ECE 485/585 Microprocessor System Design

Size: px
Start display at page:

Download "ECE 485/585 Microprocessor System Design"

Transcription

1 Microprocessor System Design Lecture 7: Memory Modules Error Correcting Codes Memory Controllers Zeshan Chishti Electrical and Computer Engineering Dept. Maseeh College of Engineering and Computer Science Source: Lecture based on materials provided by Mark F.

2 DRAM Refresh Frequency DRAM standard requires memory controllers to send periodic refresh commands to DRAM treflatency (trfc): Varies based on DRAM chip density (e.g., 350ns) trefperiod (trefi): Remains constant (7.8 usec for Current generation DRAM) Timeline 2

3 Refresh Now: N Simultaneous Rows CLK CMD PRE REF ACT Device densit y Num. Bank s Refresh N rows in each 7.8 usec (64ms 8K), perbank Perbank Rows Total Rows Rows in AR trfc (ɳs) 8Gb K 2M ADDR Bank/All ROW 16Gb K 4M DATA trp trfc 32Gb K 8M Command is called Auto-Refresh (AR) Retention Time = 64ms N increases with density (N: 16 8Gb, 32 16Gb) 3

4 Impact of Refresh on Performance DRAM is unavailable to serve requests for of time treflatency trefperiod 4.5% for today s 4Gb DRAM Unavailability increases with higher density due to higher treflatency 4

5 Memory Modules 184 pin DDR SDRAM DIMM All chips in a rank receive same address and control signals Each chip responsible for subset of data bits in its rank Module acts as high capacity DRAM with wide data path Example: 8 chips, each 8 bits wide = 64 bits Easy to add/replace memory in a system No need to solder or remove individual chips Memory granularity issue What s the smallest increment in memory size? From Hsien-Hsin Sean Lee, Georgia Institute of Technology

6 DRAM Ranks

7 Organization of DRAM Modules

8 Memory Modules SIMM (Single Inline Memory Module) 30-pin: some 286, most 386, some 486 systems Page Mode, Fast Page mode devices 72-pin: some 386, most 486, nearly all Pentium (before DIMM) Fast Page Mode, EDO devices DIMM (Dual Inline Memory Module) Dominant today SODIMM (Small Outline DIMM) Used in notebooks, Apple imac RIMM (Rambus RDRAM Module) SIMM 168 pin SDRAM DIMM 184 pin DDR SDRAM DIMM SODIMM 240 pin DDR2, DDR3 SDRAM DIMM 200 pin DDR2, DDR3 SDRAM DIMM RIMM RIMM

9 SPD (Serial Presence Detect) 8-pin serial EEPROM on memory module Key parameters for SDRAM controller Number of row/column addresses Number of ranks Module width Refresh rate/type Error checking (none, parity, ECC) Latency Timing parameters

10 DRAM and DIMM Nomenclature Device name Clock M transfers per sec MB/sec Per DIMM DIMM name DDR MHz 200 1,600 MB/s PC-1600 DDR MHz 266 2,133 MB/s PC-2100 DDR MHz 333 2,666 MB/s PC-2700 DDR MHz 400 3,200 MB/s PC-3200 DDR MHz 400 3,200 MB/s PC DDR MHz 533 4,266 MB/s PC DDR MHz 666 5,333 MB/s PC DDR MHz 800 6,400 MB/s PC DDR MHz ,533 MB/s PC DDR MHz 800 6,400 MB/s PC DDR MHz ,500 MB/s PC DDR MHz ,666 MB/s PC DDR MHz ,800 MB/s PC DDR MHZ MB/s PC M transfers/second = 2 transfers (DDR) x Clock Rate DRAM name incorporates M transfers per second MB/sec = 8 bytes x M transfers per second DIMM name incorporates MB/sec (rounded)

11 DRAM/SDRAM Latency Specifications DRAM Used 4 numbers (e.g ) Indicates number of CPU cycles for 1st and successive accesses SDRAM CAS Latency (CAS or CL) Delay in clock cycles between request and the time the first data is available PC133 module might be described as CAS-2, CAS=2, CL2, CL-2, or CL=2 SDR-DRAM CAS Latency of 1, 2, or 3 DDR-DRAM CAS Latency of 2 or 2.5 When three numbers appear (e.g ) CAS Latency (tcac) RAS-to-CAS delay (trcd) RAS pre-charge time (trp) DDR3 seeing use of four numbers CAS Latency ( tcas tcl, CL) RAS-to-CAS delay (trcd) RAS pre-charge time (trp) RAS access time (tras) timing

12 Key SDRAM Timing Parameters Determines Latency: t RCD : Minimum time between an ACTIVE command and READ command CL (CAS Latency): Time between READ command and first data valid Determines Bandwidth: t RC: Time between successive row access to different rows (t RC = t RAS + t RP) t RAS : Time between ACTIVE command and end of restoration of data in DRAM array t RP: Time to pre-charge DRAM array in preparation for another row access

13 EX: Comparing Performance of DIMMs Parameter SDRAM PC PC DIMM Spec DIMM Clock Period T CK 1/800Mhz = 1/933Mhz = 1.07ns 1.25ns CAS Latency CL 9 9 RAS-to-CAS Delay T RCD 9 9 RAS pre-charge time T RP 9 9 RAS access time T RAS Cost/pair $ Best Bandwidth/$: t RC = t RAS + t RP = = 36 (for both DIMMs) 14900/12800 = 1.16, 196/176 = 1.11 so 16% bandwidth gain, 11% increase in cost I d buy the PC DIMMs Time from ACTIVE to end of cycle: Time to first byte (Latency) for PC = T RCD + CL = = 18 Time to get 8 bytes of data (burst size = 8, DDR) = 4 Total time = (18 + 4) * 1.25ns = 27.5ns

14 DDR4 JEDEC released standard September 2012 Projected to be ~50% of market by Hynix announced 128 GB module using 8 Gb DDR4 in April 2014 AMD (Hierofalcon), Intel (Haswell-E) supporting DDR4 in 2014 No longer multi-drop point-to-point with single DIMM per channel 284-pin DIMM interface

15 Error Correcting Codes

16 Error Correction Motivation Failures/time proportional to number of bits As DRAM cells size & voltages shrink, more vulnerable Why was/is this not issue on your PC? Failure rate was low Few consumers would know what to do anyway DRAM banks too large so much memory that not likely to encounter an error Servers (always) correct memory system errors (e.g. usually use ECC) Sources Alpha particles (impurities in IC manufacturing) Cosmic rays (vary with altitude) Bigger problem in Denver and on space-bound electronics Noise Need to handle failures throughout memory subsystem DRAM chips, module, bus DRAM chips don t incorporate ECC Store the ECC bits in DRAM alongside the data bits Chipset (or integrated controller) handles ECC

17 Error Detection: Parity [from Bruce Jacob]

18 Error Correction Codes (ECC) Single bit error correction requires n+1 check bits for 2 n data bits

19 Error Correction Codes (ECC) =1^0^0^0 = 1 1

20 Error Correction Codes (ECC) Sent -> Recv d -> An example: decoding and verifying 1 1 =1^0^0^0 = 1 R

21 Error Correction Codes (ECC) Add another check bit SECDED Single Error Correction Double Error Detection requires n+2 check bits for 2 n data bits

22 Error Correction Codes (ECC) 64-bit data path + 8 bits ECC stored to DRAM module [from Bruce Jacob]

23 Memory Controllers

24 Memory Controllers Handle the actual interface to memory Determine memory configuration/capability Memory Timing/Signal interface Address Mapping Physical Address to Memory Topology Error Correction Scheduling Refresh WAS in North Bridge of chipset Intel prior to Nehalem MCH (Memory Controller Hub) Isolates mp from memory technology/device changes IS Integrated with microprocessor AMD, Intel Nehalem Low latency for high performance Opens possibility for processor-directed hints

25 Address Mapping Dual channels Memory module Channel ID Rank Row Bank Column

26 Address Mapping (cont d) Dual channels Memory module Channel ID Rank Row Bank Column Channel Physical path between CPU and memory Rank Group of DRAM chips operating in lockstep Same address, control, CS Responsible for subset of same word Bank Set of independent memory arrays in DRAM chip Row/Column Address of bit cell in a bank May be several planes to achieve n bits wide

27 Memory Scheduling Memory transactions: read, write DRAM commands: refresh, activate, read, write, precharge Memory scheduling policy Handle transaction requests Possibly from different cores Refresh Prioritize low/high priority CPU cache line fill request Prefetch Prioritize Read over Write Re-order to take advantage of open page in bank Page policy Open Page Close Page

28 Memory Scheduling Without access scheduling (56 DRAM cycles) Time (cycles) (0,0,0) (0,1,0) (0,0,1) (0,1,3) (1,0,0) (1,1,1) (1,0,1) (1,1,2) P A C P A C P A C P A C P A C P A C P A C P A C With access scheduling (19 DRAM cycles) (0,0,0) P A C (0,1,0) P A C (0,0,1) C C (0,1,3) (1,0,0) P A C (1,1,1) P A C (1,0,1) C (1,1,2) C (bank,row,col) DRAM commands P: bank precharge (3 cycles) A: row activation (3 cycles) C: column access (1 cycle)

29 Memory Access to Idle Bank

30 Memory Access to Active Page (Open Bank)

31 Memory Access to New Page (Open Bank)

32 Open page vs.close page policy Open page policy: Row hit latency: t CL +t BURST Row miss latency: t RP + t RCD + t CL + t BURST Close page policy: Row is closed after every access => no row hits Latency: t RCD + t CL + t BURST (slower than open page row hits but faster than open page row misses) Assume than n% of the accesses are row hits with open page policy, then the break-even point for leaving the page open (or close) will be: tr CD + t CL = (n * t CL ) + ((1 n) * (t RP +t RCD + t CL )) n = t RP / (t RP + t RCD )

Random Access Memory (RAM) Types of RAM. RAM Random Access Memory Jamie Tees SDRAM. Micro-DIMM SO-DIMM

Random Access Memory (RAM) Types of RAM. RAM Random Access Memory Jamie Tees SDRAM. Micro-DIMM SO-DIMM Random Access Memory (RAM) Sends/Receives data quickly between CPU This is way quicker than using just the HDD RAM holds temporary data used by any open application or active / running process Multiple

More information

Features. DDR SODIMM Product Datasheet. Rev. 1.0 Oct. 2011

Features. DDR SODIMM Product Datasheet. Rev. 1.0 Oct. 2011 Features 200pin, unbuffered small outline dual in-line memory module (SODIMM) Fast data transfer rates: PC-2100, PC-2700, PC3-3200 Single or Dual rank 256MB(32Megx64), 512MB (64Meg x 64), 1GB(128 Meg x

More information

Computer Architecture

Computer Architecture Computer Architecture Random Access Memory Technologies 2015. április 2. Budapest Gábor Horváth associate professor BUTE Dept. Of Networked Systems and Services ghorvath@hit.bme.hu 2 Storing data Possible

More information

1. Memory technology & Hierarchy

1. Memory technology & Hierarchy 1. Memory technology & Hierarchy RAM types Advances in Computer Architecture Andy D. Pimentel Memory wall Memory wall = divergence between CPU and RAM speed We can increase bandwidth by introducing concurrency

More information

Intel 965 Express Chipset Family Memory Technology and Configuration Guide

Intel 965 Express Chipset Family Memory Technology and Configuration Guide Intel 965 Express Chipset Family Memory Technology and Configuration Guide White Paper - For the Intel 82Q965, 82Q963, 82G965 Graphics and Memory Controller Hub (GMCH) and Intel 82P965 Memory Controller

More information

Intel X38 Express Chipset Memory Technology and Configuration Guide

Intel X38 Express Chipset Memory Technology and Configuration Guide Intel X38 Express Chipset Memory Technology and Configuration Guide White Paper January 2008 Document Number: 318469-002 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,

More information

A N. O N Output/Input-output connection

A N. O N Output/Input-output connection Memory Types Two basic types: ROM: Read-only memory RAM: Read-Write memory Four commonly used memories: ROM Flash, EEPROM Static RAM (SRAM) Dynamic RAM (DRAM), SDRAM, RAMBUS, DDR RAM Generic pin configuration:

More information

RAM. Overview DRAM. What RAM means? DRAM

RAM. Overview DRAM. What RAM means? DRAM Overview RAM In this chapter, you will learn how to Identify the different types of RAM packaging Explain the varieties of DRAM Install RAM properly Perform basic RAM troubleshooting Program Execution

More information

DDR SDRAM SODIMM. MT9VDDT1672H 128MB 1 MT9VDDT3272H 256MB MT9VDDT6472H 512MB For component data sheets, refer to Micron s Web site: www.micron.

DDR SDRAM SODIMM. MT9VDDT1672H 128MB 1 MT9VDDT3272H 256MB MT9VDDT6472H 512MB For component data sheets, refer to Micron s Web site: www.micron. Features DDR SDRAM SODIMM MT9VDDT1672H 128MB 1 MT9VDDT3272H 256MB MT9VDDT6472H 512MB For component data sheets, refer to Micron s Web site: www.micron.com Features 200-pin, small-outline dual in-line memory

More information

Intel Q35/Q33, G35/G33/G31, P35/P31 Express Chipset Memory Technology and Configuration Guide

Intel Q35/Q33, G35/G33/G31, P35/P31 Express Chipset Memory Technology and Configuration Guide Intel Q35/Q33, G35/G33/G31, P35/P31 Express Chipset Memory Technology and Configuration Guide White Paper August 2007 Document Number: 316971-002 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION

More information

DDR SDRAM UDIMM MT16VDDT6464A 512MB MT16VDDT12864A 1GB MT16VDDT25664A 2GB

DDR SDRAM UDIMM MT16VDDT6464A 512MB MT16VDDT12864A 1GB MT16VDDT25664A 2GB DDR SDRAM UDIMM MT16VDDT6464A 512MB MT16VDDT12864A 1GB MT16VDDT25664A 2GB For component data sheets, refer to Micron s Web site: www.micron.com 512MB, 1GB, 2GB (x64, DR) 184-Pin DDR SDRAM UDIMM Features

More information

1.55V DDR2 SDRAM FBDIMM

1.55V DDR2 SDRAM FBDIMM 1.55V DDR2 SDRAM FBDIMM MT18RTF25672FDZ 2GB 2GB (x72, DR) 240-Pin DDR2 SDRAM FBDIMM Features Features 240-pin, fully buffered DIMM (FBDIMM) Very low-power DDR2 operation Component configuration: 256 Meg

More information

Configuring and using DDR3 memory with HP ProLiant Gen8 Servers

Configuring and using DDR3 memory with HP ProLiant Gen8 Servers Engineering white paper, 2 nd Edition Configuring and using DDR3 memory with HP ProLiant Gen8 Servers Best Practice Guidelines for ProLiant servers with Intel Xeon processors Table of contents Introduction

More information

DDR4 Memory Technology on HP Z Workstations

DDR4 Memory Technology on HP Z Workstations Technical white paper DDR4 Memory Technology on HP Z Workstations DDR4 is the latest memory technology available for main memory on mobile, desktops, workstations, and server computers. DDR stands for

More information

DDR SDRAM SODIMM. MT8VDDT3264H 256MB 1 MT8VDDT6464H 512MB For component data sheets, refer to Micron s Web site: www.micron.com

DDR SDRAM SODIMM. MT8VDDT3264H 256MB 1 MT8VDDT6464H 512MB For component data sheets, refer to Micron s Web site: www.micron.com SODIMM MT8VDDT3264H 256MB 1 MT8VDDT6464H 512MB For component data sheets, refer to Micron s Web site: www.micron.com 256MB, 512MB (x64, SR) 200-Pin SODIMM Features Features 200-pin, small-outline dual

More information

Table 1: Address Table

Table 1: Address Table DDR SDRAM DIMM D32PB12C 512MB D32PB1GJ 1GB For the latest data sheet, please visit the Super Talent Electronics web site: www.supertalentmemory.com Features 184-pin, dual in-line memory module (DIMM) Fast

More information

DDR2 SDRAM SODIMM MT8HTF6464HDZ 512MB MT8HTF12864HDZ 1GB. Features. 512MB, 1GB (x64, DR) 200-Pin DDR2 SODIMM. Features

DDR2 SDRAM SODIMM MT8HTF6464HDZ 512MB MT8HTF12864HDZ 1GB. Features. 512MB, 1GB (x64, DR) 200-Pin DDR2 SODIMM. Features DDR SDRAM SODIMM MT8HTF6464HDZ 5MB MT8HTF864HDZ GB 5MB, GB (x64, DR) 00-Pin DDR SODIMM Features Features 00-pin, small-outline dual in-line memory module (SODIMM) Fast data transfer rates: PC-300, PC-400,

More information

DDR2 SDRAM SODIMM MT16HTF12864H 1GB MT16HTF25664H 2GB

DDR2 SDRAM SODIMM MT16HTF12864H 1GB MT16HTF25664H 2GB Features DDR2 SDRAM SODIMM MT16HTF12864H 1GB MT16HTF25664H 2GB For component data sheets, refer to Micron s Web site: www.micron.com Features 200-pin, small outline dual in-line memory module (SODIMM)

More information

DDR SDRAM SODIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB

DDR SDRAM SODIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB SODIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB 512MB, 1GB (x64, DR) 200-Pin DDR SODIMM Features For component data sheets, refer to Micron s Web site: www.micron.com Features 200-pin, small-outline dual

More information

DDR3 memory technology

DDR3 memory technology DDR3 memory technology Technology brief, 3 rd edition Introduction... 2 DDR3 architecture... 2 Types of DDR3 DIMMs... 2 Unbuffered and Registered DIMMs... 2 Load Reduced DIMMs... 3 LRDIMMs and rank multiplication...

More information

Computer Systems Structure Main Memory Organization

Computer Systems Structure Main Memory Organization Computer Systems Structure Main Memory Organization Peripherals Computer Central Processing Unit Main Memory Computer Systems Interconnection Communication lines Input Output Ward 1 Ward 2 Storage/Memory

More information

Configuring Memory on the HP Business Desktop dx5150

Configuring Memory on the HP Business Desktop dx5150 Configuring Memory on the HP Business Desktop dx5150 Abstract... 2 Glossary of Terms... 2 Introduction... 2 Main Memory Configuration... 3 Single-channel vs. Dual-channel... 3 Memory Type and Speed...

More information

GR2DR4B-EXXX/YYY/LP 1GB & 2GB DDR2 REGISTERED DIMMs (LOW PROFILE)

GR2DR4B-EXXX/YYY/LP 1GB & 2GB DDR2 REGISTERED DIMMs (LOW PROFILE) GENERAL DESCRIPTION The Gigaram is a 128M/256M bit x 72 DDDR2 SDRAM high density JEDEC standard ECC Registered memory module. The Gigaram consists of eighteen CMOS 128MX4 DDR2 for 1GB and thirty-six CMOS

More information

DDR2 SDRAM SODIMM MT4HTF6464HZ 512MB. Features. 512MB (x64, SR) 200-Pin DDR2 SODIMM. Features. Figure 1: 200-Pin SODIMM (MO-224 R/C C)

DDR2 SDRAM SODIMM MT4HTF6464HZ 512MB. Features. 512MB (x64, SR) 200-Pin DDR2 SODIMM. Features. Figure 1: 200-Pin SODIMM (MO-224 R/C C) DDR2 SDRAM SODIMM MT4HTF6464HZ 512MB 512MB (x64, SR) 200-Pin DDR2 SODIMM Features Features 200-pin, small-outline dual in-line memory module (SODIMM) Fast data transfer rates: PC2-3200, PC2-4200, PC2-5300,

More information

DDR2 SDRAM SODIMM MT8HTF3264HD 256MB MT8HTF6464HD 512MB MT8HTF12864HD 1GB For component data sheets, refer to Micron s Web site: www.micron.

DDR2 SDRAM SODIMM MT8HTF3264HD 256MB MT8HTF6464HD 512MB MT8HTF12864HD 1GB For component data sheets, refer to Micron s Web site: www.micron. DDR2 SDRAM SODIMM MT8HTF3264HD 256MB MT8HTF6464HD 512MB MT8HTF12864HD 1GB For component data sheets, refer to Micron s Web site: www.micron.com 256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SODIMM Features

More information

are un-buffered 200-Pin Double Data Rate (DDR) Synchronous DRAM Small Outline Dual In-Line Memory Module (SO-DIMM). All devices

are un-buffered 200-Pin Double Data Rate (DDR) Synchronous DRAM Small Outline Dual In-Line Memory Module (SO-DIMM). All devices PC2700 200 pin Unbuffered DDR SO-DIMM Based on DDR333 512Mb bit B Die device Features 200-Pin Small Outline Dual In-Line Memory Module (SO-DIMM) Unbuffered DDR SO-DIMM based on 110nm 512M bit die B device,

More information

Memory unit. 2 k words. n bits per word

Memory unit. 2 k words. n bits per word 9- k address lines Read n data input lines Memory unit 2 k words n bits per word n data output lines 24 Pearson Education, Inc M Morris Mano & Charles R Kime 9-2 Memory address Binary Decimal Memory contents

More information

ThinkServer PC2-5300 DDR2 FBDIMM and PC2-6400 DDR2 SDRAM Memory options boost overall performance of ThinkServer solutions

ThinkServer PC2-5300 DDR2 FBDIMM and PC2-6400 DDR2 SDRAM Memory options boost overall performance of ThinkServer solutions , dated September 30, 2008 ThinkServer PC2-5300 DDR2 FBDIMM and PC2-6400 DDR2 SDRAM Memory options boost overall performance of ThinkServer solutions Table of contents 2 Key prerequisites 2 Product number

More information

-80E PC2-6400 800 800 533 400 12.5 12.5 55-667 PC2-5300 667 533 400 15 15 55-53E PC2-4200 533 400 15 15 55

-80E PC2-6400 800 800 533 400 12.5 12.5 55-667 PC2-5300 667 533 400 15 15 55-53E PC2-4200 533 400 15 15 55 SDRAM FBDIMM MT18HTF12872FDZ 1GB MT18HTF25672FDZ 2GB 1GB, 2GB (x72, DR) 240-Pin SDRAM FBDIMM Features Features 240-pin, fully buffered dual in-line memory module (FBDIMM) Fast data transfer rates: PC2-4200,

More information

Byte Ordering of Multibyte Data Items

Byte Ordering of Multibyte Data Items Byte Ordering of Multibyte Data Items Most Significant Byte (MSB) Least Significant Byte (LSB) Big Endian Byte Addresses +0 +1 +2 +3 +4 +5 +6 +7 VALUE (8-byte) Least Significant Byte (LSB) Most Significant

More information

Features. DDR3 SODIMM Product Specification. Rev. 1.7 Feb. 2016

Features. DDR3 SODIMM Product Specification. Rev. 1.7 Feb. 2016 Features DDR3 functionality and operations supported as defined in the component data sheet 204pin, small-outline dual in-line memory module (SODIMM) Fast data transfer rates: DDR3-1066(PC3-8500) DDR3-1333(PC3-10600)

More information

Samsung DDR4 SDRAM DDR4 SDRAM

Samsung DDR4 SDRAM DDR4 SDRAM Samsung DDR4 SDRAM The new generation of high-performance, power-efficient memory that delivers greater reliability for enterprise applications DDR4 SDRAM An optimized memory for enterprise-level workloads

More information

DDR2 SDRAM SODIMM MT8HTF12864HZ 1GB MT8HTF25664HZ 2GB. Features. 1GB, 2GB (x64, SR) 200-Pin DDR2 SDRAM SODIMM. Features

DDR2 SDRAM SODIMM MT8HTF12864HZ 1GB MT8HTF25664HZ 2GB. Features. 1GB, 2GB (x64, SR) 200-Pin DDR2 SDRAM SODIMM. Features DDR2 SDRAM SODIMM MT8HTF12864HZ 1GB MT8HTF25664HZ 2GB 1GB, 2GB (x64, SR) 200-Pin DDR2 SDRAM SODIMM Features Features 200-pin, small-outline dual in-line memory module (SODIMM) Fast data transfer rates:

More information

Technical Note DDR2 Offers New Features and Functionality

Technical Note DDR2 Offers New Features and Functionality Technical Note DDR2 Offers New Features and Functionality TN-47-2 DDR2 Offers New Features/Functionality Introduction Introduction DDR2 SDRAM introduces features and functions that go beyond the DDR SDRAM

More information

Tuning DDR4 for Power and Performance. Mike Micheletti Product Manager Teledyne LeCroy

Tuning DDR4 for Power and Performance. Mike Micheletti Product Manager Teledyne LeCroy Tuning DDR4 for Power and Performance Mike Micheletti Product Manager Teledyne LeCroy Agenda Introduction DDR4 Technology Expanded role of MRS Power Features Examined Reliability Features Examined Performance

More information

DDR2 SDRAM FBDIMM MT18HTF12872FD 1GB MT18HTF25672FD 2GB. Features. 1GB, 2GB (x72, DR) 240-Pin DDR2 SDRAM FBDIMM. Features

DDR2 SDRAM FBDIMM MT18HTF12872FD 1GB MT18HTF25672FD 2GB. Features. 1GB, 2GB (x72, DR) 240-Pin DDR2 SDRAM FBDIMM. Features SDRAM FBDIMM MT18HTF12872FD 1GB MT18HTF25672FD 2GB 1GB, 2GB (x72, DR) 240-Pin SDRAM FBDIMM Features Features 240-pin, fully buffered dual in-line memory module (FBDIMM) Fast data transfer rates: PC2-4200,

More information

DDR2 SDRAM UDIMM MT18HTF6472AY 512MB MT18HTF12872AY 1GB MT18HTF25672AY 2GB MT18HTF51272AY 4GB. Features

DDR2 SDRAM UDIMM MT18HTF6472AY 512MB MT18HTF12872AY 1GB MT18HTF25672AY 2GB MT18HTF51272AY 4GB. Features DDR SDRAM UDIMM MT8HTF647AY 5MB MT8HTF87AY GB MT8HTF567AY GB MT8HTF57AY 4GB 5MB, GB, GB, 4GB (x7, DR) 40-Pin DDR SDRAM UDIMM Features Features 40-pin, unbuffered dual in-line memory module Fast data transfer

More information

Tuning DDR4 for Power and Performance. Mike Micheletti Product Manager Teledyne LeCroy

Tuning DDR4 for Power and Performance. Mike Micheletti Product Manager Teledyne LeCroy Tuning DDR4 for Power and Performance Mike Micheletti Product Manager Teledyne LeCroy Agenda Introduction DDR4 Technology Expanded role of MRS Power Features Examined Reliability Features Examined Performance

More information

User s Manual HOW TO USE DDR SDRAM

User s Manual HOW TO USE DDR SDRAM User s Manual HOW TO USE DDR SDRAM Document No. E0234E30 (Ver.3.0) Date Published April 2002 (K) Japan URL: http://www.elpida.com Elpida Memory, Inc. 2002 INTRODUCTION This manual is intended for users

More information

DDR3(L) 4GB / 8GB UDIMM

DDR3(L) 4GB / 8GB UDIMM DRAM (512Mb x 8) DDR3(L) 4GB/8GB UDIMM DDR3(L) 4GB / 8GB UDIMM Features Nanya Technology Corp. DDR3(L) 4Gb B-Die JEDEC DDR3(L) Compliant 1-8n Prefetch Architecture - Differential Clock(CK/ ) and Data Strobe(/

More information

DDR2 SDRAM SODIMM MT16HTF12864HZ 1GB MT16HTF25664HZ 2GB MT16HTF51264HZ 4GB. Features. 1GB, 2GB, 4GB (x64, DR) 200-Pin DDR2 SDRAM SODIMM.

DDR2 SDRAM SODIMM MT16HTF12864HZ 1GB MT16HTF25664HZ 2GB MT16HTF51264HZ 4GB. Features. 1GB, 2GB, 4GB (x64, DR) 200-Pin DDR2 SDRAM SODIMM. DDR SDRAM SODIMM MT6HTF864HZ GB MT6HTF5664HZ GB MT6HTF564HZ 4GB GB, GB, 4GB (x64, DR) 00-Pin DDR SDRAM SODIMM Features Features 00-pin, small-outline dual in-line memory module (SODIMM) Fast data transfer

More information

DDR2 SDRAM FBDIMM MT36HTF25672F 2GB MT36HTF51272F 4GB. Features. 2GB, 4GB (x72, DR) 240-Pin DDR2 SDRAM FBDIMM. Features

DDR2 SDRAM FBDIMM MT36HTF25672F 2GB MT36HTF51272F 4GB. Features. 2GB, 4GB (x72, DR) 240-Pin DDR2 SDRAM FBDIMM. Features SDRAM FBDIMM MT36HTF25672F 2GB MT36HTF51272F 4GB 2GB, 4GB (x72, DR) 240-Pin SDRAM FBDIMM Features Features 240-pin, fully buffered DIMM (FBDIMM) Fast data transfer rates: PC2-4200, PC2-5300, or PC2-6400

More information

DDR SDRAM Small-Outline DIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB

DDR SDRAM Small-Outline DIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB Features DDR SDRAM Small-Outline DIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB For the latest component data sheet, refer to the Micron's Web site: www.micron.com/products/modules Features 200-pin, small-outline,

More information

Address Summary Table: 128MB 256MB 512MB 1GB 2GB Module

Address Summary Table: 128MB 256MB 512MB 1GB 2GB Module 12MB - WD1SN12X0 256MB - WD1SN256X0 512MB - WD1SN512X0 1GB - WD1SN01GX0 2GB - WD1SN02GS0 (Stacked) Features: 200-pin Unbuffered Non-ECC DDR SDRAM SODIMM for DDR-266, DDR-333, DDR-400 JEDEC standard VDD=2.5V

More information

Semiconductor Device Technology for Implementing System Solutions: Memory Modules

Semiconductor Device Technology for Implementing System Solutions: Memory Modules Hitachi Review Vol. 47 (1998), No. 4 141 Semiconductor Device Technology for Implementing System Solutions: Memory Modules Toshio Sugano Atsushi Hiraishi Shin ichi Ikenaga ABSTRACT: New technology is producing

More information

Table Of Contents. Page 2 of 26. *Other brands and names may be claimed as property of others.

Table Of Contents. Page 2 of 26. *Other brands and names may be claimed as property of others. Technical White Paper Revision 1.1 4/28/10 Subject: Optimizing Memory Configurations for the Intel Xeon processor 5500 & 5600 series Author: Scott Huck; Intel DCG Competitive Architect Target Audience:

More information

ADQYF1A08. DDR2-1066G(CL6) 240-Pin O.C. U-DIMM 1GB (128M x 64-bits)

ADQYF1A08. DDR2-1066G(CL6) 240-Pin O.C. U-DIMM 1GB (128M x 64-bits) General Description ADQYF1A08 DDR2-1066G(CL6) 240-Pin O.C. U-DIMM 1GB (128M x 64-bits) The ADATA s ADQYF1A08 is a 128Mx64 bits 1GB DDR2-1066(CL6) SDRAM over clocking memory module, The SPD is programmed

More information

Technical Note. Initialization Sequence for DDR SDRAM. Introduction. Initializing DDR SDRAM

Technical Note. Initialization Sequence for DDR SDRAM. Introduction. Initializing DDR SDRAM TN-46-8: Initialization Sequence for DDR SDRAM Introduction Technical Note Initialization Sequence for DDR SDRAM Introduction The double data rate DDR synchronous dynamic random access memory SDRAM device

More information

Memory technology evolution: an overview of system memory technologies

Memory technology evolution: an overview of system memory technologies Memory technology evolution: an overview of system memory technologies Technology brief, 9 th edition Introduction... 2 Basic DRAM operation... 2 DRAM storage density and power consumption... 4 Memory

More information

Measuring Cache and Memory Latency and CPU to Memory Bandwidth

Measuring Cache and Memory Latency and CPU to Memory Bandwidth White Paper Joshua Ruggiero Computer Systems Engineer Intel Corporation Measuring Cache and Memory Latency and CPU to Memory Bandwidth For use with Intel Architecture December 2008 1 321074 Executive Summary

More information

DDR2 SDRAM FBDIMM MT36HTF51272FDZ 4GB. Features. 4GB (x72, QR) 240-Pin DDR2 SDRAM FBDIMM. Features. Features (Continued)

DDR2 SDRAM FBDIMM MT36HTF51272FDZ 4GB. Features. 4GB (x72, QR) 240-Pin DDR2 SDRAM FBDIMM. Features. Features (Continued) SDRAM FBDIMM MT36HTF51272FDZ 4GB 4GB (x72, QR) 240-Pin SDRAM FBDIMM Features Features 240-pin, fully buffered DIMM (FBDIMM) Fast data transfer rates: PC2-4200, PC2-5300, or PC2-6400 4GB (512 Meg x 72)

More information

OpenSPARC T1 Processor

OpenSPARC T1 Processor OpenSPARC T1 Processor The OpenSPARC T1 processor is the first chip multiprocessor that fully implements the Sun Throughput Computing Initiative. Each of the eight SPARC processor cores has full hardware

More information

Lecture 9: Memory and Storage Technologies

Lecture 9: Memory and Storage Technologies CS61: Systems Programming and Machine Organization Harvard University, Fall 2009 Lecture 9: Memory and Storage Technologies October 1, 2009 Announcements Lab 3 has been released! You are welcome to switch

More information

Technical Product Specifications Dell Dimension 2400 Created by: Scott Puckett

Technical Product Specifications Dell Dimension 2400 Created by: Scott Puckett Technical Product Specifications Dell Dimension 2400 Created by: Scott Puckett Page 1 of 11 Table of Contents Technical Product Specifications Model 3 PC Technical Diagrams Front Exterior Specifications

More information

ThinkServer PC3-10600 DDR3 1333MHz UDIMM and RDIMM PC3-8500 DDR3 1066MHz RDIMM options for the next generation of ThinkServer systems TS200 and RS210

ThinkServer PC3-10600 DDR3 1333MHz UDIMM and RDIMM PC3-8500 DDR3 1066MHz RDIMM options for the next generation of ThinkServer systems TS200 and RS210 Hardware Announcement ZG09-0894, dated vember 24, 2009 ThinkServer PC3-10600 DDR3 1333MHz UDIMM and RDIMM PC3-8500 DDR3 1066MHz RDIMM options for the next generation of ThinkServer systems TS200 and RS210

More information

Chapter 6. Inside the System Unit. What You Will Learn... Computers Are Your Future. What You Will Learn... Describing Hardware Performance

Chapter 6. Inside the System Unit. What You Will Learn... Computers Are Your Future. What You Will Learn... Describing Hardware Performance What You Will Learn... Computers Are Your Future Chapter 6 Understand how computers represent data Understand the measurements used to describe data transfer rates and data storage capacity List the components

More information

-80E PC2-6400 800 800 533 400 12.5 12.5 55-667 PC2-5300 667 533 400 15 15 55-53E PC2-4200 533 400 15 15 55

-80E PC2-6400 800 800 533 400 12.5 12.5 55-667 PC2-5300 667 533 400 15 15 55-53E PC2-4200 533 400 15 15 55 SDRAM FBDIMM MT36HTF25672FZ 2GB MT36HTF51272FZ 4GB MT36HTF1G72FZ 8GB 2GB, 4GB, 8GB (x72, DR) 240-Pin SDRAM FBDIMM Features Features 240-pin, fully buffered dual in-line memory module (FBDIMM) Fast data

More information

DDR subsystem: Enhancing System Reliability and Yield

DDR subsystem: Enhancing System Reliability and Yield DDR subsystem: Enhancing System Reliability and Yield Agenda Evolution of DDR SDRAM standards What is the variation problem? How DRAM standards tackle system variability What problems have been adequately

More information

Memory Module Specifications KVR667D2D4F5/4G. 4GB 512M x 72-Bit PC2-5300 CL5 ECC 240-Pin FBDIMM DESCRIPTION SPECIFICATIONS

Memory Module Specifications KVR667D2D4F5/4G. 4GB 512M x 72-Bit PC2-5300 CL5 ECC 240-Pin FBDIMM DESCRIPTION SPECIFICATIONS Memory Module Specifications KVR667DD4F5/4G 4GB 5M x 7-Bit PC-5300 CL5 ECC 40- FBDIMM DESCRIPTION This document describes s 4GB (5M x 7-bit) PC-5300 CL5 SDRAM (Synchronous DRAM) fully buffered ECC dual

More information

DDR2 SDRAM UDIMM MT16HTF6464AY 512MB MT16HTF12864AY 1GB MT16HTF25664AY 2GB MT16HTF51264AY 4GB. Features

DDR2 SDRAM UDIMM MT16HTF6464AY 512MB MT16HTF12864AY 1GB MT16HTF25664AY 2GB MT16HTF51264AY 4GB. Features DDR SDRAM UDMM MT6HTF6464AY 5MB MT6HTF864AY GB MT6HTF5664AY GB MT6HTF564AY 4GB 5MB, GB, GB, 4GB (x64, DR) 40-Pin DDR UDMM Features Features 40-pin, unbuffered dual in-line memory module Fast data transfer

More information

DDR2 SDRAM FBDIMM MT9HTF6472F 512MB MT9HTF12872F 1GB. Features. 512MB, 1GB (x72, SR) 240-Pin DDR2 SDRAM FBDIMM. Features

DDR2 SDRAM FBDIMM MT9HTF6472F 512MB MT9HTF12872F 1GB. Features. 512MB, 1GB (x72, SR) 240-Pin DDR2 SDRAM FBDIMM. Features SDRAM FBDIMM MT9HTF6472F 512MB MT9HTF12872F 1GB 512MB, 1GB (x72, SR) 240-Pin SDRAM FBDIMM Features Features 240-pin, fully buffered DIMM (FBDIMM) Fast data transfer rates: PC2-4200, PC2-5300, or PC2-6400

More information

DDR3 SDRAM UDIMM MT8JTF12864A 1GB MT8JTF25664A 2GB

DDR3 SDRAM UDIMM MT8JTF12864A 1GB MT8JTF25664A 2GB DDR3 SDRAM UDIMM MT8JTF12864A 1GB MT8JTF25664A 2GB 1GB, 2GB (x64, SR) 240-Pin DDR3 SDRAM UDIMM Features For component data sheets, refer to Micron s Web site: www.micron.com Features DDR3 functionality

More information

The Central Processing Unit:

The Central Processing Unit: The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Objectives Identify the components of the central processing unit and how they work together and interact with memory Describe how

More information

Memory Module Specifications KVR667D2D8F5/2GI. 2GB 256M x 72-Bit PC2-5300 CL5 ECC 240-Pin FBDIMM DESCRIPTION SPECIFICATIONS

Memory Module Specifications KVR667D2D8F5/2GI. 2GB 256M x 72-Bit PC2-5300 CL5 ECC 240-Pin FBDIMM DESCRIPTION SPECIFICATIONS Memory Module Specifications KVR667DD8F5/GI GB 56M x 7-Bit PC-5300 CL5 ECC 40- FBDIMM DESCRIPTION This document describes s GB (56M x 7-bit) PC-5300 CL5 (Synchronous DRAM) fully buffered ECC dual rank,

More information

Dell PowerEdge Servers 2009 - Memory

Dell PowerEdge Servers 2009 - Memory Dell PowerEdge Servers 2009 - Memory A Dell Technical White Paper By Paul Benson Dell Enterprise Development February 2009 1 THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL

More information

V58C2512(804/404/164)SB HIGH PERFORMANCE 512 Mbit DDR SDRAM 4 BANKS X 16Mbit X 8 (804) 4 BANKS X 32Mbit X 4 (404) 4 BANKS X 8Mbit X 16 (164)

V58C2512(804/404/164)SB HIGH PERFORMANCE 512 Mbit DDR SDRAM 4 BANKS X 16Mbit X 8 (804) 4 BANKS X 32Mbit X 4 (404) 4 BANKS X 8Mbit X 16 (164) V58C2512804/404/164SB HIGH PERFORMAE 512 Mbit DDR SDRAM 4 BANKS X 16Mbit X 8 804 4 BANKS X 32Mbit X 4 404 4 BANKS X 8Mbit X 16 164 5 6 75 DDR400 DDR333 DDR266 Clock Cycle Time t CK2.5 6ns 6ns 7.5ns Clock

More information

Features. DDR3 Unbuffered DIMM Spec Sheet

Features. DDR3 Unbuffered DIMM Spec Sheet Features DDR3 functionality and operations supported as defined in the component data sheet 240-pin, unbuffered dual in-line memory module (UDIMM) Fast data transfer rates: PC3-8500, PC3-10600, PC3-12800

More information

White Paper Utilizing Leveling Techniques in DDR3 SDRAM Memory Interfaces

White Paper Utilizing Leveling Techniques in DDR3 SDRAM Memory Interfaces White Paper Introduction The DDR3 SDRAM memory architectures support higher bandwidths with bus rates of 600 Mbps to 1.6 Gbps (300 to 800 MHz), 1.5V operation for lower power, and higher densities of 2

More information

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit. Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how

More information

DDR3 SDRAM SODIMM MT16JSF25664HZ 2GB MT16JSF51264HZ 4GB. Features. 2GB, 4GB (x64, DR) 204-Pin Halogen-Free DDR3 SODIMM. Features

DDR3 SDRAM SODIMM MT16JSF25664HZ 2GB MT16JSF51264HZ 4GB. Features. 2GB, 4GB (x64, DR) 204-Pin Halogen-Free DDR3 SODIMM. Features DDR3 SDRAM SODIMM MT6JSF5664HZ GB MT6JSF564HZ 4GB GB, 4GB (x64, DR) 04-Pin Halogen-Free DDR3 SODIMM Features Features DDR3 functionality and operations supported as defined in the component data sheet

More information

Server: Performance Benchmark. Memory channels, frequency and performance

Server: Performance Benchmark. Memory channels, frequency and performance KINGSTON.COM Best Practices Server: Performance Benchmark Memory channels, frequency and performance Although most people don t realize it, the world runs on many different types of databases, all of which

More information

DDR3 SDRAM SODIMM MT8JSF25664HDZ 2GB. Features. 2GB (x64, DR) 204-Pin DDR3 SODIMM. Features. Figure 1: 204-Pin SODIMM (MO-268 R/C A)

DDR3 SDRAM SODIMM MT8JSF25664HDZ 2GB. Features. 2GB (x64, DR) 204-Pin DDR3 SODIMM. Features. Figure 1: 204-Pin SODIMM (MO-268 R/C A) DDR3 SDRAM SODIMM MT8JSF5664HDZ GB GB (x64, DR) 04-Pin DDR3 SODIMM Features Features DDR3 functionality and operations supported as defined in the component data sheet 04-pin, small-outline dual in-line

More information

Kingston Technology. Server Architecture and Kingston Memory Solutions. May 2015. Ingram Micro. Mike Mohney Senior Technology Manager, TRG

Kingston Technology. Server Architecture and Kingston Memory Solutions. May 2015. Ingram Micro. Mike Mohney Senior Technology Manager, TRG Kingston Technology Server Architecture and Kingston Memory Solutions Ingram Micro May 2015 Mike Mohney Senior Technology Manager, TRG 2015 Kingston Technology Corporation. All rights reserved. All trademarks

More information

Memory ICS 233. Computer Architecture and Assembly Language Prof. Muhamed Mudawar

Memory ICS 233. Computer Architecture and Assembly Language Prof. Muhamed Mudawar Memory ICS 233 Computer Architecture and Assembly Language Prof. Muhamed Mudawar College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Presentation Outline Random

More information

What Every Programmer Should Know About Memory

What Every Programmer Should Know About Memory What Every Programmer Should Know About Memory Ulrich Drepper Red Hat, Inc. drepper@redhat.com November 21, 2007 1 Introduction Abstract As CPU cores become both faster and more numerous, the limiting

More information

Understanding Memory TYPES OF MEMORY

Understanding Memory TYPES OF MEMORY Understanding Memory TYPES OF MEMORY In this study unit, you ll learn about physical and logical memory. Physical memory comes in two types, random access memory (RAM) and read-only memory (ROM). Typically,

More information

DDR SDRAM RDIMM MT36VDDF12872 1GB MT36VDDF25672 2GB

DDR SDRAM RDIMM MT36VDDF12872 1GB MT36VDDF25672 2GB DDR SDRAM RDIMM MT36VDDF12872 1GB MT36VDDF25672 2GB For component data sheets, refer to Micron s Web site: www.micron.com 1GB, 2GB (x72, ECC, DR) 184-Pin DDR SDRAM RDIMM Features Features 184-pin, registered

More information

Memory. The memory types currently in common usage are:

Memory. The memory types currently in common usage are: ory ory is the third key component of a microprocessor-based system (besides the CPU and I/O devices). More specifically, the primary storage directly addressed by the CPU is referred to as main memory

More information

Intel 865G, Intel 865P, Intel 865PE Chipset Memory Configuration Guide

Intel 865G, Intel 865P, Intel 865PE Chipset Memory Configuration Guide G, P, PE Chipset Memory Configuration Guide White Paper May 2003 Document Number: 253036-001 INFOMATION IN THIS DOCUMENT IS POVIDED IN CONNECTION WITH INTEL PODUCTS. NO LICENSE, EXPESS O IMPLIED, BY ESTOPPEL

More information

Contents. 1. Trends 2. Markets 3. Requirements 4. Solutions

Contents. 1. Trends 2. Markets 3. Requirements 4. Solutions Server Memory Forum Shenzhen 2012 Contents 1. Trends 2. Markets 3. Requirements 4. Solutions Big Client Big Iron Evolution of IT Infra Architecture Mainframe Powerful PC Server- Client The Web : Thin client

More information

DDR3 SDRAM UDIMM MT16JTF25664AZ 2GB MT16JTF51264AZ 4GB MT16JTF1G64AZ 8GB. Features. 2GB, 4GB, 8GB (x64, DR) 240-Pin DDR3 UDIMM.

DDR3 SDRAM UDIMM MT16JTF25664AZ 2GB MT16JTF51264AZ 4GB MT16JTF1G64AZ 8GB. Features. 2GB, 4GB, 8GB (x64, DR) 240-Pin DDR3 UDIMM. DDR3 SDRAM UDIMM MT6JTF5664AZ GB MT6JTF564AZ 4GB MT6JTFG64AZ 8GB GB, 4GB, 8GB (x64, DR) 40-Pin DDR3 UDIMM Features Features DDR3 functionality and operations supported as per component data sheet 40-pin,

More information

Homework # 2. Solutions. 4.1 What are the differences among sequential access, direct access, and random access?

Homework # 2. Solutions. 4.1 What are the differences among sequential access, direct access, and random access? ECE337 / CS341, Fall 2005 Introduction to Computer Architecture and Organization Instructor: Victor Manuel Murray Herrera Date assigned: 09/19/05, 05:00 PM Due back: 09/30/05, 8:00 AM Homework # 2 Solutions

More information

Memory Basics. SRAM/DRAM Basics

Memory Basics. SRAM/DRAM Basics Memory Basics RAM: Random Access Memory historically defined as memory array with individual bit access refers to memory with both Read and Write capabilities ROM: Read Only Memory no capabilities for

More information

SOLVING HIGH-SPEED MEMORY INTERFACE CHALLENGES WITH LOW-COST FPGAS

SOLVING HIGH-SPEED MEMORY INTERFACE CHALLENGES WITH LOW-COST FPGAS SOLVING HIGH-SPEED MEMORY INTERFACE CHALLENGES WITH LOW-COST FPGAS A Lattice Semiconductor White Paper May 2005 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503)

More information

Technical Note FBDIMM Channel Utilization (Bandwidth and Power)

Technical Note FBDIMM Channel Utilization (Bandwidth and Power) Introduction Technical Note Channel Utilization (Bandwidth and Power) Introduction Memory architectures are shifting from stub bus technology to high-speed linking. The traditional stub bus works well

More information

Standard: 64M x 8 (9 components)

Standard: 64M x 8 (9 components) 256MB - WD2RE256X09 512MB - WD2RE512X09 1GB - WD2RE01GX09 2GB - WD2RE02GH09 (Stacked, Preliminary*) DDR2-400, 533,667 One Rank, x Registered SDRAM DIMM Pb-free Features: 240-pin Registered ECC DDR2 SDRAM

More information

Highlights of the High- Bandwidth Memory (HBM) Standard

Highlights of the High- Bandwidth Memory (HBM) Standard Highlights of the High- Bandwidth Memory (HBM) Standard Mike O Connor Sr. Research Scientist What is High-Bandwidth Memory (HBM)? Memory standard designed for needs of future GPU and HPC systems: Exploit

More information

Mother Board Component

Mother Board Component Mother Board Component Explain Introduction Mother Board Component 1.Clock Generator 2. CPU socket 3. Memory Socket Memory error checking 4. ROM Bios 5. CMOS Ram 6. Battery 7. Chipset 8. Expansion Slot

More information

A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware

A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware A+ Guide to Managing and Maintaining Your PC, 7e Chapter 1 Introducing Hardware Objectives Learn that a computer requires both hardware and software to work Learn about the many different hardware components

More information

Memory Hierarchy. Arquitectura de Computadoras. Centro de Investigación n y de Estudios Avanzados del IPN. adiaz@cinvestav.mx. MemoryHierarchy- 1

Memory Hierarchy. Arquitectura de Computadoras. Centro de Investigación n y de Estudios Avanzados del IPN. adiaz@cinvestav.mx. MemoryHierarchy- 1 Hierarchy Arturo Díaz D PérezP Centro de Investigación n y de Estudios Avanzados del IPN adiaz@cinvestav.mx Hierarchy- 1 The Big Picture: Where are We Now? The Five Classic Components of a Computer Processor

More information

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1 Module 2 Embedded Processors and Memory Version 2 EE IIT, Kharagpur 1 Lesson 5 Memory-I Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would Pre-Requisite

More information

DDR4 Module Part Numbering System The part numbering system is available at

DDR4 Module Part Numbering System The part numbering system is available at DDR4 Module Part Numbering System DDR4 SDRAM modules MT A 36 A SF 2G 72 P Z - 2G3 A 1 Product Family A = DDR4 SDRAM (up to 2 characters) DDR4 SDRAM Modules A = 1.2V Module Component Clock Data Module Speed

More information

DDR3 DIMM Slot Interposer

DDR3 DIMM Slot Interposer DDR3 DIMM Slot Interposer DDR3-1867 Digital Validation High Speed DDR3 Digital Validation Passive 240-pin DIMM Slot Interposer Custom Designed for Agilent Logic Analyzers Compatible with Agilent Software

More information

DDR3 SDRAM SODIMM MT8JSF12864HZ 1GB MT8JSF25664HZ 2GB. Features. 1GB, 2GB (x64, SR) 204-Pin Halogen-Free DDR3 SDRAM SO- DIMM.

DDR3 SDRAM SODIMM MT8JSF12864HZ 1GB MT8JSF25664HZ 2GB. Features. 1GB, 2GB (x64, SR) 204-Pin Halogen-Free DDR3 SDRAM SO- DIMM. DDR3 SDRAM SO MT8JSF12864HZ 1GB MT8JSF25664HZ 2GB 1GB, 2GB (x64, SR) 204-Pin Halogen-Free DDR3 SDRAM SO- Features Features DDR3 functionality and operations supported as defined in the component data sheet

More information

CS/COE1541: Introduction to Computer Architecture. Memory hierarchy. Sangyeun Cho. Computer Science Department University of Pittsburgh

CS/COE1541: Introduction to Computer Architecture. Memory hierarchy. Sangyeun Cho. Computer Science Department University of Pittsburgh CS/COE1541: Introduction to Computer Architecture Memory hierarchy Sangyeun Cho Computer Science Department CPU clock rate Apple II MOS 6502 (1975) 1~2MHz Original IBM PC (1981) Intel 8080 4.77MHz Intel

More information

Intel Extreme Memory Profile (Intel XMP) DDR3 Technology

Intel Extreme Memory Profile (Intel XMP) DDR3 Technology Intel Extreme Memory Profile (Intel XMP) DDR3 Technology White Paper January 2009 Document Number: 319124-002 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS

More information

Random-Access Memory (RAM) The Memory Hierarchy. SRAM vs DRAM Summary. Conventional DRAM Organization. Page 1

Random-Access Memory (RAM) The Memory Hierarchy. SRAM vs DRAM Summary. Conventional DRAM Organization. Page 1 Random-ccess Memor (RM) The Memor Hierarch Topics Storage technologies and trends Localit of reference Caching in the hierarch Ke features RM is packaged as a chip. Basic storage unit is a cell (one bit

More information

DDR2 SDRAM Unbuffered DIMM MT9HTF3272A 256MB MT9HTF6472A 512MB MT9HTF12872A 1GB

DDR2 SDRAM Unbuffered DIMM MT9HTF3272A 256MB MT9HTF6472A 512MB MT9HTF12872A 1GB 256MB, 52MB, GB (x72, SR, ECC) 24-Pin DDR2 SDRAM UDIMM Features DDR2 SDRAM Unbuffered DIMM MT9HTF3272A 256MB MT9HTF6472A 52MB MT9HTF2872A GB For the latest data sheet, please refer to the Micron Web site:

More information

Dual DIMM DDR2 and DDR3 SDRAM Interface Design Guidelines

Dual DIMM DDR2 and DDR3 SDRAM Interface Design Guidelines Dual DIMM DDR2 and DDR3 SDRAM Interface Design Guidelines May 2009 AN-444-1.1 This application note describes guidelines for implementing dual unbuffered DIMM DDR2 and DDR3 SDRAM interfaces. This application

More information

DDR2 SDRAM Mini-RDIMM

DDR2 SDRAM Mini-RDIMM Features DDR2 SDRAM Mini-RDIMM MT18HTF25672PKZ 2GB Features 244-pin, mini registered dual in-line memory module (Mini-RDIMM) Fast data transfer rates: PC2-6400, PC2-5300, PC2-4200, or PC2-3200 Supports

More information