Experiments with Improved Approximate Mean Value Analysis Algorithms

Size: px
Start display at page:

Download "Experiments with Improved Approximate Mean Value Analysis Algorithms"

Transcription

1 Experiments with Improved Approximate Mean Value Analysis Algorithms Hai Wang and Kenneth C. Sevcik Department of Computer Science University of Toronto Toronto, Ontario, Canada M5S 3G4 Abstract. Approximate Mean Value Analysis (MVA) is a popular technique for analyzing queueing networks because of the efficiency and accuracy that it affords. In this paper, we present a new software package, called the Improved Approximate Mean Value Analysis Library (IAMVAL), which can be easily integrated into existing commercial and research queueing network analysis packages. The IAMVAL packages includes two new approximate MVA algorithms, the Queue Line (QL) algorithm and the Fraction Line (FL) algorithm, for analyzing multiple class separable queueing networks. The QL algorithm is always more accurate than, and yet has approximately the same computational efficiency as, the Bard- Schweitzer Proportional Estimation (PE) algorithm, which is currently the most widely used approximate MVA algorithm. The FL algorithm has the same computational cost and, in noncongested separable queueing networks where queue lengths are quite small, yields more accurate solutions than both the QL and PE algorithms. 1 Introduction Queueing network models have been widely adopted for the performance evaluation of computer systems and communication networks. While it is infeasible to compute the exact solution for the general class of queueing network models, solutions can be computed for an important subset, called separable (or product-form) queueing networks [2]. The solution for separable queueing networks can be obtained with modest computational effort using any of several comparably efficient exact algorithms. Mean Value Analysis (MVA) [9] is the most widely used of these algorithms. However, even for separable queueing networks, the computational cost of an exact solution becomes prohibitively expensive as the number of classes, customers, and centers grows. Numerous approximate MVA algorithms have been devised for separable queueing networks [1,10,4,3,6,14,17,15,11]. Among them, the Bard-Schweitzer Proportional Estimation (PE) algorithm [10] is a popular algorithm that has gained wide acceptance This research was supported by the Natural Science and Engineering Research Council of Canada (NSERC), and by Communications and Information Technology Ontario (CITO). R. Puigjaner et al. (Eds.): Tools 98, LNCS 1469, pp , c Springer-Verlag Berlin Heidelberg 1998

2 Experiments with Improved Approximate MVA Algorithms 281 among performance analysts [5,8], and is used in most commercial and research queueing network solution packages. In this paper, we present a new software package, called the Improved Approximate Mean Value Analysis Library (IAMVAL), which includes two new approximate MVA algorithms for analyzing multiple class separable queueing networks. Both algorithms have approximately the same computational cost as the PE algorithm. The Queue Line (QL) algorithm always yields more accurate solutions, and hence it dominates the PE algorithm in the spectrum of different algorithms that trade off accuracy and efficiency. The Fraction Line (FL) algorithm yields more accurate solutions than both the QL and PE algorithms, but only for noncongested separable queueing networks where queue lengths are quite small. These two new algorithms have the accuracy, speed, limited memory requirements, and simplicity to be appropriate for inclusion in existing commercial and research queueing network analysis packages, and the IAMVAL library can be integrated into these software packages to replace the PE algorithm library. The remainder of the paper is organized as follows. Section 2 reviews material relating to approximate MVA algorithms. Section 3 presents the QL and FL algorithms and their computational costs. Section 4 contains a comparison of the accuracy of the solutions of the PE, QL, and FL algorithms and discusses their relative merits. Finally, a summary and conclusions are provided in Section 5. 2 Background Consider a closed separable queueing network [2,9] with C customer classes, and K load independent service centers. The customer classes are indexed as classes 1 through C, and the centers are indexed as centers 1 through K. The customer population of the queueing network is denoted by the vector N = (N 1,N 2,..., N C ) where N c denotes the number of customers belonging to class c for c =1, 2,..., C. Also, the total number of customers in the network is denoted by N = N 1 + N N C. The mean service demand of a class c customer at center k is denoted by D c,k for c =1, 2,..., C, and k =1, 2,..., K. The think time of class c, Z c, is the sum of the delay center service demands of class c. For network population N, we consider the following performance measures of interest: R c,k ( N) = the average residence time of a class c customer at center k. R c ( N) = the average response time of a class c customer in the network. X c ( N) = the throughput of class c. Q c,k ( N) = the mean queue length of class c at center k. Q k ( N) = the mean total queue length at center k. Based on the Arrival Instant Distribution theorem [7,12], the exact MVA algorithm [9] involves the repeated applications of the following six equations, in which n =(n 1,n 2,..., n C ) is a population vector ranging from 0 to N; A (c) k ( n ) is the average number of customers a class c customers finds already at center k

3 282 H. Wang and K.C. Sevcik when it arrives there, given the network population n ; 1 c is a C-dimensional vector whose c th element is one and whose other elements are zeros; and ( n 1 c ) denotes the population vector n with one class c customer removed: A (c) k ( n )=Q k ( n 1 c ), (1) R c,k ( ( ) n )=D c,k 1+A (c) k ( n ), (2) R c ( n )= K R c,k ( n ), (3) k=1 X c ( n c n )= Z c + R c ( n ), (4) Q c,k ( n )=R c,k ( n ) X c ( n ), (5) Q k ( n )= C Q c,k ( n ), (6) c=1 with initial conditions Q k ( 0 )=0fork =1, 2,..., K. The key to the exact MVA algorithm is the recursive expression in equation (1) which relates performance with population vector n to that with population vector ( n 1 c ). This recursive dependence of the performance measures for one population on lower population levels causes both space and time complexities of the exact MVA algorithm to be Θ(KC C c=1 (N c + 1)). Thus, for large numbers of classes (more than ten) or large populations per class, it is not practical to solve networks with the exact MVA algorithm. The approximate MVA algorithms for separable queueing networks improve the time and space complexities by substituting approximations for A (c) k ( N) that are not recursive. Among all approximate MVA algorithms, the Bard-Schweitzer Proportional Estimation (PE) algorithm [10] is a popular algorithm that is currently in wide use. The PE algorithm is based on the approximation { Q j,k ( N Nc 1 1 c ) N c Q c,k ( N) for c = j, Q j,k ( N) for c j. Hence, the approximation equation that replaces equation (1) in the PE algorithm is A (c) k ( N)=Q k ( N 1 c )= C Q j,k ( N 1 c ) Q k ( N) 1 Q c,k ( N). (7) N c j=1 The system of nonlinear equations (2) through (7) of the PE algorithm can be solved iteratively by any general purpose numerical techniques, such as the successive substitution method or Newton s method [10,3,17,8]. Zahorjan et al. [17] found that no single implementation of the PE algorithm is guaranteed to always work well. When the PE algorithm is solved by Newton-like methods, the

4 Experiments with Improved Approximate MVA Algorithms 283 algorithm involves solving a nonlinear system of at least C equations [3,8], and the algorithm may fail to converge, or may converge to infeasible solutions [17]. When the PE algorithm is solved by the successive substitution method, the algorithm may converge very slowly in some cases, although it always yields feasible solutions [5] and converges very quickly for most networks [17]. When the PE algorithm is solved by the successive substitution method, the space complexity of the algorithm is O(KC), and the time complexity is O(KC) per iteration [10]. Thus, application of the PE algorithm is practical even for networks of up to about 100 classes and about 1000 service centers. The number of customers per class does not directly affect the amount of computation (although it may influence the speed of convergence). 3 The Queue Line and Fraction Line Approximate MVA Algorithms In this section, two new iterative approximate MVA algorithms, the Queue Line (QL) algorithm and the Fraction Line (FL) algorithm, for multiple class separable queueing networks are presented. Both algorithms improve on the accuracy of the PE algorithm while maintaining approximately the same computational efficiency as the PE algorithm. The improvement with the FL algorithm occurs only in lightly loaded separable queueing networks, but the QL algorithm is more accurate than the PE algorithm in all cases. 3.1 The Queue Line Algorithm The QL approximation is motivated by observing the graph of Q c,k ( n ) versus n (as shown in Figure 1). The PE approximation is equivalent to interpolating the value between the values of Q c,k ( n ) for 0 and n c. The QL approximation interpolates instead between the values at 1 and n c. As can be seen in Figure 1, the QL approximation is more accurate than the PE approximation for both bottleneck and non-bottleneck centers. The QL algorithm is based on the following approximations: Approximation 1 (Approximations of the QL Algorithm). (1) when N c =1and c = j, (2) when N c > 1 and c = j, Q j,k ( N 1 c )=0, Q j,k ( N) Q j,k ( N 1 c) 1 = Q j,k( N) Q j,k ( N (N c 1) 1 c) (3) when N c 1 and c j, Q j,k ( N 1 c )=Q j,k ( N), N c 1, where N 1 c denotes the population N with one class c customer removed, and N (N c 1) 1 c denotes the population N with N c 1 class c customers removed.

5 284 H. Wang and K.C. Sevcik Like the PE algorithm, the QL algorithm assumes that removing a class c customer does not affect the proportion of time spent by customers of any other classes at each service center. However, as shown in Figure 1, while the PE algorithm assumes the linear relationship between Q c,k ( N) and N c, the QL algorithm estimates Q c,k ( N 1 c ) by linear interpolation between the points (1,Q c,k ( N (N c 1) 1 c )) and (N c,q c,k ( N)). PE Approximation QL Approximation 45 line Bottleneck center(s) Q c,k(n) Non-bottleneck centers 0 1 n c - 1 n c Fig. 1. Approximations of the PE and QL algorithms Approximation 1 leads to the following approximation equation that replaces equation (1) in the QL algorithm [13,16]. QL Approximation Equation: Under Approximation 1, the approximation equation of the QL algorithm is (1) when N c =1, A (c) k ( N)=Q k ( N) Q c,k ( N), (2) when N c > 1, A (c) k ( N)= Q k ( [ N) 1 N c 1 Q c,k ( N) Q c,k ( N (N c 1) ] 1 c ) ] = Q k ( N) 1 N c 1 Q c,k( N) Z c+ K l=1 D c,k [1+Q k ( N) Q c,k ( N) [ {D ]} c,l 1+Q l ( N) Q c,l ( N). (8) Note that when there is a single customer in class c, its residence time at a center k is given by R c,k ( N (N c 1) 1 c )=D c,k [1+Q k ( N) Q c,k ( ] N), because it is expected that the arrival instant queue length is simply the equilibrium mean queue length of all other classes, excluding class c. This fact is used in the final substitution in equation (8) (and also equation (9)).

6 Experiments with Improved Approximate MVA Algorithms The Fraction Line Algorithm The FL approximation is motivated by observing the graph of Q c,k( n ) n c versus n c (as shown in Figure 2). In this case, the PE approximation takes the value of this ratio to be the same at (n c 1) as at n c. The FL approximation estimates the value at (n c 1) by interpolating between the values at 1 and n c. As can be seen in Figure 2, when n c is sufficiently small, the FL approximation becomes more accurate than that of PE approximation for both bottleneck and non-bottleneck centers. The FL algorithm is based on the following approximations: Approximation 2 (Approximations of the FL Algorithm). (1) when N c =1and c = j, (2) when N c > 1 and c = j, Q j,k ( N) N c Q j,k( N 1 c) N c 1 = 1 N c 1 (3) when N c 1 and c j, Q j,k ( N 1 c )=0, [ ] Q j,k ( N) N c Q j,k( N (N c 1) 1 c) 1, Q j,k ( N 1 c )=Q j,k ( N), where N 1 c denotes the population N with one class c customer removed, and N (N c 1) 1 c denotes the population N with N c 1 class c customers removed. Like the PE and QL algorithms, the FL algorithm assumes that removing a class c customer does not affect the proportion of time spent by customers of any other classes at each service center. Furthermore, as shown in Figure 2, the FL algorithm estimates Q c,k ( N 1 c ) by linear interpolation between the points (1,Q c,k ( N (N c 1) 1 c )) and (N c, Q c,k( N) N c ). PE Approximation FL Approximation 1 Bottleneck center(s) Q c,k(n) n c Non-bottleneck centers 0 1 n c - 1 n c Fig. 2. Approximations of the PE and FL algorithms

7 286 H. Wang and K.C. Sevcik Approximation 2 leads to the following approximation equation that replaces equation (1) in the FL algorithm [13,16]. FL Approximation Equation: Under Approximation 2, the approximation equation of the FL algorithm is (1) when N c =1, A (c) k ( N)=Q k ( N) Q c,k ( N), (2) when N c > 1, A (c) k ( N)=Q k ( N) 2 N c Q c,k ( N)+Q c,k ( N (N c 1) 1 c ) D c,k [1+Q ] k ( N) Q c,k ( N) = Q k ( N) 2 N c Q c,k ( N)+ Z c+ K l=1 {D c,l [ ]}. 1+Q l ( N) Q c,l ( N) (9) The system of nonlinear equations of the FL algorithm consists of (9) and (2) through (6), while that of the QL algorithm consists of (8) and (2) through (6). As with the PE algorithm, the system of nonlinear equations of either the QL or the FL algorithm can be solved by any general purpose numerical techniques. When the QL and FL algorithms are solved by Newton-like methods, like the PE algorithm, each involves solving a nonlinear system of at least C equations, and the algorithm may fail to converge, or may converge to infeasible solutions [13,16]. When all three algorithms are solved by Newton-like methods, they involve solving the same number of nonlinear equations, and hence have approximately the same space and time complexities [13,16]. When the QL and FL algorithms are solved by the successive substitution method, like the PE algorithm, either algorithm may converge very slowly in some cases, although they converge quickly for most networks [13,16]. When all three algorithms are solved by the successive substitution method, their space complexities are all O(KC) because of their similar structures. Moreover, for the networks in which N c > 1 for all c, the QL algorithm requires (10KC K C) additions/subtractions and (6KC + C) multiplications/divisions per iteration, while the FL algorithm requires (10KC K C) additions/subtractions and (7KC + C) multiplications/divisions per iteration, as contrasted to (4KC K) additions/subtractions and (3KC + C) multiplications/divisions for the PE algorithm. For networks in which N c = 1 for all c, all three algorithms require the same number of operations. Hence, the time complexity of either the QL or FL algorithm is O(KC) per iteration and is identical to that of the PE algorithm when all three algorithms are solved by the successive substitution method. 4 Accuracy of the Solutions of the Algorithms We have experimentally evaluated the accuracy of the solutions of the QL and FL algorithms relative to that of the PE algorithm. We choose to compare the QL and FL algorithms against the PE algorithm because it is the most popular and most widely used of the many alternative approximate MVA algorithms. In each of these experiments, two thousand random networks were generated and solved by each of the three approximate algorithms and by the exact MVA

8 Experiments with Improved Approximate MVA Algorithms 287 algorithm. The mean absolute relative errors in estimating the quantities, X c, R c, and Q c,k, relative to the corresponding exact values, Xc, Rc, and Q c,k, were calculated in each case according to the following formulae: For throughput, Γ X = 1 C C c=1 Xc X c X ; c For response time, Γ R = 1 C C c=1 Rc R c ; For average queue length, Γ Q = 1 KC C c=1 K k=1 R c Q c,k Q c,k Q. c,k Also, the maximum absolute relative error in Q c,k was noted: Λ Q = max c,k Q c,k Q c,k. Q c,k For each of these error measures (M), we calculated the sample mean (M) and sample standard deviation (S M ) over the 2000 trials in each experiment. We also recorded the maximum value of Λ Q (max(λ Q )) over the 2000 trials in each experiment. 4.1 Experiments for Multiple Class Separable Queueing Networks In the first set of experiments, two thousand random networks were generated and solved by each of the three approximate algorithms and the exact MVA algorithm for each number of classes from one to four. The parameters used to generate the random networks are given in Table 1. The mean absolute relative errors in throughput, response time, queue length, and the maximum absolute relative errors in queue length are shown in Table 2. Additional statistics on error measures are presented elsewhere [16]. In these the experimental results, the QL Table 1. Parameters for generating multiple class separable queueing networks Server discipline: Load independent Population size (N c): Class 1: Uniform(1,10) Class 2: Uniform(1,10) Class 3: Uniform(1,10) Class 4: Uniform(1,10) Number of centers (K): Uniform(2,10) Loadings (D c,k ): Uniform(0.1,20.0) Think time of customers (Z c): Uniform(0.0,100.0) Number of trials (samples): 2000 algorithm always yielded smaller errors than the PE algorithm for all randomly generated networks. We found that the FL algorithm yields larger errors than the PE and QL algorithms for some networks, although it yielded smaller errors

9 288 H. Wang and K.C. Sevcik Table 2. Summary of statistical results of each algorithm for multiple class separable queueing networks whose parameters are specified in Table 1 Measure Algorithm 1 class 2 classes 3 classes 4 classes PE 0.40% 0.73% 0.82% 0.90% Γ X QL 0.31% 0.67% 0.79% 0.88% FL 0.05% 0.47% 0.67% 0.80% PE 0.59% 0.99% 1.04% 1.09% Γ R QL 0.45% 0.91% 0.99% 1.06% FL 0.06% 0.63% 0.84% 0.96% PE 0.69% 1.23% 1.45% 1.64% Γ Q QL 0.55% 1.15% 1.40% 1.61% FL 0.11% 0.83% 1.20% 1.47% PE 15.19% 14.82% 14.63% 16.20% max(λ Q) QL 13.13% 14.41% 14.49% 16.12% FL 10.82% 11.98% 13.64% 15.62% than the PE and QL algorithms for most of the networks among our test cases. We also found that the error of the FL algorithm rises faster than those of the QL and PE algorithms as the number of classes increases. By applying the statistical hypothesis testing procedure [16], we can further conclude that, on the average, the accuracy of all three approximate MVA algorithms decreases as the number of classes increases, and the FL algorithm is the most accurate while the PE algorithm is the least accurate algorithm among the three algorithms for multiple class separable queueing networks with sufficiently small population. However, these conclusions are only valid for small networks with a small number of classes, and small customer populations as governed by the parameters in Table 1. Although we would like to have experimented with larger networks with more classes and larger populations, the execution time of obtaining the exact solution of such networks prevented us from doing so. 4.2 Experiments for Single Class Separable Queueing Networks In order to gain some insight into the behavior of the three approximate MVA algorithms for larger networks than those whose parameters are specified in Table 1, the second set of experiments was performed. This involved five experiments for single class separable queueing networks. We chose single class separable queueing networks because it is feasible to obtain the exact solution of such networks. The parameters used to generate the random networks in each of these experiments are given in Table 3. The detailed experimental results for these five experiments are presented elsewhere [16]. In these experiments, we also found the QL algorithm was more accurate than the PE algorithm for all randomly generated single class separable queueing networks. Moreover, we found that both the PE and QL algorithms always yield a higher mean response time and a lower throughput relative to the exact

10 Experiments with Improved Approximate MVA Algorithms 289 Table 3. Parameters for generating single class separable queueing networks Parameter Experiment Value Population size (N) 1 Uniform(2,10) 2 Uniform(20,100) 3,4,5 Uniform(2,100) Number of centers (K) 1,2,3 Uniform(2,10) 4 Uniform(50,100) 5 Uniform(100,200) Loadings (D k ) 1,2,3,4,5 Uniform(0.1,20.0) Think time of customers (Z) 1,2,3,4,5 Uniform(0.0,100.0) Server discipline 1,2,3,4,5 Load independent Number of trials (samples) 1,2,3,4, solution. These results are consistent with the known analytic results [5,13]. We also found that the FL algorithm tended to yield a lower mean system response time and a higher throughput relative to the exact solution. However, some networks for which the FL algorithm yields a higher mean system response time and a lower throughput have been observed. By applying the same statistical testing procedure as in the first set of experiments [16], we conclude that given a network, as the population increases, the accuracy of the FL algorithm degrades. Moreover, given the network population, when the number of centers increases, the accuracy of the FL algorithm increases and the FL algorithm yields more accurate solutions than the other two algorithms. When the network is congested, the average queue length at some centers is large, and the approximations of both the PE and the QL algorithms lead to better approximations than those of the FL algorithm. These results are also consistent with the results of the first set of experiments. 4.3 Examples We investigated some specific examples of single class separable queueing networks to illustrate how the QL algorithm dominates the PE algorithm, and the FL algorithm is the most accurate in low congestion networks, but the least accurate in high congestion networks among the three approximate MVA algorithms. The network parameters of four such examples are given in Table 4. For these cases, the absolute value of the difference between the approximate response time and the exact response time is used to measure the accuracy of an approximate MVA algorithm. Figure 3 shows the errors for the PE, QL, and FL algorithms as a function of the population for Example 1. The corresponding graphs for the other three examples all have exactly the same form. From this we conclude that the basic form of the curves shown in Figure 3 is robust across broad classes of single class separable queueing networks.

11 290 H. Wang and K.C. Sevcik Table 4. Network parameters of examples Example Parameters (The subscript c on network parameters is dropped since C = 1.) 1 C =1,K =2,D 1 =1.0,D 2 =2.0,Z =0.0,N [1, 50] 2 C =1,K =2,D 1 =10.0,D 2 =20.0,Z =10.0,N [1, 50] 3 C =1,K =3,D 1 =10.0,D 2 =20.0,D 3 =30.0,Z =0.0,N [1, 50] 4 C =1,K =3,D 1 =10.0,D 2 =20.0,D 3 =30.0,Z =50.0,N [1, 50] 0.6 PE 0.5 QL FL 0.4 Absolute Error in R N Fig. 3. Plot of the absolute error in R vs N for Example 1 5 Summary and Conclusions Two new approximate MVA algorithms for separable queueing networks, the QL and FL algorithms, are presented. Both the QL and FL algorithms have approximately the same computational costs as the PE algorithm. Based on the experimental results, the QL algorithm is always more accurate than the PE algorithm. Moreover, as with the PE algorithm, the solutions of the QL algorithm are always pessimistic relative to those of the exact MVA algorithm for single class separable queueing networks. Specifically, both the PE and QL algorithms always yield a higher mean system response time and a lower throughput for single class separable queueing networks. These properties, which we have observed in the experiments described here, have been formally proven to hold as well [13,16]. The FL algorithm is more accurate than the QL and PE algorithms for noncongested separable queueing networks where queue lengths are small, and is less accurate than the QL and PE algorithms for congested separable queueing networks where queue lengths are large. The FL algorithm must be used only with caution since its accuracy deteriorates as the average queue lengths increase. The QL algorithm always has higher accuracy than the PE algorithm. In particular, the QL algorithm dominates the PE algorithm in the spectrum of different approximate MVA algorithms that trade off accuracy and efficiency. The IAMVAL library which includes the QL and FL algorithms can be integrated into existing commercial and research queueing network analysis packages to replace the PE algorithm library.

12 Experiments with Improved Approximate MVA Algorithms 291 References 1. Y. Bard. Some extensions to multiclass queueing network analysis. In: M. Arato, A. Butrimenko and E. Gelenbe, eds. Performance of Computer Systems, North- Holland, Amsterdam, Netherlands, F. Baskett, K. M. Chandy, R. R. Muntz and F. G. Palacios. Open, closed, and mixed networks of queues with different classes of customers. Journal of the ACM, 22(2): , April W.-M. Chow. Approximations for large scale closed queueing networks. Performance Evaluation, 3(1):1-12, K. M. Chandy and D. Neuse. Linearizer: A heuristic algorithm for queueing network models of computing systems. Communications of the ACM, 25(2): , February D. L. Eager and K. C. Sevcik. Analysis of an approximation algorithm for queueing networks. Performance Evaluation, 4(4): , C. T. Hsieh and S. S. Lam. PAM A noniterative approximate solution method for closed multichain queueing networks. ACM SIGMETRICS Performance Evaluation Review, 16(1): , May S. S. Lavenberg and M. Reiser. Stationary state probabilities of arrival instants for closed queueing networks with multiple types of customers. Journal of Applied Probability, 17(4): , December K. R. Pattipati, M. M. Kostreva and J. L. Teele. Approximate mean value analysis algorithms for queueing networks: existence, uniqueness, and convergence results. Journal of the ACM, 37(3): , July M. Reiser and S. S. Lavenberg. Mean value analysis of closed multichain queueing networks. Journal of the ACM, 27(2): , April P. J. Schweitzer. Approximate analysis of multiclass closed networks of queues. Proceedings of International Conference on Stochastic Control and Optimization, 25-29, Amsterdam, Netherlands, P. J. Schweitzer, G. Serazzi and M. Broglia. A queue-shift approximation technique for product-form queueing networks. Technical Report, K. C. Sevcik and I. Mitrani. The distribution of queueing network states at input and output instants. Journal of the ACM, 28(2): , April K. Sevcik and H. Wang. An improved approximate mean value analysis algorithm for solving separable queueing network models. submitted for publication, E. de Souza e Silva, S. S. Lavenberg and R. R. Muntz. A clustering approximation technique for queueing network models with a large number of chains. IEEE Transactions on Computers, C-35(5): , May E. de Souza e Silva and R. R. Muntz. A note on the computational cost of the linearizer algorithm for queueing networks. IEEE Transactions on Computers, 39(6): , June H. Wang. Approximate MVA Algorithms for Solving Queueing Network Models. M. Sc. Thesis, Tech. Rept. CSRG-360, University of Toronto, Toronto, Ontario, Canada, J. Zahorjan, D. L. Eager and H. M. Sweillam. Accuracy, speed, and convergence of approximate mean value analysis. Performance Evaluation, 8(4): , 1988.

Performance Analysis for Shared Services

Performance Analysis for Shared Services Performance Analysis for Shared Services Hai Sobey School of Business, Saint Mary's University, Canada hwang@smu.ca ABSTRACT Shared services have widely spread in the government and private sectors as

More information

Predict the Popularity of YouTube Videos Using Early View Data

Predict the Popularity of YouTube Videos Using Early View Data 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Load Balancing and Switch Scheduling

Load Balancing and Switch Scheduling EE384Y Project Final Report Load Balancing and Switch Scheduling Xiangheng Liu Department of Electrical Engineering Stanford University, Stanford CA 94305 Email: liuxh@systems.stanford.edu Abstract Load

More information

DECENTRALIZED LOAD BALANCING IN HETEROGENEOUS SYSTEMS USING DIFFUSION APPROACH

DECENTRALIZED LOAD BALANCING IN HETEROGENEOUS SYSTEMS USING DIFFUSION APPROACH DECENTRALIZED LOAD BALANCING IN HETEROGENEOUS SYSTEMS USING DIFFUSION APPROACH P.Neelakantan Department of Computer Science & Engineering, SVCET, Chittoor pneelakantan@rediffmail.com ABSTRACT The grid

More information

Roots of Equations (Chapters 5 and 6)

Roots of Equations (Chapters 5 and 6) Roots of Equations (Chapters 5 and 6) Problem: given f() = 0, find. In general, f() can be any function. For some forms of f(), analytical solutions are available. However, for other functions, we have

More information

Analysis of an Artificial Hormone System (Extended abstract)

Analysis of an Artificial Hormone System (Extended abstract) c 2013. This is the author s version of the work. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purpose or for creating

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks Scheduling on Clouds

A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks Scheduling on Clouds A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks Scheduling on Clouds Cosmin Dumitru 1, Ana-Maria Oprescu 1, Miroslav Živković1, Rob van der Mei 2, Paola Grosso 1, and Cees de Laat 1 1 System

More information

Supplement to Call Centers with Delay Information: Models and Insights

Supplement to Call Centers with Delay Information: Models and Insights Supplement to Call Centers with Delay Information: Models and Insights Oualid Jouini 1 Zeynep Akşin 2 Yves Dallery 1 1 Laboratoire Genie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290

More information

Time Series and Forecasting

Time Series and Forecasting Chapter 22 Page 1 Time Series and Forecasting A time series is a sequence of observations of a random variable. Hence, it is a stochastic process. Examples include the monthly demand for a product, the

More information

Predict Influencers in the Social Network

Predict Influencers in the Social Network Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons

More information

An On-Line Algorithm for Checkpoint Placement

An On-Line Algorithm for Checkpoint Placement An On-Line Algorithm for Checkpoint Placement Avi Ziv IBM Israel, Science and Technology Center MATAM - Advanced Technology Center Haifa 3905, Israel avi@haifa.vnat.ibm.com Jehoshua Bruck California Institute

More information

How To Predict Performance From A Network Model In Unminer (Uml)

How To Predict Performance From A Network Model In Unminer (Uml) Performance Evaluation of UML Software Architectures with Multiclass Queueing Network Models Simonetta Balsamo Moreno Marzolla Dipartimento di Informatica, Università Ca Foscari di Venezia via Torino 155

More information

A Detailed Price Discrimination Example

A Detailed Price Discrimination Example A Detailed Price Discrimination Example Suppose that there are two different types of customers for a monopolist s product. Customers of type 1 have demand curves as follows. These demand curves include

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

The qnetworks Toolbox: a Software Package for Queueing Networks Analysis

The qnetworks Toolbox: a Software Package for Queueing Networks Analysis The qnetworks Toolbox: a Software Package for Queueing Networks Analysis Moreno Marzolla Dipartimento di Scienze dell Informazione, Università di Bologna Mura Anteo Zamboni 7, I-40127 Bologna, Italy marzolla@cs.unibo.it

More information

Optimal Hiring of Cloud Servers A. Stephen McGough, Isi Mitrani. EPEW 2014, Florence

Optimal Hiring of Cloud Servers A. Stephen McGough, Isi Mitrani. EPEW 2014, Florence Optimal Hiring of Cloud Servers A. Stephen McGough, Isi Mitrani EPEW 2014, Florence Scenario How many cloud instances should be hired? Requests Host hiring servers The number of active servers is controlled

More information

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu

More information

Aachen Summer Simulation Seminar 2014

Aachen Summer Simulation Seminar 2014 Aachen Summer Simulation Seminar 2014 Lecture 07 Input Modelling + Experimentation + Output Analysis Peer-Olaf Siebers pos@cs.nott.ac.uk Motivation 1. Input modelling Improve the understanding about how

More information

THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS

THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS O.U. Sezerman 1, R. Islamaj 2, E. Alpaydin 2 1 Laborotory of Computational Biology, Sabancı University, Istanbul, Turkey. 2 Computer Engineering

More information

A Robust Method for Solving Transcendental Equations

A Robust Method for Solving Transcendental Equations www.ijcsi.org 413 A Robust Method for Solving Transcendental Equations Md. Golam Moazzam, Amita Chakraborty and Md. Al-Amin Bhuiyan Department of Computer Science and Engineering, Jahangirnagar University,

More information

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k. REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game

More information

SEQUENCES ARITHMETIC SEQUENCES. Examples

SEQUENCES ARITHMETIC SEQUENCES. Examples SEQUENCES ARITHMETIC SEQUENCES An ordered list of numbers such as: 4, 9, 6, 25, 36 is a sequence. Each number in the sequence is a term. Usually variables with subscripts are used to label terms. For example,

More information

Characterizing Digital Cameras with the Photon Transfer Curve

Characterizing Digital Cameras with the Photon Transfer Curve Characterizing Digital Cameras with the Photon Transfer Curve By: David Gardner Summit Imaging (All rights reserved) Introduction Purchasing a camera for high performance imaging applications is frequently

More information

Factor Analysis. Chapter 420. Introduction

Factor Analysis. Chapter 420. Introduction Chapter 420 Introduction (FA) is an exploratory technique applied to a set of observed variables that seeks to find underlying factors (subsets of variables) from which the observed variables were generated.

More information

On Packet Marking Function of Active Queue Management Mechanism: Should It Be Linear, Concave, or Convex?

On Packet Marking Function of Active Queue Management Mechanism: Should It Be Linear, Concave, or Convex? On Packet Marking Function of Active Queue Management Mechanism: Should It Be Linear, Concave, or Convex? Hiroyuki Ohsaki and Masayuki Murata Graduate School of Information Science and Technology Osaka

More information

Master s Thesis. A Study on Active Queue Management Mechanisms for. Internet Routers: Design, Performance Analysis, and.

Master s Thesis. A Study on Active Queue Management Mechanisms for. Internet Routers: Design, Performance Analysis, and. Master s Thesis Title A Study on Active Queue Management Mechanisms for Internet Routers: Design, Performance Analysis, and Parameter Tuning Supervisor Prof. Masayuki Murata Author Tomoya Eguchi February

More information

Performance of Cloud Computing Centers with Multiple Priority Classes

Performance of Cloud Computing Centers with Multiple Priority Classes 202 IEEE Fifth International Conference on Cloud Computing Performance of Cloud Computing Centers with Multiple Priority Classes Wendy Ellens, Miroslav Živković, Jacob Akkerboom, Remco Litjens, Hans van

More information

A Sequential Game Perspective and Optimization of the Smart Grid with Distributed Data Centers

A Sequential Game Perspective and Optimization of the Smart Grid with Distributed Data Centers A Sequential Game Perspective and Optimization of the Smart Grid with Distributed Data Centers Yanzhi Wang, Xue Lin, and Massoud Pedram Department of Electrical Engineering University of Southern California

More information

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of. Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:

More information

Network Model. University of Tsukuba. of the system. Load balancing policies are often. used for balancing the workload of distributed systems.

Network Model. University of Tsukuba. of the system. Load balancing policies are often. used for balancing the workload of distributed systems. CDC-INV A Performance Comparison of Dynamic vs. Static Load Balancing Policies in a Mainframe { Personal Computer Network Model Hisao Kameda El-Zoghdy Said Fathy y Inhwan Ryu z Jie Li x yzx University

More information

Provisioning algorithm for minimum throughput assurance service in VPNs using nonlinear programming

Provisioning algorithm for minimum throughput assurance service in VPNs using nonlinear programming Provisioning algorithm for minimum throughput assurance service in VPNs using nonlinear programming Masayoshi Shimamura (masayo-s@isnaistjp) Guraduate School of Information Science, Nara Institute of Science

More information

A New Quantitative Behavioral Model for Financial Prediction

A New Quantitative Behavioral Model for Financial Prediction 2011 3rd International Conference on Information and Financial Engineering IPEDR vol.12 (2011) (2011) IACSIT Press, Singapore A New Quantitative Behavioral Model for Financial Prediction Thimmaraya Ramesh

More information

Operation Count; Numerical Linear Algebra

Operation Count; Numerical Linear Algebra 10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point

More information

Wireless Sensor Networks Coverage Optimization based on Improved AFSA Algorithm

Wireless Sensor Networks Coverage Optimization based on Improved AFSA Algorithm , pp. 99-108 http://dx.doi.org/10.1457/ijfgcn.015.8.1.11 Wireless Sensor Networks Coverage Optimization based on Improved AFSA Algorithm Wang DaWei and Wang Changliang Zhejiang Industry Polytechnic College

More information

The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy

The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy BMI Paper The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy Faculty of Sciences VU University Amsterdam De Boelelaan 1081 1081 HV Amsterdam Netherlands Author: R.D.R.

More information

GLM, insurance pricing & big data: paying attention to convergence issues.

GLM, insurance pricing & big data: paying attention to convergence issues. GLM, insurance pricing & big data: paying attention to convergence issues. Michaël NOACK - michael.noack@addactis.com Senior consultant & Manager of ADDACTIS Pricing Copyright 2014 ADDACTIS Worldwide.

More information

Performance Analysis of a Telephone System with both Patient and Impatient Customers

Performance Analysis of a Telephone System with both Patient and Impatient Customers Performance Analysis of a Telephone System with both Patient and Impatient Customers Yiqiang Quennel Zhao Department of Mathematics and Statistics University of Winnipeg Winnipeg, Manitoba Canada R3B 2E9

More information

How To Balance In A Distributed System

How To Balance In A Distributed System 6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 1, JANUARY 2000 How Useful Is Old Information? Michael Mitzenmacher AbstractÐWe consider the problem of load balancing in dynamic distributed

More information

On the Interaction and Competition among Internet Service Providers

On the Interaction and Competition among Internet Service Providers On the Interaction and Competition among Internet Service Providers Sam C.M. Lee John C.S. Lui + Abstract The current Internet architecture comprises of different privately owned Internet service providers

More information

Determination of g using a spring

Determination of g using a spring INTRODUCTION UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 1 Laboratory: Introduction Experiment Determination of g using a spring This experiment is designed to get you confident in using the quantitative

More information

(Quasi-)Newton methods

(Quasi-)Newton methods (Quasi-)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable non-linear function g, x such that g(x) = 0, where g : R n R n. Given a starting

More information

Data Mining. Nonlinear Classification

Data Mining. Nonlinear Classification Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15

More information

OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS

OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS ONDERZOEKSRAPPORT NR 8904 OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS BY M. VANDEBROEK & J. DHAENE D/1989/2376/5 1 IN A OPTIMAl PREMIUM CONTROl NON-liFE INSURANCE BUSINESS By Martina Vandebroek

More information

Permutation Tests for Comparing Two Populations

Permutation Tests for Comparing Two Populations Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of

More information

Towards Optimal Firewall Rule Ordering Utilizing Directed Acyclical Graphs

Towards Optimal Firewall Rule Ordering Utilizing Directed Acyclical Graphs Towards Optimal Firewall Rule Ordering Utilizing Directed Acyclical Graphs Ashish Tapdiya and Errin W. Fulp Department of Computer Science Wake Forest University Winston Salem, NC, USA nsg.cs.wfu.edu Email:

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

Risk Management for IT Security: When Theory Meets Practice

Risk Management for IT Security: When Theory Meets Practice Risk Management for IT Security: When Theory Meets Practice Anil Kumar Chorppath Technical University of Munich Munich, Germany Email: anil.chorppath@tum.de Tansu Alpcan The University of Melbourne Melbourne,

More information

PENDULUM PERIODS. First Last. Partners: student1, student2, and student3

PENDULUM PERIODS. First Last. Partners: student1, student2, and student3 PENDULUM PERIODS First Last Partners: student1, student2, and student3 Governor s School for Science and Technology 520 Butler Farm Road, Hampton, VA 23666 April 13, 2011 ABSTRACT The effect of amplitude,

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

More information

The Taxman Game. Robert K. Moniot September 5, 2003

The Taxman Game. Robert K. Moniot September 5, 2003 The Taxman Game Robert K. Moniot September 5, 2003 1 Introduction Want to know how to beat the taxman? Legally, that is? Read on, and we will explore this cute little mathematical game. The taxman game

More information

Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables. Generation of random variables (r.v.) Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

More information

7.6 Approximation Errors and Simpson's Rule

7.6 Approximation Errors and Simpson's Rule WileyPLUS: Home Help Contact us Logout Hughes-Hallett, Calculus: Single and Multivariable, 4/e Calculus I, II, and Vector Calculus Reading content Integration 7.1. Integration by Substitution 7.2. Integration

More information

Integer Factorization using the Quadratic Sieve

Integer Factorization using the Quadratic Sieve Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 seib0060@morris.umn.edu March 16, 2011 Abstract We give

More information

Predicting Flight Delays

Predicting Flight Delays Predicting Flight Delays Dieterich Lawson jdlawson@stanford.edu William Castillo will.castillo@stanford.edu Introduction Every year approximately 20% of airline flights are delayed or cancelled, costing

More information

ALGORITHMIC TRADING USING MACHINE LEARNING TECH-

ALGORITHMIC TRADING USING MACHINE LEARNING TECH- ALGORITHMIC TRADING USING MACHINE LEARNING TECH- NIQUES: FINAL REPORT Chenxu Shao, Zheming Zheng Department of Management Science and Engineering December 12, 2013 ABSTRACT In this report, we present an

More information

SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY

SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 296 SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY ASHOK KUMAR SUMMARY One of the important

More information

EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set

EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set Amhmed A. Bhih School of Electrical and Electronic Engineering Princy Johnson School of Electrical and Electronic Engineering Martin

More information

Classifying Large Data Sets Using SVMs with Hierarchical Clusters. Presented by :Limou Wang

Classifying Large Data Sets Using SVMs with Hierarchical Clusters. Presented by :Limou Wang Classifying Large Data Sets Using SVMs with Hierarchical Clusters Presented by :Limou Wang Overview SVM Overview Motivation Hierarchical micro-clustering algorithm Clustering-Based SVM (CB-SVM) Experimental

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Chapter 6. The stacking ensemble approach

Chapter 6. The stacking ensemble approach 82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described

More information

Using simulation to calculate the NPV of a project

Using simulation to calculate the NPV of a project Using simulation to calculate the NPV of a project Marius Holtan Onward Inc. 5/31/2002 Monte Carlo simulation is fast becoming the technology of choice for evaluating and analyzing assets, be it pure financial

More information

4 The M/M/1 queue. 4.1 Time-dependent behaviour

4 The M/M/1 queue. 4.1 Time-dependent behaviour 4 The M/M/1 queue In this chapter we will analyze the model with exponential interarrival times with mean 1/λ, exponential service times with mean 1/µ and a single server. Customers are served in order

More information

Confidence Intervals for One Standard Deviation Using Standard Deviation

Confidence Intervals for One Standard Deviation Using Standard Deviation Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from

More information

SUBHASRI DUTTAGUPTA et al: PERFORMANCE EXTRAPOLATION USING LOAD TESTING RESULTS

SUBHASRI DUTTAGUPTA et al: PERFORMANCE EXTRAPOLATION USING LOAD TESTING RESULTS Performance Extrapolation using Load Testing Results Subhasri Duttagupta PERC, TCS Innovation Labs Tata Consultancy Services Mumbai, India. subhasri.duttagupta@tcs.com Manoj Nambiar PERC, TCS Innovation

More information

A simple and fast algorithm for computing exponentials of power series

A simple and fast algorithm for computing exponentials of power series A simple and fast algorithm for computing exponentials of power series Alin Bostan Algorithms Project, INRIA Paris-Rocquencourt 7815 Le Chesnay Cedex France and Éric Schost ORCCA and Computer Science Department,

More information

Polarization codes and the rate of polarization

Polarization codes and the rate of polarization Polarization codes and the rate of polarization Erdal Arıkan, Emre Telatar Bilkent U., EPFL Sept 10, 2008 Channel Polarization Given a binary input DMC W, i.i.d. uniformly distributed inputs (X 1,...,

More information

Single-Period Balancing of Pay Per-Click and Pay-Per-View Online Display Advertisements

Single-Period Balancing of Pay Per-Click and Pay-Per-View Online Display Advertisements Single-Period Balancing of Pay Per-Click and Pay-Per-View Online Display Advertisements Changhyun Kwon Department of Industrial and Systems Engineering University at Buffalo, the State University of New

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

More information

Parallel Computing for Option Pricing Based on the Backward Stochastic Differential Equation

Parallel Computing for Option Pricing Based on the Backward Stochastic Differential Equation Parallel Computing for Option Pricing Based on the Backward Stochastic Differential Equation Ying Peng, Bin Gong, Hui Liu, and Yanxin Zhang School of Computer Science and Technology, Shandong University,

More information

Performance. 13. Climbing Flight

Performance. 13. Climbing Flight Performance 13. Climbing Flight In order to increase altitude, we must add energy to the aircraft. We can do this by increasing the thrust or power available. If we do that, one of three things can happen:

More information

ECON 40050 Game Theory Exam 1 - Answer Key. 4) All exams must be turned in by 1:45 pm. No extensions will be granted.

ECON 40050 Game Theory Exam 1 - Answer Key. 4) All exams must be turned in by 1:45 pm. No extensions will be granted. 1 ECON 40050 Game Theory Exam 1 - Answer Key Instructions: 1) You may use a pen or pencil, a hand-held nonprogrammable calculator, and a ruler. No other materials may be at or near your desk. Books, coats,

More information

Bootstrapping Big Data

Bootstrapping Big Data Bootstrapping Big Data Ariel Kleiner Ameet Talwalkar Purnamrita Sarkar Michael I. Jordan Computer Science Division University of California, Berkeley {akleiner, ameet, psarkar, jordan}@eecs.berkeley.edu

More information

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena. Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

More information

SPARE PARTS INVENTORY SYSTEMS UNDER AN INCREASING FAILURE RATE DEMAND INTERVAL DISTRIBUTION

SPARE PARTS INVENTORY SYSTEMS UNDER AN INCREASING FAILURE RATE DEMAND INTERVAL DISTRIBUTION SPARE PARS INVENORY SYSEMS UNDER AN INCREASING FAILURE RAE DEMAND INERVAL DISRIBUION Safa Saidane 1, M. Zied Babai 2, M. Salah Aguir 3, Ouajdi Korbaa 4 1 National School of Computer Sciences (unisia),

More information

Appendix A: Science Practices for AP Physics 1 and 2

Appendix A: Science Practices for AP Physics 1 and 2 Appendix A: Science Practices for AP Physics 1 and 2 Science Practice 1: The student can use representations and models to communicate scientific phenomena and solve scientific problems. The real world

More information

P2P File Sharing - A Model For Fairness Versus Performance

P2P File Sharing - A Model For Fairness Versus Performance 1 The Design Trade-offs of BitTorrent-like File Sharing Protocols Bin Fan John C.S. Lui Dah-Ming Chiu Abstract The BitTorrent (BT) file sharing protocol is very popular due to its scalability property

More information

Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents

Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents William H. Sandholm January 6, 22 O.. Imitative protocols, mean dynamics, and equilibrium selection In this section, we consider

More information

Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks

Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks Vasilios A. Siris and Despina Triantafyllidou Institute of Computer Science (ICS) Foundation for Research and Technology - Hellas

More information

Algorithms for Interference Sensing in Optical CDMA Networks

Algorithms for Interference Sensing in Optical CDMA Networks Algorithms for Interference Sensing in Optical CDMA Networks Purushotham Kamath, Joseph D. Touch and Joseph A. Bannister {pkamath, touch, joseph}@isi.edu Information Sciences Institute, University of Southern

More information

Pareto Set, Fairness, and Nash Equilibrium: A Case Study on Load Balancing

Pareto Set, Fairness, and Nash Equilibrium: A Case Study on Load Balancing Pareto Set, Fairness, and Nash Equilibrium: A Case Study on Load Balancing Atsushi Inoie, Hisao Kameda, Corinne Touati Graduate School of Systems and Information Engineering University of Tsukuba, Tsukuba

More information

Quality Optimal Policy for H.264 Scalable Video Scheduling in Broadband Multimedia Wireless Networks

Quality Optimal Policy for H.264 Scalable Video Scheduling in Broadband Multimedia Wireless Networks Quality Optimal Policy for H.264 Scalable Video Scheduling in Broadband Multimedia Wireless Networks Vamseedhar R. Reddyvari Electrical Engineering Indian Institute of Technology Kanpur Email: vamsee@iitk.ac.in

More information

Experiment #1, Analyze Data using Excel, Calculator and Graphs.

Experiment #1, Analyze Data using Excel, Calculator and Graphs. Physics 182 - Fall 2014 - Experiment #1 1 Experiment #1, Analyze Data using Excel, Calculator and Graphs. 1 Purpose (5 Points, Including Title. Points apply to your lab report.) Before we start measuring

More information

Sampling Within k-means Algorithm to Cluster Large Datasets

Sampling Within k-means Algorithm to Cluster Large Datasets Sampling Within k-means Algorithm to Cluster Large Datasets Team Members: Jeremy Bejarano, 1 Koushiki Bose, 2 Tyler Brannan, 3 Anita Thomas 4 Faculty Mentors: Kofi Adragni 5 and Nagaraj K. Neerchal 5 Client:

More information

Roots of Polynomials

Roots of Polynomials Roots of Polynomials (Com S 477/577 Notes) Yan-Bin Jia Sep 24, 2015 A direct corollary of the fundamental theorem of algebra is that p(x) can be factorized over the complex domain into a product a n (x

More information

OPTIMAL DESIGN OF A MULTITIER REWARD SCHEME. Amir Gandomi *, Saeed Zolfaghari **

OPTIMAL DESIGN OF A MULTITIER REWARD SCHEME. Amir Gandomi *, Saeed Zolfaghari ** OPTIMAL DESIGN OF A MULTITIER REWARD SCHEME Amir Gandomi *, Saeed Zolfaghari ** Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario * Tel.: + 46 979 5000x7702, Email:

More information

A Non-Linear Schema Theorem for Genetic Algorithms

A Non-Linear Schema Theorem for Genetic Algorithms A Non-Linear Schema Theorem for Genetic Algorithms William A Greene Computer Science Department University of New Orleans New Orleans, LA 70148 bill@csunoedu 504-280-6755 Abstract We generalize Holland

More information

AC 2012-4561: MATHEMATICAL MODELING AND SIMULATION US- ING LABVIEW AND LABVIEW MATHSCRIPT

AC 2012-4561: MATHEMATICAL MODELING AND SIMULATION US- ING LABVIEW AND LABVIEW MATHSCRIPT AC 2012-4561: MATHEMATICAL MODELING AND SIMULATION US- ING LABVIEW AND LABVIEW MATHSCRIPT Dr. Nikunja Swain, South Carolina State University Nikunja Swain is a professor in the College of Science, Mathematics,

More information

Server Load Prediction

Server Load Prediction Server Load Prediction Suthee Chaidaroon (unsuthee@stanford.edu) Joon Yeong Kim (kim64@stanford.edu) Jonghan Seo (jonghan@stanford.edu) Abstract Estimating server load average is one of the methods that

More information

Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network

Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network Qian Wu, Yahui Wang, Long Zhang and Li Shen Abstract Building electrical system fault diagnosis is the

More information

Correlation key concepts:

Correlation key concepts: CORRELATION Correlation key concepts: Types of correlation Methods of studying correlation a) Scatter diagram b) Karl pearson s coefficient of correlation c) Spearman s Rank correlation coefficient d)

More information

5.1 Identifying the Target Parameter

5.1 Identifying the Target Parameter University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying

More information

Encrypting Network Traffic

Encrypting Network Traffic Encrypting Network Traffic Mark Lomas Computer Security Group University of Cambridge Computer Laboratory Encryption may be used to maintain the secrecy of information, to help detect when messages have

More information

Optimal linear-quadratic control

Optimal linear-quadratic control Optimal linear-quadratic control Martin Ellison 1 Motivation The lectures so far have described a general method - value function iterations - for solving dynamic programming problems. However, one problem

More information

Performance Modeling and Analysis of a Database Server with Write-Heavy Workload

Performance Modeling and Analysis of a Database Server with Write-Heavy Workload Performance Modeling and Analysis of a Database Server with Write-Heavy Workload Manfred Dellkrantz, Maria Kihl 2, and Anders Robertsson Department of Automatic Control, Lund University 2 Department of

More information

Performance Evaluation for Software Migration

Performance Evaluation for Software Migration Performance Evaluation for Software Migration Issam Al-Azzoni INRIA, France Issam.Al-Azzoni@imag.fr ABSTRACT Advances in technology and economical pressure have forced many organizations to consider the

More information