LC HCAL Absorber (SS vs W) and P-Flow P Performance (Scintillator( vs RPC) Comparisons. Motivation. SS/W Absorbers : Single Pion Results

Size: px
Start display at page:

Download "LC HCAL Absorber (SS vs W) and P-Flow P Performance (Scintillator( vs RPC) Comparisons. Motivation. SS/W Absorbers : Single Pion Results"

Transcription

1 LC HCAL Absorber (SS vs W) and P-Flow P Performance (Scintillator( vs RPC) Comparisons Steve Magill Steve Kuhlmann ANL/SLAC Motivation SS/W Absorbers : Single Pion Results Analog (Scintillator) vs Digital (RPC) Detector Comparisons P-Flow Analyses : e+e- -> Z (jets) Summary

2 Motivation for Study Can the outer radius of the HCAL be reduced? -> make B-field volume smaller -> saves cost of magnet coil BR 2 Keep 4 λ I thickness of HCAL -> use a denser absorber than SS, i.e., W -> why does SD HCAL have 1 X 0 sampling? -> change to 0.07 λ I (2 X 0 ) sampling in HCAL (already proposal to double the sampling in the last 10 ECAL layers to 1.4 X 0 ) Effects on PFAs, Calorimeter performance? Present SD (SS/Scin) 0.07 λ I W -> 0.7 cm/layer 1 cm Scintillator 4 λ I requires 55 layers -> 93.5 cm from HCAL IR to OR 1 X 0 SS -> 2.0 cm/layer 1 cm Scintillator 4 λ I requires 34 layers -> 102 cm from HCAL IR to OR.5 cm scintillator -> 66 cm from HCAL IR to OR.5 cm scintillator -> 85 cm from HCAL IR to OR

3 Z jets in SS/W HCAL SD SS HCAL SD W HCAL ~0.9 m ~1 m 34 layers 2 cm SS (1 X 0 ) 1 cm Scintillator 4 λ I 55 layers 0.7 cm W (2 X 0 ) 1 cm Scintillator 4 λ I Same event - different shower shape in W compared to SS?

4 Single 5 GeV Pion E measurement with DHCAL SS W Energy measurement in calorimeter Analog ECAL, Digital HCAL -> σ/mean smaller in W HCAL -> same behavior for analog HCAL, but smaller effect... Why?

5 Single 5 GeV Pion Number of hits (1/3 mip thresh) SS W More hits in W HCAL than in SS -> 30% more hits in the HCAL for W -> better digital resolution for W!

6 Single 5 GeV Pion Linearity of hits vs E (HCAL) SS W Both exhibit linear behavior for number of hits vs energy -> more hits per GeV in W

7 Single 5 GeV Pion Visible Energy in HCAL SS W More visible energy in W HCAL

8 Single 5 GeV Pion First Interaction Layer SS W 14 more layers 30 more layers 60 cm into SS HCAL 42 cm into W HCAL

9 Single 5 GeV Pion Shower Shape Analysis SS cone mean (GeV) rms σ/mean χ W cone mean (GeV) rms σ/mean χ rms Energy in fixed cone size : -> means ~same for SS/W -> rms ~10% smaller in W cone Tighter showers in W

10 Summary of Single Pion Results Energy versus fixed cone size -> means very similar for SS/W... however, the rms in the W HCAL was ~10% smaller than the SS CAL Energy Sums -> for analog energy sum with 1/3 mip threshold in the HCAL, sigma/mean is ~14% smaller in the W HCAL -> for ECAL analog and HCAL digital - again, the sigma/mean was smaller in the W HCAL -> for HCAL only when the pions deposited only mips in the ECAL, sigma/mean ~10% smaller in the W HCAL CAL Number of Hits -> total number of hits in the CAL, counting hits in ECAL and HCAL with a 1/3 mip threshold in the HCAL was 108 in W, 94 in SS -> in HCAL alone, 46 in W, 35 in SS (30% more in W) 1) More hits and visible energy -> better digital and analog E resolution 2) Tighter showers -> better PFA performance? 3) All of the above in smaller B-field volume -> R 2 cost savings

11 Track Extrapolation Particle-flow Algorithm ANL, SLAC 1 st step - Track extrapolation thru Cal substitute for Cal cells (mip + ECAL shower cone + HCAL cone : reconstruct linked mip segments + iterated in E/p hits in cones) - analog or digital techniques in HCAL Cal granularity/segmentation optimized for separation of charged/neutral clusters 2 nd step - Photon finder - use analytic long./trans. energy profiles, ECAL shower max, etc. 3 rd step - Jet Algorithm - tracks + photons + remaining Cal cells in jet cones defined by charged track jets (neutral hadron contribution) - Cal clustering not needed -> Digital HCAL?

12 e+e- -> > Z (jets) Energy Sums in Calorimeter SS W Total CAL energy sum tighter with W HCAL -> better analog E resolution

13 e+e- -> > Z (jets) Number of hits in Calorimeter SS W ~ 35% more hits in W HCAL than SS -> better digital E resolution

14 e+e- -> > Z (jets) PFA performance SS W True PFA -> SS 33%/ E -> W 28%/ E Compare current PFA with true... Fit ->

15 e+e- -> > Z (jets) PFA performance Fits SS W Better PFA performance with the W HCAL for conical showers... however, simple iterative cone reconstructs smaller fraction of events* * Improve with neutral clustering?

16 Summary of PFA Results HCAL Absorber Material -> dense absorber is optimal for LC HCAL -> single particle analog and digital E resolutions improved with W compared to SS (more hits and visible E per volume) -> better sampling in W HCAL (7% compared to 12% of λ I per layer) -> PFA performance not compromised with a shorter, denser HCAL (in fact, improved!) -> major cost savings if magnetic coil radius can be reduced -> last 10 layers of ECAL will sample at 1.4 X 0 (0.5 cm W absorber) -> using W for absorber with 2 X 0 sampling (more accurately, 0.07 λ I sampling) improves PFA performance while reducing the coil radius Now, compare dense W HCAL with analog (scintillator) and digital (RPC) readout modes (same depth - 4 λ I )

17 New Detector Models based on SD Design Dense HCALs (W absorber) - 4 λi in ~82.5 cm IR -> OR SDFeb05 SCI HCAL 55 layers of 0.7 cm W/0.8 cm Scin. Sampling fraction ~6% SDFeb05 RPC HCAL 55 layers of 0.7 cm W/0.8 cm RPC 1.2 mm gas gap Sampling Fraction ~0.0025%!!!

18 First Calorimeter Performances Scin. Analog Readout RPC Digital Readout Hard to compete with no visible energy? Not a great start, but lets continue anyway

19 Track/CAL Cell Association Algorithm Scin. Analog Readout RPC Digital Readout Resolution still better in scintillator, but algorithm reproduces perfect ID in both cases

20 Neutral Finding Algorithm Scin. Analog Readout RPC Digital Readout Once again, very similar performance

21 PFA Results Scin. Analog Readout RPC Digital Readout PFA performance is very similar (with same cuts) but reflects underlying CAL resolution

22 Confusion Leftover Hits! Scin. Analog Readout RPC Digital Readout Better use of hits in RPC? good since aren t that many

23 PFA Improvements Neutral Clustering Neutral Clustering No Neutral Clustering

24 DiJet Mass from PFA Scin. Analog Readout RPC Digital Readout

25 Summary For LC Detector, HCAL should be as dense as possible -> more λ I per cm smaller Solenoid B-field volume -> more layers for fixed total λ I HCAL better resolution since more sampling -> more hits - better digital resolution -> more visible E better analog resolution Comparing W and SS absorbers, hadron showers appear to be smaller (rms of E distribution) in W -> results in improvement of PFA analysis Beginning systematic studies of readout modes, absorber types and thickness for HCAL using flexibility of XML detector geometry description should result in optimization of both the LC Calorimeter and its associated PFA analysis method.

26 W Absorber HCAL for Test Beam For 95% containment of a 5(10) GeV pion shower : Rπ(95%) = 2( ln E) in λ I = 1.10 λ I (1.14 λ I ) transverse to beam Lπ(95%) = ln E in λ I = 3.81 λ I (4.9 λ I ) along beam So, for 0.7 cm W/0.5 cm Scin each layer : Need 22 cm x 22 cm transverse to beam, and 52 (67) layers along the beam HCAL standalone -> 25K (32K) readout channels 41 (56) layers along the beam with ECAL -> 20K (27K) readout channels For 2 cm SS/0.5 cm Scin each layer : Need 38 x 38 cm transverse to beam, and 32 (41) layers along the beam HCAL standalone -> 46K (59K) readout channels 25 (34) layers along the beam with ECAL -> 36K (49K) readout channels

27 This page intentionally left blank

28 SD Detector a Particle-flow Detector for the LC Tracking : Multi-layer Si Vertex Detector ~1 cm -> ~7 cm radius, 5 layers Si-Strip Tracker ~20 cm -> ~1.25 m radius, 5 layers ECAL : 30 layers, ~1.25 m -> ~1.40 m radius W(0.25 cm)/si(0.04 cm) ~20 X 0, 0.8 λ I ~5 mm X 5 mm cells HCAL : 34 layers, ~1.45 m -> ~2.50 m radius SS(2.0 cm)/scin(1.0 cm) ~40 X 0, 4 λ I ~1 cm X 1 cm cells Solenoid Coil : 5 Tesla, ~2.50 m -> ~3.30 m radius Muon (Tail Catcher) : ~3.40 m -> ~5.45 m

29 Motivation for Track-First P-FlowP Charged particles ~ 62% of jet energy -> Tracker σ/p T ~ 5 X 10-5 p T ~190 MeV to 100 GeV jet energy resolution Photons ~ 25% of jet energy -> ECAL σ/e ~ 15-20%/ E ~900 MeV to energy resolution Neutral Hadrons ~ 13% of jet energy -> HCAL resolution not critical ~3 GeV to energy resolution Also, since ECAL is dense, hadrons are optimally separated from photons (starting point of shower longitudinally) -> 75% of hadrons shower after photon shower-max in ECAL

30 Shower reconstruction by track extrapolation ECAL HCAL Mip reconstruction : Extrapolate track through CAL layer-by-layer Search for Interaction Layer -> Clean region for photons (ECAL) track mips IL shower Shower reconstruction : Define cones for shower in ECAL, HCAL after IL Optimize, iterating cones in E,HCAL separately (E/p test)

31 e+e- -> > Z (jets) First Interaction Layer SS W 14 more layers 30 more layers 60 cm into SS HCAL 42 cm into W HCAL

32 e+e- -> > Z (jets) Linearity of Energy Response SS W Both exhibit linear analog response

33 e+e- -> > Z (jets) Linearity of Hit Response SS W Both exhibit linear behavior for number of hits vs energy -> more hits per GeV (vis E) in W (same as for single pion)

34 PFA Development Status True vs Current PFA True PFA (no confusion) -> 28%/ E Current PFA Status 35%/ E (conical showers) 70%/ E (needs work!*) * Improved with better neutral reconstruction

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit n. 8 Calibration techniques Roberta Arcidiacono Lecture overview Introduction Hardware Calibration Test Beam Calibration In-situ Calibration (EM calorimeters)

More information

IMPROVEMENT OF JET ENERGY RESOLUTION FOR SEGMENTED HCAL USING LAYER WEIGHTING TECHNIQUE

IMPROVEMENT OF JET ENERGY RESOLUTION FOR SEGMENTED HCAL USING LAYER WEIGHTING TECHNIQUE IMPROVEMEN OF JE ENERGY RESOLUION FOR SEGMENED HCAL USING LAYER WEIGHING ECHNIQUE V. Andreev 1, I. Golutvin 2, A. Nikitenko 3,V.Palichik 2 1 Lebedev Physical Institute, Moscow, Russia 2 Joint Institute

More information

Jet Reconstruction in CMS using Charged Tracks only

Jet Reconstruction in CMS using Charged Tracks only Jet Reconstruction in CMS using Charged Tracks only Andreas Hinzmann for the CMS Collaboration JET2010 12 Aug 2010 Jet Reconstruction in CMS Calorimeter Jets clustered from calorimeter towers independent

More information

Comparisons between 2003 CMS ECAL TB data and a Geant 4 MC

Comparisons between 2003 CMS ECAL TB data and a Geant 4 MC Comparisons between 2003 CMS CAL TB data and a Geant 4 MC P. Meridiani LCG Validation Meeting 7 th July 2004 Outline CMS lectromagnetic calorimeter and 2003 TB h4sim http://cmsdoc.cern.ch/~h4sim/ (What

More information

Which calorimeter for FCC detector

Which calorimeter for FCC detector Which calorimeter for FCC detector Jean-Claude Brient* Laboratoire Leprince-Ringuet Ecole Polytechnique CNRS Palaiseau J. C. Brient ( LLR) 1 * ECAL contact for ILD and former spokesperson of CALICE FCC

More information

PoS(Kruger 2010)013. Setting of the ATLAS Jet Energy Scale. Michele Petteni Simon Fraser University E-mail: mpetteni@sfu.ca

PoS(Kruger 2010)013. Setting of the ATLAS Jet Energy Scale. Michele Petteni Simon Fraser University E-mail: mpetteni@sfu.ca Setting of the ALAS Energy Scale Simon Fraser University E-mail: mpetteni@sfu.ca he setting of the energy scale and its uncertainty in the ALAS detector is presented. After a brief introduction of the

More information

ATLAS Test Beam Analysis in Stockholm: An Overview

ATLAS Test Beam Analysis in Stockholm: An Overview ATLAS Test Beam Analysis in Stockholm: An Overview Elin Bergeås, Stockholm University Stand-alone test beam 2003 and before - test beam targeted at TileCal modules only Combined test beam 2004 - test beam

More information

Track Trigger and Modules For the HLT

Track Trigger and Modules For the HLT CMS L1 Track Trigger for SLHC Anders Ryd for the CMS Track Trigger Task Force Vertex 2009 Sept. 13-18, 2009 L=1035 cm-2s-1 Outline: SLHC trigger challenge Tracking triggers Track trigger modules Simulation

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

Proton tracking for medical imaging and dosimetry

Proton tracking for medical imaging and dosimetry Proton tracking for medical imaging and dosimetry J.Taylor, P.Allport, G.Casse For the PRaVDA Consortium 1 Background and motivation - What is the PRaVDA experiment? - Why are we using Monte Carlo? GEANT4

More information

MICE detectors and first results. M. Bonesini Sezione INFN Milano Bicocca

MICE detectors and first results. M. Bonesini Sezione INFN Milano Bicocca MICE detectors and first results M. Bonesini Sezione INFN Milano Bicocca I will speak of the installed beamline PID detectors (TOFes, CKOVs, KL) and only shortly of EMR (to be built)/ the trackers (tested

More information

Delphes, a framework for fast simulation of a general purpose LHC detector

Delphes, a framework for fast simulation of a general purpose LHC detector Delphes, a framework for fast simulation of a general purpose LHC detector S. Ovyn and X. Rouby Center for Particle Physics and Phenomenology (CP3) Université catholique de Louvain B-1348 Louvain-la-Neuve,

More information

Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics

Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics Carlo Schiavi Dottorato in Fisica - XVII Ciclo Outline The ATLAS Experiment The SiTrack Algorithm Application

More information

Energy Deposition in MICE Absorbers and Coils

Energy Deposition in MICE Absorbers and Coils in MICE Absorbers and Coils November 2, 2003 Video Conference Page 1 An Application for G4Mice We would like to estimate how much energy is deposited in magnet coils and the hydrogen absorber. Most of

More information

Jets energy calibration in ATLAS

Jets energy calibration in ATLAS Jets energy calibration in ATLAS V.Giangiobbe Università di Pisa INFN sezione di Pisa Supported by the ARTEMIS Research Training Network Workshop sui Monte Carlo, la Fisica e le Simulazioni a LHC V.Giangiobbe

More information

A Guide to Detectors Particle Physics Masterclass. M. van Dijk

A Guide to Detectors Particle Physics Masterclass. M. van Dijk A Guide to Particle Physics Masterclass M. van Dijk 16/04/2013 How detectors work Scintillation Ionization Particle identification Tracking Calorimetry Data Analysis W & Z bosons 2 Reconstructing collisions

More information

Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection -

Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection - timo.peltola@helsinki.fi Finnish Society for Natural Philosophy, Helsinki, 17 February 2015 Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection - Timo Peltola

More information

The OPERA Emulsions. Jan Lenkeit. Hamburg Student Seminar, 12 June 2008. Institut für Experimentalphysik Forschungsgruppe Neutrinophysik

The OPERA Emulsions. Jan Lenkeit. Hamburg Student Seminar, 12 June 2008. Institut für Experimentalphysik Forschungsgruppe Neutrinophysik The OPERA Emulsions Jan Lenkeit Institut für Experimentalphysik Forschungsgruppe Neutrinophysik Hamburg Student Seminar, 12 June 2008 1/43 Outline The OPERA experiment Nuclear emulsions The OPERA emulsions

More information

An option for the SHiP Muon Detector: Scintillator bars with WLS fibers and SiPMs readout

An option for the SHiP Muon Detector: Scintillator bars with WLS fibers and SiPMs readout An option for the SHiP Muon Detector: Scintillator bars with WLS fibers and SiPMs readout M. Anelli, W. Baldini, P. Ciambrone, M. Dallavalle, F. Fabbri, G. Lanfranchi, A. Montanari INFN-LNF, INFN-Ferrara,

More information

ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC

ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC Augusto Santiago Cerqueira On behalf of the ATLAS Tile Calorimeter Group Federal University of Juiz de Fora, Brazil

More information

CMS Remote Monitoring at Fermilab

CMS Remote Monitoring at Fermilab FERMILAB-CONF-07-122-E CMS Remote Monitoring at Fermilab Alan L. Stone on behalf of the CMS FNAL ROC Group Abstract The recent activities for remote monitoring operations at Fermilab are described. The

More information

CMS Tracking Performance Results from early LHC Running

CMS Tracking Performance Results from early LHC Running CMS Tracking Performance Results from early LHC Running CMS PAPER TRK-10-001 L. Spiegel, K. Stenson, M. Swartz 1 First Collisions Tracking Paper Provide description of tracker, tracking algorithm, and

More information

CMS Physics Analysis Summary

CMS Physics Analysis Summary Available on the CERN CDS information server CMS PAS RK-10-002 CMS Physics Analysis Summary Contact: cms-pog-conveners-tracking@cern.ch 2010/07/20 Measurement of racking Efficiency he CMS Collaboration

More information

Electron-Muon Ranger (EMR)

Electron-Muon Ranger (EMR) Electron-Muon Ranger (EMR) Digitization and Reconstruction François Drielsma Ruslan Asfandiyarov University of Geneva On Behalf of the EMR Group 38 th MICE Collaboration Meeting February 23, 2014 Electron-Muon

More information

The accurate calibration of all detectors is crucial for the subsequent data

The accurate calibration of all detectors is crucial for the subsequent data Chapter 4 Calibration The accurate calibration of all detectors is crucial for the subsequent data analysis. The stability of the gain and offset for energy and time calibration of all detectors involved

More information

Rate estimates on the Gem Disks

Rate estimates on the Gem Disks Rate estimates on the Gem Disks PANDA Collaboration Meeting, GSI Darmstadt, 11.12.2008 1 Geometry and Simulation code 2 Rate estimate 3 Backup (pictures only) 1 Geometry and Simulation code 2 Rate estimate

More information

A.Besson, IPHC-Strasbourg

A.Besson, IPHC-Strasbourg DIGMAPS: a standalone tool to study digitization an overview of a digitizer strategy for CMOS/MAPS sensors A.Besson, IPHC-Strasbourg thanks to A.Geromitsos and J.Baudot Motivations for a CMOS sensor digitizer,

More information

Recent SiD Tracking Studies at CU (and Ancient Outer Tracker Studies at SLAC)

Recent SiD Tracking Studies at CU (and Ancient Outer Tracker Studies at SLAC) Recent SiD Tracking Studies at CU (and Ancient Outer Tracker Studies at SLAC) Steve Wagner, University of Colorado, Boulder I did realistic pattern recognition studies for the SiD Barrel Outer Tracker

More information

GLAST Geant4 Simulation

GLAST Geant4 Simulation GLAST Geant4 Simulation F.Longo D. Favretto R.Giannitrapani 1 Introduction Simulation effort GammaRayTel advanced example in the Geant4 3.0 release XML - Geant4 visitor Hit class 2 Simulation Effort Design

More information

The TOTEM experiment at the LHC: results and perspective

The TOTEM experiment at the LHC: results and perspective The TOTEM experiment at the LHC: results and perspective Edoardo Bossini Università degli studi di Siena and INFN-Pisa (on behalf of the TOTEM collaboration) Trieste, 24 Settembre 2013 OUTLINE: Detector

More information

Study of the B D* ℓ ν with the Partial Reconstruction Technique

Study of the B D* ℓ ν with the Partial Reconstruction Technique Study of the B D* ℓ ν with the Partial Reconstruction Technique + University of Ferrara / INFN Ferrara Dottorato di Ricerca in Fisica Ciclo XVII Mirco Andreotti 4 March 25 Measurement of B(B D*ℓν) from

More information

Detector-related. related software development in the HEPP project. Are Strandlie Gjøvik University College and University of Oslo

Detector-related. related software development in the HEPP project. Are Strandlie Gjøvik University College and University of Oslo Detector-related related software development in the HEPP project Are Strandlie Gjøvik University College and University of Oslo Outline Introduction The ATLAS New Tracking project HEPP contributions Summary

More information

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p

More information

Top-Quark Studies at CMS

Top-Quark Studies at CMS Top-Quark Studies at CMS Tim Christiansen (CERN) on behalf of the CMS Collaboration ICHEP 2010, Paris 35th International Conference on High-Energy Physics tt 2 km 22 28 July 2010 Single-top 4 km New Physics

More information

π 0 γγ calibration Savrina Daria, ITEP, Moscow SINP MSU, Moscow Victor Egorychev, ITEP, Moscow Ivan Belyaev

π 0 γγ calibration Savrina Daria, ITEP, Moscow SINP MSU, Moscow Victor Egorychev, ITEP, Moscow Ivan Belyaev π 0 γγ calibration Savrina Daria, ITEP, Moscow SINP MSU, Moscow Ivan Belyaev Victor Egorychev, ITEP, Moscow Loose cuts for π 0 selection One of the ways to improve the calibration procedure is to increase

More information

Performance Evalua/on and So2ware Development of FPCCD Vertex Detector for ILC

Performance Evalua/on and So2ware Development of FPCCD Vertex Detector for ILC Performance Evalua/on and So2ware Development of FPCCD Vertex Detector for ILC MORI Tatsuya, KAMAI Daisuke, MIYAMOTO Akiya A SUGIMOTO Yasuhiro A, ISHIKAWA Akimasa, SUEHARA Taikan, KATO Eriko, YAMAMOTO

More information

A Polarimetry concept for the EDM experiment at COSY

A Polarimetry concept for the EDM experiment at COSY A Polarimetry concept for the EDM experiment at COSY Paul Maanen JEDI Collaboration Physics Institute III B, RWTH Aachen University DPG Frühjahrstagung March 27, 2015 Outline Introduction Detector concept

More information

Damping Wigglers in PETRA III

Damping Wigglers in PETRA III Damping Wigglers in PETRA III WIGGLE2005, Frascati 21-22.2.2005 Winni Decking, DESY-MPY Introduction Damping Wiggler Parameters Nonlinear Dynamics with DW Operational Aspects Summary DESY and its Accelerators

More information

Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method

Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method Carlos Garcia University of Rochester For the DØ Collaboration APS Meeting 2007 Outline Introduction Top

More information

Operation and Performance of the CMS Silicon Tracker

Operation and Performance of the CMS Silicon Tracker Operation and Performance of the CMS Silicon Tracker Manfred Krammer 1 on behalf of the CMS Tracker Collaboration Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria Abstract.

More information

Electron Muon Ranger (EMR) Software Development

Electron Muon Ranger (EMR) Software Development Electron Muon Ranger (EMR) Software Development François Drielsma on behalf of the EMR Group University of Geneva June 25, 2014 François Drielsma on behalf of the EMR Group Electron (University Muon of

More information

Characterisation of the Timepix Chip for the LHCb VELO Upgrade

Characterisation of the Timepix Chip for the LHCb VELO Upgrade Particle and Astroparticle Physics Master Thesis Characterisation of the Timepix Chip for the LHCb VELO Upgrade Veerle Heijne Supervisor: Dr. Martin van Beuzekom Second reviewer: Dr. Auke-Pieter Colijn

More information

Monte Carlo Simulation for Solid Angle Calculations in Alpha Particle Spectrometry

Monte Carlo Simulation for Solid Angle Calculations in Alpha Particle Spectrometry Monte Carlo Simulation for Solid Angle Calculations in Alpha Particle Spectrometry John Keightley NSUF 18 May 2010 Acknowledgement: Several discussions with Stefaan Pommé, IRMM, EC-JRC, Geel Some diagrams

More information

variables to investigate Monte Carlo methods of t t production

variables to investigate Monte Carlo methods of t t production Using the M 2 and variables to investigate Monte Carlo methods of t t production Caitlin Jones September 8, 25 Abstract In this project the behaviour of Monte Carlo simulations for the event t t! ` `+b

More information

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS NOE 6/7 he Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH- GENEVA 3, Switzerland January 5, 6 Influence of Misalignment Scenarios on Muon

More information

The LHCb Tracking System. Jeroen van Hunen

The LHCb Tracking System. Jeroen van Hunen The LHCb Tracking System Jeroen van Hunen The LHCb Experiment LHCb at Point 8 : a lot of activity! LHCb : a B-physics experiment that is being constructed for : Precision measurements of the CPviolation

More information

Top rediscovery at ATLAS and CMS

Top rediscovery at ATLAS and CMS Top rediscovery at ATLAS and CMS on behalf of ATLAS and CMS collaborations CNRS/IN2P3 & UJF/ENSPG, LPSC, Grenoble, France E-mail: julien.donini@lpsc.in2p3.fr We describe the plans and strategies of the

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

Calorimeter Upgrades for the High Luminosity LHC

Calorimeter Upgrades for the High Luminosity LHC Calorimeter Upgrades for the High Luminosity LHC A. Straessner FSP 101 ATLAS DPG Frühjahrstagung Göttingen März, 2012 Outline Introduction: ATLAS and CMS Detectors Today Physics at the High-Luminosity

More information

Performance of the CMS cathode strip chambers with cosmic rays

Performance of the CMS cathode strip chambers with cosmic rays Home Search Collections Journals About Contact us My IOPscience Performance of the CMS cathode strip chambers with cosmic rays This article has been downloaded from IOPscience. Please scroll down to see

More information

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons SLAC-PUB-7722 January 9 degrees Bremsstrahlung Source Term Produced in Thick Targets by 5 MeV to GeV Electrons X. S. Mao et al. Presented at the Ninth International Conference on Radiation Shielding, Tsukuba,

More information

Calibrations, alignment, online data monitoring

Calibrations, alignment, online data monitoring DAQ & Software Review : Calibrations, alignment, online data monitoring Jlab June 18, 2014. Software Organization Software Analysis Chairs: Maurik Holtrop Mathew Graham Subsystem Leads: ECAL Stuart Fegan

More information

Simulation of Neutron Backgrounds from the ILC Extraction Line Beam Dump. Siva Darbha. Office of Science, SULI Program. University of Toronto

Simulation of Neutron Backgrounds from the ILC Extraction Line Beam Dump. Siva Darbha. Office of Science, SULI Program. University of Toronto SLAC-TN-07-013 August 2007 Simulation of Neutron Backgrounds from the ILC Extraction Line Beam Dump Siva Darbha Office of Science, SULI Program University of Toronto Stanford Linear Accelerator Center

More information

Fermilab FERMILAB-THESIS-2000-10

Fermilab FERMILAB-THESIS-2000-10 Fermilab FERMILAB-THESIS-2000-10 CDF/THESIS/JET/PUBLIC/5555 Version 1.0 12th February 2001 Calorimetric Measurements in CDF: A New Algorithm to Improve The Energy Resolution of Hadronic Jets A Thesis Submitted

More information

1 Experiments (Brahms, PHENIX, and STAR)

1 Experiments (Brahms, PHENIX, and STAR) 1 Experiments (Brahms, PHENIX, and STAR) This section describes the three experiments capable of making spin measurements. 1.1 PHENIX RHIC has made great strides towards providing high luminosity beams

More information

Results from first tests of TRD prototypes for CBM. DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

Results from first tests of TRD prototypes for CBM. DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Frankfurt am Main Results from first tests of TRD prototypes for CBM DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Contents Overview of the CBM experiment CBM-TRD General TRD requirements The

More information

Brookhaven Magnet Division - Nuclear Physics Program Support Activities

Brookhaven Magnet Division - Nuclear Physics Program Support Activities Brookhaven - Nuclear Physics Program Support Activities Spin Program support E-Cooling R&D RIA RHIC Operations Support Funding AGS Warm Siberian Snake AGS Warm Snake Magnetic element designed and built

More information

arxiv:1007.1988v2 [physics.ins-det] 27 Jul 2010 The CMS Collaboration

arxiv:1007.1988v2 [physics.ins-det] 27 Jul 2010 The CMS Collaboration EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-PH-EP/-19 /7/14 -TRK--1 Tracking Performance Results from Early LHC Operation arxiv:7.1988v [physics.ins-det] 7 Jul The Collaboration Abstract The

More information

arxiv:nucl-ex/0507023v2 18 Jul 2005

arxiv:nucl-ex/0507023v2 18 Jul 2005 Diffraction Dissociation - 50 Years later Sebastian N. White Brookhaven National Laboratory, Upton, N.Y. 11973, USA arxiv:nucl-ex/0507023v2 18 Jul 2005 Abstract. The field of Diffraction Dissociation,

More information

Performance of the BaF2-calorimeter TAPS 1

Performance of the BaF2-calorimeter TAPS 1 ELSEVIER Nuclear Physics B (Proc. Suppl.) 61B (1998) 137-142 UCLEAR PHYSIC~ PROCEEDINGS SUPPLEMENTS Performance of the BaF2-calorimeter TAPS 1 R.Novotny II. Physics Institute, University Giessen, Heinrich-Buff-Ring

More information

ATLAS NOTE ATLAS-CONF-2010-063. July 21, 2010. Search for top pair candidate events in ATLAS at s = 7 TeV. The ATLAS Collaboration.

ATLAS NOTE ATLAS-CONF-2010-063. July 21, 2010. Search for top pair candidate events in ATLAS at s = 7 TeV. The ATLAS Collaboration. ATLAS NOTE ATLAS-CONF-2010-063 July 21, 2010 Search for top pair candidate events in ATLAS at s = 7 TeV The ATLAS Collaboration Abstract A search is performed for events consistent with top quark pair

More information

Cosmic Ray Astrophysics with AMS-02 Daniel Haas - Université de Genève on behalf of the AMS collaboration

Cosmic Ray Astrophysics with AMS-02 Daniel Haas - Université de Genève on behalf of the AMS collaboration Cosmic Ray Astrophysics with AMS-02 Daniel Haas - Université de Genève on behalf of the AMS collaboration Overview of AMS-02 Cosmic ray studies p/he, Z>2, p/e +, γ-rays Comparison AMS vs. GLAST AMS vs.

More information

BNL Contribution to ATLAS

BNL Contribution to ATLAS BNL Contribution to ATLAS Software & Performance S. Rajagopalan April 17, 2007 DOE Review Outline Contributions to Core Software & Support Data Model Analysis Tools Event Data Management Distributed Software

More information

Measurement of Neutralino Mass Differences with CMS in Dilepton Final States at the Benchmark Point LM9

Measurement of Neutralino Mass Differences with CMS in Dilepton Final States at the Benchmark Point LM9 Measurement of Neutralino Mass Differences with CMS in Dilepton Final States at the Benchmark Point LM9, Katja Klein, Lutz Feld, Niklas Mohr 1. Physikalisches Institut B RWTH Aachen Introduction Fast discovery

More information

HMS/SOS Tracking Code Enhancement

HMS/SOS Tracking Code Enhancement HMS/SOS Tracking Code Enhancement T. Navasardyan, P. Bosted, M Jones Abstract Examination of data taken in Hall C with high rates in the HMS and/or SOS spectrometers revealed that sometimes the code that

More information

Event viewer for HRS-L

Event viewer for HRS-L Event viewer for HRS-L Tadej Dobravec mentor: assoc. prof. dr. Simon Širca 8/10/2012 1 Introduction For my summer project at F2 department at Institute of Jozef Stefan I made event viewer (EVe) for Left

More information

ACCELERATORS AND MEDICAL PHYSICS 2

ACCELERATORS AND MEDICAL PHYSICS 2 ACCELERATORS AND MEDICAL PHYSICS 2 Ugo Amaldi University of Milano Bicocca and TERA Foundation EPFL 2-28.10.10 - U. Amaldi 1 The icone of radiation therapy Radiation beam in matter EPFL 2-28.10.10 - U.

More information

Appendix A. An Overview of Monte Carlo N-Particle Software

Appendix A. An Overview of Monte Carlo N-Particle Software Appendix A. An Overview of Monte Carlo N-Particle Software A.1 MCNP Input File The input to MCNP is an ASCII file containing command lines called "cards". The cards provide a description of the situation

More information

Part 4 fitting with energy loss and multiple scattering non gaussian uncertainties outliers

Part 4 fitting with energy loss and multiple scattering non gaussian uncertainties outliers Part 4 fitting with energy loss and multiple scattering non gaussian uncertainties outliers material intersections to treat material effects in track fit, locate material 'intersections' along particle

More information

T(CR)3IC Testbed for Coherent Radio Cherenkov Radiation from Cosmic-Ray Induced Cascades

T(CR)3IC Testbed for Coherent Radio Cherenkov Radiation from Cosmic-Ray Induced Cascades T(CR)3IC Testbed for Coherent Radio Cherenkov Radiation from Cosmic-Ray Induced Cascades R. Milinčić1, P. Gorham1, C. Hebert1, S. Matsuno1, P. Miočinović1, M. Rosen1, D. Saltzberg2, G. Varner1 1 University

More information

( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( )

( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( ) { } ( ) = ( ) = {,,, } ( ) β ( ), < 1 ( ) + ( ) = ( ) + ( ) max, ( ) [ ( )] + ( ) [ ( )], [ ( )] [ ( )] = =, ( ) = ( ) = 0 ( ) = ( ) ( ) ( ) =, ( ), ( ) =, ( ), ( ). ln ( ) = ln ( ). + 1 ( ) = ( ) Ω[ (

More information

Event display for the International Linear Collider Summer student report

Event display for the International Linear Collider Summer student report Event display for the International Linear Collider Summer student report Stewart Martin-Haugh, supervisor Steve Aplin Physics Computing/IT September 10, 2009 1 Introduction The International Linear Collider

More information

Single photon detection with H8500 MAPMTs for the CBM RICH detector*

Single photon detection with H8500 MAPMTs for the CBM RICH detector* Single photon detection with H8500 MAPMTs for the CBM RICH detector* Christian Pauly for the CBM collaboration Introduction The CBM experiment The CBM RICH detector Single Photon detection with H8500 MAPMTs

More information

Electron-Muon Ranger (EMR)

Electron-Muon Ranger (EMR) Electron-Muon Ranger (EMR) Ruslan Asfandiyarov MICE Video Conference April 11, 2013 Construction Construction quarter of the detector completed (12 planes) every plane tested (LED / Camera / image analysis)

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

The Timing Counter of the MEG experiment: calibration and performances

The Timing Counter of the MEG experiment: calibration and performances The Timing Counter of the MEG experiment: calibration and performances INFN Pavia On behalf of MEG TC group 12th seminar on IPRD Siena 1 MEG: signal and background background signal µ e γ physical e +

More information

FTK the online Fast Tracker for the ATLAS upgrade

FTK the online Fast Tracker for the ATLAS upgrade FTK the online Fast Tracker for the ATLAS upgrade Kostas Kordas Aristotle University of Thessaloniki Annual EESFYE mtg, University of the Aegean, Chios, 25-29 April 2013 Overview ATLAS Trigger and DAQ

More information

07 - Cherenkov and transition radiation detectors

07 - Cherenkov and transition radiation detectors 07 - Cherenkov and transition radiation detectors Jaroslav Adam Czech Technical University in Prague Version 1.0 Jaroslav Adam (CTU, Prague) DPD_07, Cherenkov and transition radiation Version 1.0 1 / 30

More information

Moving Beyond the Web, a Look at the Potential Benefits of Grid Computing for Future Power Networks

Moving Beyond the Web, a Look at the Potential Benefits of Grid Computing for Future Power Networks Moving Beyond the Web, a Look at the Potential Benefits of Grid Computing for Future Power Networks by Malcolm Irving, Gareth Taylor, and Peter Hobson 1999 ARTVILLE, LLC. THE WORD GRID IN GRID-COMPUTING

More information

EUTelescope: tracking software

EUTelescope: tracking software EUTelescope: tracking software A. Bulgheroni, T. Klimkovich, P. Roloff, A.F. Żarnecki December 3, 2007 Abstract The main goal of the JRA1 within the EUDET project is the construction of new and the improvement

More information

Calibration and performance test of the Very Front End electronics for the CMS electromagnetic calorimeter

Calibration and performance test of the Very Front End electronics for the CMS electromagnetic calorimeter Calibration and performance test of the Very Front End electronics for the CMS electromagnetic calorimeter Jan Blaha IPN Lyon 10th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD06)

More information

Tracking systems in HEP:

Tracking systems in HEP: Tracking systems in HEP: concept and performance of 3 experiments Davide Bolognini Universita' degli Studi dell'insubria Presentazione dottorato Anno I Outline Tracking systems in HEP CMS @ LHC...but not

More information

R&D pour le LHC Haute Luminosité

R&D pour le LHC Haute Luminosité R&D pour le LHC Haute Luminosité Rappel SLHC R&D des détecteurs de CMS pour le SLHC Trajectographe Calorimètre Electromagnétique LVL1 Trigger Electronique des détecteurs pour le SLHC Conclusions 13 mai

More information

FCC 1309180800 JGU WBS_v0034.xlsm

FCC 1309180800 JGU WBS_v0034.xlsm 1 Accelerators 1.1 Hadron injectors 1.1.1 Overall design parameters 1.1.1.1 Performance and gap of existing injector chain 1.1.1.2 Performance and gap of existing injector chain 1.1.1.3 Baseline parameters

More information

The BESSY HOM Damped Cavity with Ferrite Absorbers. Review of prototype cavity test results, taperedwaveguidesvshomogenouswaveguides

The BESSY HOM Damped Cavity with Ferrite Absorbers. Review of prototype cavity test results, taperedwaveguidesvshomogenouswaveguides The BESSY HOM Damped Cavity with Ferrite Absorbers E. Weihreter / BESSY Review of prototype cavity test results, taperedwaveguidesvshomogenouswaveguides Design of a ferrite loaded ridged circular waveguide

More information

Hall B So(ware Status. Veronique Ziegler

Hall B So(ware Status. Veronique Ziegler Hall B So(ware Status Veronique Ziegler Physics Applica;on Design within the ClaRA SOA Physics applica;on design/composi;on based on services Development of services within ClaRA à Wri;ng a service simply

More information

Detectors in Nuclear and Particle Physics

Detectors in Nuclear and Particle Physics Detectors in Nuclear and Particle Physics Prof. Dr. Johanna Stachel Deartment of Physics und Astronomy University of Heidelberg June 17, 2015 J. Stachel (Physics University Heidelberg) Detectorhysics June

More information

How To Analyze Plasma With An Inductively Coupled Plasma Mass Spectrometer

How To Analyze Plasma With An Inductively Coupled Plasma Mass Spectrometer What is ICP-MS? and more importantly, what can it do? Inductively Coupled Plasma Mass Spectrometry or ICP-MS is an analytical technique used for elemental determinations. The technique was commercially

More information

The CMS All Silicon Tracker

The CMS All Silicon Tracker The CMS All Silicon Tracker A Detector for the Exploration of the Terascale Lutz Feld 1. Physikalisches Institut, RWTH Aachen Göttingen, 25. 1. 2008 Large Hadron Collider at CERN proton proton quarks &

More information

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (no PiN and pinned Diodes) Peter Fischer P. Fischer, ziti, Uni Heidelberg, Seite 1 Overview Reminder: Classical Photomultiplier

More information

PHYSICS WITH LHC EARLY DATA

PHYSICS WITH LHC EARLY DATA PHYSICS WITH LHC EARLY DATA ONE OF THE LAST PROPHETIC TALKS ON THIS SUBJECT HOPEFULLY We may have some two month of the Machine operation in 2008 LONG HISTORY... I will extensively use: Fabiola GIANOTTI

More information

PoS(TIPP2014)028. Development of the upgraded LHCf calorimeter with Gd 2 SiO 5 (GSO) scintillators

PoS(TIPP2014)028. Development of the upgraded LHCf calorimeter with Gd 2 SiO 5 (GSO) scintillators Development of the upgraded LHCf calorimeter with Gd 2 SiO 5 (GSO) scintillators, a O. Adriani, b,c E. Berti, b,c L. Bonechi, b M. Bongi, b,c G. Castellini, b,d R. D Alessandro, b,c M. Del Prete, b,c M.

More information

arxiv:1402.0675v1 [physics.ins-det] 4 Feb 2014

arxiv:1402.0675v1 [physics.ins-det] 4 Feb 2014 Preprint typeset in JINST style - HYPER VERSION Operation and performance of the CMS tracker arxiv:1402.0675v1 [physics.ins-det] 4 Feb 2014 Viktor Veszpremi for the CMS Collaboration a a Wigner Research

More information

Real-time data analysis at the LHC: present and future

Real-time data analysis at the LHC: present and future JMLR: Workshop and Conference Proceedings 42:1-18, 2015 HEPML 2014 Real-time data analysis at the LHC: present and future Vladimir V. Gligorov CERN, CH-1211, Switzerland vladimir.gligorov@cern.ch Editor:

More information

CMS Tracker module / hybrid tests and DAQ development for the HL-LHC

CMS Tracker module / hybrid tests and DAQ development for the HL-LHC CMS Tracker module / hybrid tests and DAQ development for the HL-LHC S. Mersi, G. Auzinger georg.auzinger@cern.ch 1 Outline Reminder: the Ph2 CMS Tracker upgrade pt Modules: principle, elements, electronics

More information

Image Processing Techniques applied to Liquid Argon Time Projection Chamber(LArTPC) Data

Image Processing Techniques applied to Liquid Argon Time Projection Chamber(LArTPC) Data Image Processing Techniques applied to Liquid Argon Time Projection Chamber(LArTPC) Data Jessica Esquivel On Behalf of the MicroBooNE Collaboration Syracuse University Advisor: Mitch Soderberg Outline

More information

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. D. J. Mangeol, U.

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. D. J. Mangeol, U. Available on CMS information server CMS NOTE 6/96 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH11 GENEVA 3, Switzerland July, 6 Search for χ decays to ττ and SUSY mass spectrum

More information

Single Top Production at the Tevatron

Single Top Production at the Tevatron Single Top Production at the Tevatron Daniel Wicke (Bergische Universität Wuppertal) Introduction Outline DØ Cross Section CDF Results DØ V tb Conclusions Revision : 1.7 DESY-Zeuthen, 21-Feb-2007 1 Introduction

More information

Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission

Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission MAVEN Science Community Workshop December 2, 2012 Particles and Fields Package Solar Energetic Particle Instrument (SEP) Davin Larson and the SEP

More information

Monday 11 June 2012 Afternoon

Monday 11 June 2012 Afternoon Monday 11 June 2012 Afternoon A2 GCE PHYSICS B (ADVANCING PHYSICS) G495 Field and Particle Pictures *G412090612* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and Relationships

More information