or in the vehicles and that no user actions are required if there are no terminals. This user behaviour could be trained systematically by information about interoperable fare management schemes. Therefore the German VDV core application has defined a common user interface specification in addition to the technical interface specifications. The user interface specification defines dedicated pictograms for labelling vehicles as equipped for CICO or for BIBO. Figure 50: Pictograms for CICO and BIBO for labelling vehicles and user devices developed by VDV

103 BIBO Payment Systems in Public Transport Final Report page 103 Recognising the pictogram e. g. on an approaching vehicle the user can find out what he has to do with his smartcard, i.e. whether he has to Check-In and Check-Out or not. This leads to the conclusion that CICO and BIBO can co-exist from the user action s point of view. Case 2: Coexistence of CICO and CIBO Combining CICO and CIBO would definitely cause more confusion at the user s side because the trained user behaviour from CICO systems does not work in a CIBO scheme and vice versa. The case that a user tries to Check-Out in a CIBO system could be recognised by the terminal software. However, the case that a user does not Check-Out in a CICO system because he assumes he is in a CIBO system could neither be recognised by the terminal software nor be corrected later in the backoffice system. Therefore the implementation of CIBO in addition to CICO could seriously endanger the trained user behaviour for CICO systems Comparison of fraud potential and resistance to fraud All ticketing schemes have a certain fraud potential. Typical fraud cases are: Manipulation or duplication of paper tickets Late or no validation or check-in of a ticket Early check-out of a ticket Avoidance of be-in detection of a ticket or early be-out of a ticket Having no or a non-valid ticket, user media or entitlement

2008 by Bundesamt für Sicherheit in der Informationstechnik (BSI) Godesberger Allee 185-189, 53175 Bonn

2008 by Bundesamt für Sicherheit in der Informationstechnik (BSI) Godesberger Allee 185-189, 53175 Bonn 2008 by Bundesamt für Sicherheit in der Informationstechnik (BSI) Godesberger Allee 185-189, 53175 Bonn Contents Contents 1 Introduction 1.1 Version History 1.2 Objective 1.3 Target group 1.4 Application

More information

General Principles of Software Validation; Final Guidance for Industry and FDA Staff

General Principles of Software Validation; Final Guidance for Industry and FDA Staff General Principles of Software Validation; Final Guidance for Industry and FDA Staff Document issued on: January 11, 2002 This document supersedes the draft document, "General Principles of Software Validation,

More information

ISO 9001. What to do. for Small Businesses. Advice from ISO/TC 176

ISO 9001. What to do. for Small Businesses. Advice from ISO/TC 176 ISO 9001 for Small Businesses What to do Advice from ISO/TC 176 ISO 9001 for Small Businesses What to do Advice from ISO/TC 176 ISO Central Secretariat 1, chemin de la Voie-Creuse Case postale 56 CH -

More information

THE BUILD-FOR-ALL REFERENCE MANUAL

THE BUILD-FOR-ALL REFERENCE MANUAL THE BUILD-FOR-ALL REFERENCE MANUAL Good intentions are not enough The Build-for-All Reference Manual aims to provide assistance for the inclusion of accessibility criteria in public calls for tender under

More information

Using and referencing ISO and IEC standards to support public policy

Using and referencing ISO and IEC standards to support public policy Using and referencing ISO and IEC standards to support public policy About the IEC and ISO The IEC and ISO are both independent, non-governmental, not-for-profit organizations that develop and publish

More information

Managing PPPs during their contract life. Guidance for sound management

Managing PPPs during their contract life. Guidance for sound management European PPP Expertise Centre European PPP Expertise Centre European PPP Expertise Centre European PPP Expertise Centre Guidance for sound management Managing PPPs during their contract life Guidance

More information

Interested in European research?

Interested in European research? report Interested in European research? Research*eu is our monthly magazine keeping you in touch with main developments (results, programmes, events, etc.). It is available in English, French, German and

More information

Report on Collective Use of Spectrum (CUS) and other spectrum sharing approaches

Report on Collective Use of Spectrum (CUS) and other spectrum sharing approaches RSPG11-392 Final RADIO SPECTRUM POLICY GROUP 2011 Report on Collective Use of Spectrum (CUS) and other spectrum sharing approaches November 2011 Executive summary Based on its work on Collective Use of

More information

Study on the Interplay between Standards and Intellectual Property Rights (IPRs) Tender No ENTR/09/015 (OJEU S136 of 18/07/2009) Final Report

Study on the Interplay between Standards and Intellectual Property Rights (IPRs) Tender No ENTR/09/015 (OJEU S136 of 18/07/2009) Final Report Study on the Interplay between Standards and Intellectual Property Rights (IPRs) Tender No ENTR/09/015 (OJEU S136 of 18/07/2009) Final Report Knut Blind (Coordinator) Rudi Bekkers Yann Dietrich Eric Iversen

More information

Privacy and Electronic Communications Regulations. Guidance on the rules on use of cookies and similar technologies

Privacy and Electronic Communications Regulations. Guidance on the rules on use of cookies and similar technologies Privacy and Electronic Communications Regulations Guidance on the rules on use of cookies and similar technologies Contents 1. Introduction 2. Background 3. Consumer awareness of cookies 4. Terminology

More information

paper white The convergence of IT and Operational Technology Thought leadership from Atos Your business technologists.

paper white The convergence of IT and Operational Technology Thought leadership from Atos Your business technologists. November 2012 ascent Thought leadership from Atos white paper The convergence of IT and Operational Technology Your business technologists. Powering progress Operation Technology (OT) supports physical

More information

IT and sustainable development - a central issue for the future

IT and sustainable development - a central issue for the future IT and sustainable development - a central issue for the future Dennis Pamlin Ewa Thorslund August 2004 For every complex problem there is a solution that is simple, neat and wrong. H.L. Mencken Summary

More information

EUROHORCs and ESF Vision on a Globally Competitive era and their Road Map for Actions

EUROHORCs and ESF Vision on a Globally Competitive era and their Road Map for Actions EUROHORCs and ESF Vision on a Globally Competitive era and their Road Map for Actions Contents 1 Foreword 3 The EUROHORCs and ESF Vision 5 The Road Map for Actions to Help Construct the ERA 25 Annex 1

More information

Managing digital records without an electronic record management system

Managing digital records without an electronic record management system Managing digital records without an electronic record management system Crown copyright 2012 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of

More information

Examining Quality Culture: Part 1 Quality Assurance Processes in Higher Education Institutions. By Tia Loukkola and Thérèse Zhang

Examining Quality Culture: Part 1 Quality Assurance Processes in Higher Education Institutions. By Tia Loukkola and Thérèse Zhang E U A P U B L I C A T I O N S 2 0 1 0 Examining Quality Culture: Part 1 Quality Assurance Processes in Higher Education Institutions By Tia Loukkola and Thérèse Zhang Copyright by the European University

More information

Raising Standards for Patients New Partnerships in Out-of-Hours Care

Raising Standards for Patients New Partnerships in Out-of-Hours Care Raising Standards for Patients New Partnerships in Out-of-Hours Care An Independent Review of GP Out-of-Hours Services in England Commissioned by the Department of Health October 2000 Raising Standards

More information

Horizon 2020 dedicated Expert Advisory Group on Innovation in SMEs Consultation on the EU Strategic Work Programme 2016 17

Horizon 2020 dedicated Expert Advisory Group on Innovation in SMEs Consultation on the EU Strategic Work Programme 2016 17 Horizon 2020 dedicated Expert Advisory Group on Innovation in SMEs Consultation on the EU Strategic Work Programme 2016 17 Final Report to the European Commission July 2014 Contents Executive Summary...

More information

Public Procurement as a Driver of Innovation in SMEs and Public Services. Guidebook Series. How to support SME Policy from Structural Funds

Public Procurement as a Driver of Innovation in SMEs and Public Services. Guidebook Series. How to support SME Policy from Structural Funds Guidebook Series How to support SME Policy from Structural Funds Public Procurement as a Driver of Innovation in SMEs and Public Services Enterprise and Industry 8 3 Guidebook Series How to support SME

More information

Chapter 2 A Context for the Study: Using the Literature to Develop a Preliminary Conceptual Model

Chapter 2 A Context for the Study: Using the Literature to Develop a Preliminary Conceptual Model Chapter 2 A Context for the Study: Using the Literature to Develop a Preliminary Conceptual Model 2.1. Introduction Chapter 1 introduced the research study. This chapter locates Z39.50 development in the

More information

Guidance on Transfer Pricing Documentation and Country-by-Country Reporting

Guidance on Transfer Pricing Documentation and Country-by-Country Reporting OECD/G20 Base Erosion and Profit Shifting Project Guidance on Transfer Pricing Documentation and Country-by-Country Reporting ACTION 13: 2014 Deliverable OECD/G20 Base Erosion and Profit Shifting Project

More information

Including examples and a checklist in form of a project plan

Including examples and a checklist in form of a project plan A STEP-BY-STEP APPROACH ON HOW TO SET UP A CSIRT Including examples and a checklist in form of a project plan Deliverable WP2006/5.1(CERT-D1/D2) Index 1 Management Summary... 2 2 Legal Notice... 2 3 Acknowledgements...

More information

Standards and Guidelines for Quality Assurance in the European Higher Education Area

Standards and Guidelines for Quality Assurance in the European Higher Education Area Standards and Guidelines for Quality Assurance in the European Higher Education Area Standards and Guidelines for Quality Assurance in the European Higher Education Area 2 DG Education and Culture This

More information

THE JOURNEY TOWARD CASH LITE

THE JOURNEY TOWARD CASH LITE THE JOURNEY TOWARD CASH LITE Addressing Poverty, Saving Money and Increasing Transparency by Accelerating the Shift to Electronic Payments Commissioned by BFA acknowledges the helpful comments received

More information

HOW TO COMMISSION RESEARCH

HOW TO COMMISSION RESEARCH HOW TO COMMISSION RESEARCH All ESOMAR world research codes and guidelines, including latest updates, are available online at www.esomar.org Copyright ESOMAR 2001 Latest reprint: 2009 HOW TO COMMISSION

More information

Digitizing Public Services in Europe: Putting ambition into action

Digitizing Public Services in Europe: Putting ambition into action Digitizing Public Services in Europe: Putting ambition into action 9 th Benchmark Measurement December 2010 Prepared by Capgemini, IDC, Rand Europe, Sogeti and DTi for: European Commission, Directorate

More information

Practice Guide. Reliance by Internal Audit on Other Assurance Providers

Practice Guide. Reliance by Internal Audit on Other Assurance Providers Practice Guide Reliance by Internal Audit on Other Assurance Providers DECEMBER 2011 Table of Contents Executive Summary... 1 Introduction... 1 Principles for Relying on the Work of Internal or External

More information

Data protection. In the picture: A data protection code of practice for surveillance cameras and personal information

Data protection. In the picture: A data protection code of practice for surveillance cameras and personal information Data protection In the picture: A data protection code of practice for surveillance cameras and personal information Contents Introduction... 3 About this code... 4 What this code covers... 6 Deciding

More information

DFID s Use of Contractors to Deliver Aid Programmes

DFID s Use of Contractors to Deliver Aid Programmes DFID s Use of Contractors to Deliver Aid Programmes Report 23 May 2013 Contents Executive Summary 1 1 Introduction 2 2 Findings 7 Objectives 7 Delivery 8 Impact 17 Learning 25 3 Conclusions and Recommendations

More information

A Steria Report SEPA: will European businesses be ready for the transformation? Prepared in collaboration with. è www.steria.com

A Steria Report SEPA: will European businesses be ready for the transformation? Prepared in collaboration with. è www.steria.com A Steria Report SEPA: will European businesses be ready for the transformation? Prepared in collaboration with è www.steria.com 02 SEPA : will European businesses be ready for the transformation? è www.steria.com

More information

Consultation draft of the international. Integrated Reporting

Consultation draft of the international. Integrated Reporting Consultation draft of the international Framework Integrated Reporting ABOUT THE IIRC The International Integrated Reporting Council (IIRC) is a global coalition of regulators, investors, companies,

More information