Homework 3: Normalization, Indexing SOLUTION. AB C ; D B ; AC D. Answer each question below and carefully justify your answer.

Size: px
Start display at page:

Download "Homework 3: Normalization, Indexing SOLUTION. AB C ; D B ; AC D. Answer each question below and carefully justify your answer."

Transcription

1 CS 461, Database Systems, Spring 2015 Problem 1 (25pts): Normalization Homework 3: Normalization, Indexing SOLUTION Consider relation R (ABCD) together with the following set of FDs: AB C ; D B ; AC D. Answer each question below and carefully justify your answer. (a) (5 points) List all candidate keys of relation R. This relation has 3 candidate keys, AB, AC and AD. This is because {AB} + ={ABCD}, {AC} + ={ABCD} and {AD} + ={ABCD}. (b) (5 points) Does AD B follow from the set of FDs AB C ; D B ; AC D? Yes. To check this, we must check whether B is in the closure of {AD}. We know that this is the case because, as we saw in (a), {AD} is a candidate key of R, and so all attributes are in the closure of {AD}. (c) (5 points) Is relation R in 3NF? Is relation R in BCNF? Justify your answer. R is in 3NF. This is because FDs AB C; AC D have a candidate key on the left. The final FD, D B, has part of the candidate key {AB} on the right. R is not in BCNF, the FD D B violates BCNF because D is not a candidate key or a superkey, and the FD is non- trivial. (d) (10 points) Decompose R into BCNF, underlining the key for each relation in the decomposition. Show the projected dependencies for each relation. Is this decomposition dependency- preserving? ABCD is decomposed on the FD D B into R1(ACD), with keys AC and AD, and FDs AC D and AD C, and R2(DB), with key D and FD D B. Both R1 and R2 are in BCNF, so decomposition stops. This decomposition is not dependency- preserving, because FD enforced. AB C is not

2 Problem 2 (20 points): Normalization continued (a) (10 points) Consider relation R (WXYZ) with the following set of FDs: Y Z YZ W WX Y XZ W. Give a decomposition of R into BCNF, underlining the key for each relation in the decomposition. Show the projected dependencies for each relation. Is this decomposition dependency- preserving? First, we must determine candidate keys of this relation. We start by observing that, since no FD has X on the right, X must be part of the candidate key. It turns out that all two- element sets that include X, namely, XY, XZ and XW, are candidate keys of R. Next, we check which FDs violate BCNF. There are two such FDs: Y Z and YZ W. However, note that the second FD is not part of the minimal cover of FDs, Z can be removed from the left hand side, with no effect on attribute closures. Therefore, rather than considering YZ W, we will consider Y W. There are two FDs that violate BCNF, we show two decompositions, one is sufficient for full credit. Option 1: Decomposing on Y Z, we get: R1(XYW) with candidate keys XW and XY, and FDs XW Y, XY W and Y W. (Underlining only one of the two keys.) R1 is not in BCNF Y W is the offending FD. We further decompose R1 as follows: o R3(YW) with key Y and FD Y W, this relation is in BCNF. o R4 (XY) with key XY, this relation is in BCNF. R2(YZW), with candidate key Y and FD Y Z and Y W. Note that R2 contains attribute W in addition to Y and Z, since W is in the closure of Y w.r.t. original FDs. R2 is in BCNF since Y is a candidate key. This decomposition is not dependency- preserving, since FD are lost. Option 2: Decomposing on Y W, we get: XZ W and WX Y R1(XYZ) with candidate keys XY and XZ, and FDs XY Z and XZ Y. (Underlining only one of the two keys.) This relation is in BCNF, since XY and XZ are candidate keys. R2(YZW), see Option 1 for keys and FDs. R2 is in BCNF. This decomposition is not dependency- preserving, since FD XZ W is lost.

3 (b) (10 points) Consider relation R (ABCD) with the following set of FDs: C B A B CD A BCD A. Decompose R into 3NF, underlining the key for each relation in the decomposition. Show the projected dependencies for each relation. First, we compute candidate keys for R. Since no FDs have either C or D on the right, both these attributes must be part of a candidate key. In fact, {CD} is the only candidate key of R, since {CD} + ={ABCD}. R is not in 3NF, since FDs C B and A B violate this normal form. To find a 3NF decomposition, we compute minimal basis of the set of FDs. To do this, we observe that the last FD, with BCD on the left, can be dropped, since it is redundant with the FD that has CD on the left. We create a 3NF decomposition with relations R1(CB), R2(AB) and R3(CDA). Since R3 is a superkey for R, we don t need to add any more relations to the decomposition, done. Problem 3 (20 points): External sorting Consider a file in which there are 10,000 records, each record is 1KB in size. Further, suppose that the size of a block is 64KB. (a) (10 points) How many passes will be required to sort this file using two- way external merge- sort? What is the total I/O cost of sorting this file? In this dataset, there are ceil(10,000 / 64) = 157 pages that must be sorted. In two- way external merge- sort, we use 1 memory block in pass 0 (each 64- record block is sorted), and 3 memory blocks in subsequent passes (pairs of adjacent sorted runs are merged). To sort 157 pages, we will need 1 + ceil(log2157) = 9 passes. Each page is read and written once on each pass (2 I/Os per page per pass). Thus, the total cost of two- way external merge- sort on this dataset is 2 * 157 * 9 = 2,826 I/Os. (b) (10 points) Suppose now that we have 320KB of memory at our disposal. How many passes will be required to sort this file using generalized external merge- sort? What is the total I/O cost of sorting this file? In phase 0 of generalized external merge- sort, we read in and sort 320KB (5 pages worth) at a time, creating ceil(157/5) = 32 sorted runs of 5 blocks each. Then in subsequent passes we merge 5-1=4 neighboring runs. We need ceil(log432)=3 passes to complete sorting. That s a total of 4 passes, with 2 I/Os

4 per page per pass, for a total of 2 * 157 * 4 = 1,256 I/Os, a significant reduction compared to (a). Problem 4 (25pts): Indexing Consider the following relation: Sailors (id: integer; name: string; rating: integer; age: integer) Ids range from 0 to 100,000, ratings range from 1 to 10, ages range from 20 to 80. You can assume uniform distributions of age and rating values, that is, all values of age and rating are equally likely and are uncorrelated. The Sailors relation is stored on disk as a sorted file, sorted in id. There are 100,000 records in this file, 1,000 per disk page, for a total of 100 disk pages. Suppose that the following access paths are available, and that all indexes are unclustered. No index Hash index on (id) Hash index on (age) Hash index on (age, rating) Hash index on (name, age, rating) B+- tree index on (name, age, rating) B+- tree index on (age, rating) For each query below, decide which access path you will use to speed up the query, and briefly explain why. (a) (5 points) Print name, age, rating of all sailors. B+- tree index on (name, age, rating) contains all the required information. This index can be traversed, and assuming that the index fits in memory, no disk pages will need to be retrieved at all. (b) (5 points) Print name, age and rating of the sailor with id = 123 Hash index on id should be used. This index is on the primary key, at most 1 record will match the query, and if a record does match, we will retrieve exactly 1 page from disk. (c) (5 points) Count the number of sailors with rating = 5 and age < 40 We can use the unclustered B+- tree index on (age, rating) to answer this query. The leaf level of the index will contain all the relevant data entries, and we will be able to count the number of records without retrieving any pages from disk. (d) (5 points) Count the number of sailors with rating = 5.

5 Either of the B+- tree indexes can be used for this operation. While the condition rating=5 does not match either index, since it does not make a prefix of either (name, age, rating) or (age, rating), we cannot use the indexes to look up records with rating=5. However, we can traverse the indexes, filter results on rating=5 in memory, and compute the count of the matching record identifiers. Assuming that the index fits in memory, this operation will incur no I/Os. (e) (5 points) Print name, age and rating of sailors with rating < 5 and age < 40. We can use the B+- tree index on age, rating to answer this query, however, because the index is unclustered, and because it does not contain complete information needed to answer this query (sailor name is missing), we have to be careful to not incur more disk I/Os than a sequential scan would. About 40% of the records have rating <5, and about 30% have age < 40. Since attributes are uncorrelated, we expect about 12% of the records to match both conditions. That s 12,000 records. Accessing these records using an unclustered index will incur 12,000 I/Os. In contrast, a full scan of the relation will incur 1000 I/Os. Therefore, it is more efficient to not use the index in this case, and to access the file sequentially instead.

Schema Design and Normal Forms Sid Name Level Rating Wage Hours

Schema Design and Normal Forms Sid Name Level Rating Wage Hours Entity-Relationship Diagram Schema Design and Sid Name Level Rating Wage Hours Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 1 Database Management Systems, 2 nd Edition. R. Ramakrishnan

More information

Relational Database Design

Relational Database Design Relational Database Design To generate a set of relation schemas that allows - to store information without unnecessary redundancy - to retrieve desired information easily Approach - design schema in appropriate

More information

Why Is This Important? Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) Example (Contd.)

Why Is This Important? Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) Example (Contd.) Why Is This Important? Schema Refinement and Normal Forms Chapter 19 Many ways to model a given scenario in a database How do we find the best one? We will discuss objective criteria for evaluating database

More information

Schema Refinement and Normalization

Schema Refinement and Normalization Schema Refinement and Normalization Module 5, Lectures 3 and 4 Database Management Systems, R. Ramakrishnan 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational

More information

normalisation Goals: Suppose we have a db scheme: is it good? define precise notions of the qualities of a relational database scheme

normalisation Goals: Suppose we have a db scheme: is it good? define precise notions of the qualities of a relational database scheme Goals: Suppose we have a db scheme: is it good? Suppose we have a db scheme derived from an ER diagram: is it good? define precise notions of the qualities of a relational database scheme define algorithms

More information

Lecture Notes on Database Normalization

Lecture Notes on Database Normalization Lecture Notes on Database Normalization Chengkai Li Department of Computer Science and Engineering The University of Texas at Arlington April 15, 2012 I decided to write this document, because many students

More information

Limitations of E-R Designs. Relational Normalization Theory. Redundancy and Other Problems. Redundancy. Anomalies. Example

Limitations of E-R Designs. Relational Normalization Theory. Redundancy and Other Problems. Redundancy. Anomalies. Example Limitations of E-R Designs Relational Normalization Theory Chapter 6 Provides a set of guidelines, does not result in a unique database schema Does not provide a way of evaluating alternative schemas Normalization

More information

Database Design and Normal Forms

Database Design and Normal Forms Database Design and Normal Forms Database Design coming up with a good schema is very important How do we characterize the goodness of a schema? If two or more alternative schemas are available how do

More information

The University of British Columbia

The University of British Columbia The University of British Columbia Computer Science 304 Midterm Examination October 31, 2005 Time: 50 minutes Total marks: 50 Instructor: Rachel Pottinger Name ANSWER KEY (PRINT) (Last) (First) Signature

More information

Limitations of DB Design Processes

Limitations of DB Design Processes Normalization CS 317/387 1 Limitations of DB Design Processes Provides a set of guidelines, does not result in a unique database schema Does not provide a way of evaluating alternative schemas Pitfalls:

More information

Answer Key. UNIVERSITY OF CALIFORNIA College of Engineering Department of EECS, Computer Science Division

Answer Key. UNIVERSITY OF CALIFORNIA College of Engineering Department of EECS, Computer Science Division Answer Key UNIVERSITY OF CALIFORNIA College of Engineering Department of EECS, Computer Science Division CS186 Fall 2003 Eben Haber Midterm Midterm Exam: Introduction to Database Systems This exam has

More information

Functional Dependencies and Finding a Minimal Cover

Functional Dependencies and Finding a Minimal Cover Functional Dependencies and Finding a Minimal Cover Robert Soulé 1 Normalization An anomaly occurs in a database when you can update, insert, or delete data, and get undesired side-effects. These side

More information

Jordan University of Science & Technology Computer Science Department CS 728: Advanced Database Systems Midterm Exam First 2009/2010

Jordan University of Science & Technology Computer Science Department CS 728: Advanced Database Systems Midterm Exam First 2009/2010 Jordan University of Science & Technology Computer Science Department CS 728: Advanced Database Systems Midterm Exam First 2009/2010 Student Name: ID: Part 1: Multiple-Choice Questions (17 questions, 1

More information

Databases -Normalization III. (N Spadaccini 2010 and W Liu 2012) Databases - Normalization III 1 / 31

Databases -Normalization III. (N Spadaccini 2010 and W Liu 2012) Databases - Normalization III 1 / 31 Databases -Normalization III (N Spadaccini 2010 and W Liu 2012) Databases - Normalization III 1 / 31 This lecture This lecture describes 3rd normal form. (N Spadaccini 2010 and W Liu 2012) Databases -

More information

LiTH, Tekniska högskolan vid Linköpings universitet 1(7) IDA, Institutionen för datavetenskap Juha Takkinen 2007-05-24

LiTH, Tekniska högskolan vid Linköpings universitet 1(7) IDA, Institutionen för datavetenskap Juha Takkinen 2007-05-24 LiTH, Tekniska högskolan vid Linköpings universitet 1(7) IDA, Institutionen för datavetenskap Juha Takkinen 2007-05-24 1. A database schema is a. the state of the db b. a description of the db using a

More information

Class One: Degree Sequences

Class One: Degree Sequences Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

More information

How To Find Out What A Key Is In A Database Engine

How To Find Out What A Key Is In A Database Engine Database design theory, Part I Functional dependencies Introduction As we saw in the last segment, designing a good database is a non trivial matter. The E/R model gives a useful rapid prototyping tool,

More information

Design of Relational Database Schemas

Design of Relational Database Schemas Design of Relational Database Schemas T. M. Murali October 27, November 1, 2010 Plan Till Thanksgiving What are the typical problems or anomalies in relational designs? Introduce the idea of decomposing

More information

Database Design and Normalization

Database Design and Normalization Database Design and Normalization CPS352: Database Systems Simon Miner Gordon College Last Revised: 9/27/12 Agenda Check-in Functional Dependencies (continued) Design Project E-R Diagram Presentations

More information

Schema Refinement, Functional Dependencies, Normalization

Schema Refinement, Functional Dependencies, Normalization Schema Refinement, Functional Dependencies, Normalization MSCI 346: Database Systems Güneş Aluç, University of Waterloo Spring 2015 MSCI 346: Database Systems Chapter 19 1 / 42 Outline 1 Introduction Design

More information

CSE 326: Data Structures B-Trees and B+ Trees

CSE 326: Data Structures B-Trees and B+ Trees Announcements (4//08) CSE 26: Data Structures B-Trees and B+ Trees Brian Curless Spring 2008 Midterm on Friday Special office hour: 4:-5: Thursday in Jaech Gallery (6 th floor of CSE building) This is

More information

Introduction Decomposition Simple Synthesis Bernstein Synthesis and Beyond. 6. Normalization. Stéphane Bressan. January 28, 2015

Introduction Decomposition Simple Synthesis Bernstein Synthesis and Beyond. 6. Normalization. Stéphane Bressan. January 28, 2015 6. Normalization Stéphane Bressan January 28, 2015 1 / 42 This lecture is based on material by Professor Ling Tok Wang. CS 4221: Database Design The Relational Model Ling Tok Wang National University of

More information

Functional Dependencies and Normalization

Functional Dependencies and Normalization Functional Dependencies and Normalization 5DV119 Introduction to Database Management Umeå University Department of Computing Science Stephen J. Hegner hegner@cs.umu.se http://www.cs.umu.se/~hegner Functional

More information

Functional Dependencies

Functional Dependencies BCNF and 3NF Functional Dependencies Functional dependencies: modeling constraints on attributes stud-id name address course-id session-id classroom instructor Functional dependencies should be obtained

More information

Introduction to Databases, Fall 2005 IT University of Copenhagen. Lecture 5: Normalization II; Database design case studies. September 26, 2005

Introduction to Databases, Fall 2005 IT University of Copenhagen. Lecture 5: Normalization II; Database design case studies. September 26, 2005 Introduction to Databases, Fall 2005 IT University of Copenhagen Lecture 5: Normalization II; Database design case studies September 26, 2005 Lecturer: Rasmus Pagh Today s lecture Normalization II: 3rd

More information

Graham Kemp (telephone 772 54 11, room 6475 EDIT) The examiner will visit the exam room at 15:00 and 17:00.

Graham Kemp (telephone 772 54 11, room 6475 EDIT) The examiner will visit the exam room at 15:00 and 17:00. CHALMERS UNIVERSITY OF TECHNOLOGY Department of Computer Science and Engineering Examination in Databases, TDA357/DIT620 Tuesday 17 December 2013, 14:00-18:00 Examiner: Results: Exam review: Grades: Graham

More information

Theory behind Normalization & DB Design. Satisfiability: Does an FD hold? Lecture 12

Theory behind Normalization & DB Design. Satisfiability: Does an FD hold? Lecture 12 Theory behind Normalization & DB Design Lecture 12 Satisfiability: Does an FD hold? Satisfiability of FDs Given: FD X Y and relation R Output: Does R satisfy X Y? Algorithm: a.sort R on X b.do all the

More information

Week 11: Normal Forms. Logical Database Design. Normal Forms and Normalization. Examples of Redundancy

Week 11: Normal Forms. Logical Database Design. Normal Forms and Normalization. Examples of Redundancy Week 11: Normal Forms Database Design Database Redundancies and Anomalies Functional Dependencies Entailment, Closure and Equivalence Lossless Decompositions The Third Normal Form (3NF) The Boyce-Codd

More information

Database Management Systems. Redundancy and Other Problems. Redundancy

Database Management Systems. Redundancy and Other Problems. Redundancy Database Management Systems Winter 2004 CMPUT 391: Database Design Theory or Relational Normalization Theory Dr. Osmar R. Zaïane Lecture 2 Limitations of Relational Database Designs Provides a set of guidelines,

More information

Announcements. SQL is hot! Facebook. Goal. Database Design Process. IT420: Database Management and Organization. Normalization (Chapter 3)

Announcements. SQL is hot! Facebook. Goal. Database Design Process. IT420: Database Management and Organization. Normalization (Chapter 3) Announcements IT0: Database Management and Organization Normalization (Chapter 3) Department coin design contest deadline - February -week exam Monday, February 1 Lab SQL SQL Server: ALTER TABLE tname

More information

Relational Database Design: FD s & BCNF

Relational Database Design: FD s & BCNF CS145 Lecture Notes #5 Relational Database Design: FD s & BCNF Motivation Automatic translation from E/R or ODL may not produce the best relational design possible Sometimes database designers like to

More information

CS143 Notes: Normalization Theory

CS143 Notes: Normalization Theory CS143 Notes: Normalization Theory Book Chapters (4th) Chapters 7.1-6, 7.8, 7.10 (5th) Chapters 7.1-6, 7.8 (6th) Chapters 8.1-6, 8.8 INTRODUCTION Main question How do we design good tables for a relational

More information

Krishna Institute of Engineering & Technology, Ghaziabad Department of Computer Application MCA-213 : DATA STRUCTURES USING C

Krishna Institute of Engineering & Technology, Ghaziabad Department of Computer Application MCA-213 : DATA STRUCTURES USING C Tutorial#1 Q 1:- Explain the terms data, elementary item, entity, primary key, domain, attribute and information? Also give examples in support of your answer? Q 2:- What is a Data Type? Differentiate

More information

Chapter 13: Query Processing. Basic Steps in Query Processing

Chapter 13: Query Processing. Basic Steps in Query Processing Chapter 13: Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 13.1 Basic Steps in Query Processing 1. Parsing

More information

Physical Database Design and Tuning

Physical Database Design and Tuning Chapter 20 Physical Database Design and Tuning Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 1. Physical Database Design in Relational Databases (1) Factors that Influence

More information

Chapter 7: Relational Database Design

Chapter 7: Relational Database Design Chapter 7: Relational Database Design Database System Concepts, 5th Ed. See www.db book.com for conditions on re use Chapter 7: Relational Database Design Features of Good Relational Design Atomic Domains

More information

Carnegie Mellon Univ. Dept. of Computer Science 15-415 - Database Applications. Overview - detailed. Goal. Faloutsos CMU SCS 15-415

Carnegie Mellon Univ. Dept. of Computer Science 15-415 - Database Applications. Overview - detailed. Goal. Faloutsos CMU SCS 15-415 Faloutsos 15-415 Carnegie Mellon Univ. Dept. of Computer Science 15-415 - Database Applications Lecture #17: Schema Refinement & Normalization - Normal Forms (R&G, ch. 19) Overview - detailed DB design

More information

Query Processing C H A P T E R12. Practice Exercises

Query Processing C H A P T E R12. Practice Exercises C H A P T E R12 Query Processing Practice Exercises 12.1 Assume (for simplicity in this exercise) that only one tuple fits in a block and memory holds at most 3 blocks. Show the runs created on each pass

More information

1. Physical Database Design in Relational Databases (1)

1. Physical Database Design in Relational Databases (1) Chapter 20 Physical Database Design and Tuning Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 1. Physical Database Design in Relational Databases (1) Factors that Influence

More information

Chapter 10 Functional Dependencies and Normalization for Relational Databases

Chapter 10 Functional Dependencies and Normalization for Relational Databases Chapter 10 Functional Dependencies and Normalization for Relational Databases Copyright 2004 Pearson Education, Inc. Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1Semantics of

More information

Database Design and Normalization

Database Design and Normalization Database Design and Normalization Chapter 10 (Week 11) EE562 Slides and Modified Slides from Database Management Systems, R. Ramakrishnan 1 Computing Closure F + Example: List all FDs with: - a single

More information

Theory of Relational Database Design and Normalization

Theory of Relational Database Design and Normalization Theory of Relational Database Design and Normalization (Based on Chapter 14 and some part of Chapter 15 in Fundamentals of Database Systems by Elmasri and Navathe) 1 Informal Design Guidelines for Relational

More information

Part I: Entity Relationship Diagrams and SQL (40/100 Pt.)

Part I: Entity Relationship Diagrams and SQL (40/100 Pt.) Part I: Entity Relationship Diagrams and SQL (40/100 Pt.) Q.1.1) Translate the following E-R Schema to SQL-DDL tables using the CREATE Table Statement and check constraints, if needed: LatinName EnglishName

More information

CSCI-GA.2433-001 Database Systems Lecture 7: Schema Refinement and Normalization

CSCI-GA.2433-001 Database Systems Lecture 7: Schema Refinement and Normalization CSCI-GA.2433-001 Database Systems Lecture 7: Schema Refinement and Normalization Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com View 1 View 2 View 3 Conceptual Schema At that point we

More information

Lecture 1: Data Storage & Index

Lecture 1: Data Storage & Index Lecture 1: Data Storage & Index R&G Chapter 8-11 Concurrency control Query Execution and Optimization Relational Operators File & Access Methods Buffer Management Disk Space Management Recovery Manager

More information

CIS 631 Database Management Systems Sample Final Exam

CIS 631 Database Management Systems Sample Final Exam CIS 631 Database Management Systems Sample Final Exam 1. (25 points) Match the items from the left column with those in the right and place the letters in the empty slots. k 1. Single-level index files

More information

Introduction to Database Systems. Normalization

Introduction to Database Systems. Normalization Introduction to Database Systems Normalization Werner Nutt 1 Normalization 1. Anomalies 1. Anomalies 2. Boyce-Codd Normal Form 3. 3 rd Normal Form 2 Anomalies The goal of relational schema design is to

More information

CS 377 Database Systems. Database Design Theory and Normalization. Li Xiong Department of Mathematics and Computer Science Emory University

CS 377 Database Systems. Database Design Theory and Normalization. Li Xiong Department of Mathematics and Computer Science Emory University CS 377 Database Systems Database Design Theory and Normalization Li Xiong Department of Mathematics and Computer Science Emory University 1 Relational database design So far Conceptual database design

More information

Relational Normalization Theory (supplemental material)

Relational Normalization Theory (supplemental material) Relational Normalization Theory (supplemental material) CSE 532, Theory of Database Systems Stony Brook University http://www.cs.stonybrook.edu/~cse532 2 Quiz 8 Consider a schema S with functional dependencies:

More information

Overview of Storage and Indexing

Overview of Storage and Indexing Overview of Storage and Indexing Chapter 8 How index-learning turns no student pale Yet holds the eel of science by the tail. -- Alexander Pope (1688-1744) Database Management Systems 3ed, R. Ramakrishnan

More information

Unique column combinations

Unique column combinations Unique column combinations Arvid Heise Guest lecture in Data Profiling and Data Cleansing Prof. Dr. Felix Naumann Agenda 2 Introduction and problem statement Unique column combinations Exponential search

More information

Database Constraints and Design

Database Constraints and Design Database Constraints and Design We know that databases are often required to satisfy some integrity constraints. The most common ones are functional and inclusion dependencies. We ll study properties of

More information

Theory I: Database Foundations

Theory I: Database Foundations Theory I: Database Foundations 19. 19. Theory I: Database Foundations 07.2012 1 Theory I: Database Foundations 20. Formal Design 20. 20: Formal Design We want to distinguish good from bad database design.

More information

Overview of Storage and Indexing. Data on External Storage. Alternative File Organizations. Chapter 8

Overview of Storage and Indexing. Data on External Storage. Alternative File Organizations. Chapter 8 Overview of Storage and Indexing Chapter 8 How index-learning turns no student pale Yet holds the eel of science by the tail. -- Alexander Pope (1688-1744) Database Management Systems 3ed, R. Ramakrishnan

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata November 13, 17, 2014 Social Network No introduc+on required Really? We s7ll need to understand

More information

Boolean Algebra (cont d) UNIT 3 BOOLEAN ALGEBRA (CONT D) Guidelines for Multiplying Out and Factoring. Objectives. Iris Hui-Ru Jiang Spring 2010

Boolean Algebra (cont d) UNIT 3 BOOLEAN ALGEBRA (CONT D) Guidelines for Multiplying Out and Factoring. Objectives. Iris Hui-Ru Jiang Spring 2010 Boolean Algebra (cont d) 2 Contents Multiplying out and factoring expressions Exclusive-OR and Exclusive-NOR operations The consensus theorem Summary of algebraic simplification Proving validity of an

More information

Chapter 8. Database Design II: Relational Normalization Theory

Chapter 8. Database Design II: Relational Normalization Theory Chapter 8 Database Design II: Relational Normalization Theory The E-R approach is a good way to start dealing with the complexity of modeling a real-world enterprise. However, it is only a set of guidelines

More information

Relational Database Design Theory

Relational Database Design Theory Relational Database Design Theory Informal guidelines for good relational designs Functional dependencies Normal forms and normalization 1NF, 2NF, 3NF BCNF, 4NF, 5NF Inference rules on functional dependencies

More information

Chapter 7: Relational Database Design

Chapter 7: Relational Database Design Chapter 7: Relational Database Design Pitfalls in Relational Database Design Decomposition Normalization Using Functional Dependencies Normalization Using Multivalued Dependencies Normalization Using Join

More information

Normalisation. Why normalise? To improve (simplify) database design in order to. Avoid update problems Avoid redundancy Simplify update operations

Normalisation. Why normalise? To improve (simplify) database design in order to. Avoid update problems Avoid redundancy Simplify update operations Normalisation Why normalise? To improve (simplify) database design in order to Avoid update problems Avoid redundancy Simplify update operations 1 Example ( the practical difference between a first normal

More information

MCQs~Databases~Relational Model and Normalization http://en.wikipedia.org/wiki/database_normalization

MCQs~Databases~Relational Model and Normalization http://en.wikipedia.org/wiki/database_normalization http://en.wikipedia.org/wiki/database_normalization Database normalization is the process of organizing the fields and tables of a relational database to minimize redundancy. Normalization usually involves

More information

Geometry Module 4 Unit 2 Practice Exam

Geometry Module 4 Unit 2 Practice Exam Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

More information

6.830 Lecture 3 9.16.2015 PS1 Due Next Time (Tuesday!) Lab 1 Out today start early! Relational Model Continued, and Schema Design and Normalization

6.830 Lecture 3 9.16.2015 PS1 Due Next Time (Tuesday!) Lab 1 Out today start early! Relational Model Continued, and Schema Design and Normalization 6.830 Lecture 3 9.16.2015 PS1 Due Next Time (Tuesday!) Lab 1 Out today start early! Relational Model Continued, and Schema Design and Normalization Animals(name,age,species,cageno,keptby,feedtime) Keeper(id,name)

More information

DATABASE DESIGN - 1DL400

DATABASE DESIGN - 1DL400 DATABASE DESIGN - 1DL400 Spring 2015 A course on modern database systems!! http://www.it.uu.se/research/group/udbl/kurser/dbii_vt15/ Kjell Orsborn! Uppsala Database Laboratory! Department of Information

More information

1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++

1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ Answer the following 1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ 2) Which data structure is needed to convert infix notations to postfix notations? Stack 3) The

More information

Chapter 10. Functional Dependencies and Normalization for Relational Databases

Chapter 10. Functional Dependencies and Normalization for Relational Databases Chapter 10 Functional Dependencies and Normalization for Relational Databases Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant

More information

Theory of Relational Database Design and Normalization

Theory of Relational Database Design and Normalization Theory of Relational Database Design and Normalization (Based on Chapter 14 and some part of Chapter 15 in Fundamentals of Database Systems by Elmasri and Navathe, Ed. 3) 1 Informal Design Guidelines for

More information

Unit 3 Boolean Algebra (Continued)

Unit 3 Boolean Algebra (Continued) Unit 3 Boolean Algebra (Continued) 1. Exclusive-OR Operation 2. Consensus Theorem Department of Communication Engineering, NCTU 1 3.1 Multiplying Out and Factoring Expressions Department of Communication

More information

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Multidimensionale Indexstrukturen Ulf Leser Wissensmanagement in der Bioinformatik Content of this Lecture Multidimensional Indexing Grid-Files Kd-trees Ulf Leser: Data

More information

Advanced Oracle SQL Tuning

Advanced Oracle SQL Tuning Advanced Oracle SQL Tuning Seminar content technical details 1) Understanding Execution Plans In this part you will learn how exactly Oracle executes SQL execution plans. Instead of describing on PowerPoint

More information

DATABASE MANAGEMENT SYSTEMS. Question Bank:

DATABASE MANAGEMENT SYSTEMS. Question Bank: DATABASE MANAGEMENT SYSTEMS Question Bank: UNIT 1 1. Define Database? 2. What is a DBMS? 3. What is the need for database systems? 4. Define tupule? 5. What are the responsibilities of DBA? 6. Define schema?

More information

Playing with Numbers

Playing with Numbers PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also

More information

Advanced Relational Database Design

Advanced Relational Database Design APPENDIX B Advanced Relational Database Design In this appendix we cover advanced topics in relational database design. We first present the theory of multivalued dependencies, including a set of sound

More information

CS 2112 Spring 2014. 0 Instructions. Assignment 3 Data Structures and Web Filtering. 0.1 Grading. 0.2 Partners. 0.3 Restrictions

CS 2112 Spring 2014. 0 Instructions. Assignment 3 Data Structures and Web Filtering. 0.1 Grading. 0.2 Partners. 0.3 Restrictions CS 2112 Spring 2014 Assignment 3 Data Structures and Web Filtering Due: March 4, 2014 11:59 PM Implementing spam blacklists and web filters requires matching candidate domain names and URLs very rapidly

More information

External Sorting. Chapter 13. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

External Sorting. Chapter 13. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 External Sorting Chapter 13 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Why Sort? A classic problem in computer science! Data requested in sorted order e.g., find students in increasing

More information

Data Mining Apriori Algorithm

Data Mining Apriori Algorithm 10 Data Mining Apriori Algorithm Apriori principle Frequent itemsets generation Association rules generation Section 6 of course book TNM033: Introduction to Data Mining 1 Association Rule Mining (ARM)

More information

International Legal English Certificate

International Legal English Certificate International Legal English Certificate Past Examination Paper Selected Tasks Test of Speaking 2007 University of Cambridge ESOL Examinations 1 Hills Road Cambridge CB1 2EU United Kingdom Tel. +44 1223

More information

Normalisation and Data Storage Devices

Normalisation and Data Storage Devices Unit 4 Normalisation and Data Storage Devices Structure 4.1 Introduction 4.2 Functional Dependency 4.3 Normalisation 4.3.1 Why do we Normalize a Relation? 4.3.2 Second Normal Form Relation 4.3.3 Third

More information

B+ Tree Properties B+ Tree Searching B+ Tree Insertion B+ Tree Deletion Static Hashing Extendable Hashing Questions in pass papers

B+ Tree Properties B+ Tree Searching B+ Tree Insertion B+ Tree Deletion Static Hashing Extendable Hashing Questions in pass papers B+ Tree and Hashing B+ Tree Properties B+ Tree Searching B+ Tree Insertion B+ Tree Deletion Static Hashing Extendable Hashing Questions in pass papers B+ Tree Properties Balanced Tree Same height for paths

More information

CS2Bh: Current Technologies. Introduction to XML and Relational Databases. The Relational Model. The relational model

CS2Bh: Current Technologies. Introduction to XML and Relational Databases. The Relational Model. The relational model CS2Bh: Current Technologies Introduction to XML and Relational Databases Spring 2005 The Relational Model CS2 Spring 2005 (LN6) 1 The relational model Proposed by Codd in 1970. It is the dominant data

More information

Normalisation to 3NF. Database Systems Lecture 11 Natasha Alechina

Normalisation to 3NF. Database Systems Lecture 11 Natasha Alechina Normalisation to 3NF Database Systems Lecture 11 Natasha Alechina In This Lecture Normalisation to 3NF Data redundancy Functional dependencies Normal forms First, Second, and Third Normal Forms For more

More information

Objectives, outcomes, and key concepts. Objectives: give an overview of the normal forms and their benefits and problems.

Objectives, outcomes, and key concepts. Objectives: give an overview of the normal forms and their benefits and problems. Normalization Page 1 Objectives, outcomes, and key concepts Tuesday, January 6, 2015 11:45 AM Objectives: give an overview of the normal forms and their benefits and problems. Outcomes: students should

More information

Normalization of database model. Pazmany Peter Catholic University 2005 Zoltan Fodroczi

Normalization of database model. Pazmany Peter Catholic University 2005 Zoltan Fodroczi Normalization of database model Pazmany Peter Catholic University 2005 Zoltan Fodroczi Closure of an attribute set Given a set of attributes α define the closure of attribute set α under F (denoted as

More information

External Sorting. Why Sort? 2-Way Sort: Requires 3 Buffers. Chapter 13

External Sorting. Why Sort? 2-Way Sort: Requires 3 Buffers. Chapter 13 External Sorting Chapter 13 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Why Sort? A classic problem in computer science! Data requested in sorted order e.g., find students in increasing

More information

Storage in Database Systems. CMPSCI 445 Fall 2010

Storage in Database Systems. CMPSCI 445 Fall 2010 Storage in Database Systems CMPSCI 445 Fall 2010 1 Storage Topics Architecture and Overview Disks Buffer management Files of records 2 DBMS Architecture Query Parser Query Rewriter Query Optimizer Query

More information

Database Sample Examination

Database Sample Examination Part 1: SQL Database Sample Examination (Spring 2007) Question 1: Draw a simple ER diagram that results in a primary key/foreign key constraint to be created between the tables: CREATE TABLE Salespersons

More information

Chapter 8: Structures for Files. Truong Quynh Chi tqchi@cse.hcmut.edu.vn. Spring- 2013

Chapter 8: Structures for Files. Truong Quynh Chi tqchi@cse.hcmut.edu.vn. Spring- 2013 Chapter 8: Data Storage, Indexing Structures for Files Truong Quynh Chi tqchi@cse.hcmut.edu.vn Spring- 2013 Overview of Database Design Process 2 Outline Data Storage Disk Storage Devices Files of Records

More information

10CS35: Data Structures Using C

10CS35: Data Structures Using C CS35: Data Structures Using C QUESTION BANK REVIEW OF STRUCTURES AND POINTERS, INTRODUCTION TO SPECIAL FEATURES OF C OBJECTIVE: Learn : Usage of structures, unions - a conventional tool for handling a

More information

Big Data, Fast Data, Complex Data. Jans Aasman Franz Inc

Big Data, Fast Data, Complex Data. Jans Aasman Franz Inc Big Data, Fast Data, Complex Data Jans Aasman Franz Inc Private, founded 1984 AI, Semantic Technology, professional services Now in Oakland Franz Inc Who We Are (1 (2 3) (4 5) (6 7) (8 9) (10 11) (12

More information

Elena Baralis, Silvia Chiusano Politecnico di Torino. Pag. 1. Physical Design. Phases of database design. Physical design: Inputs.

Elena Baralis, Silvia Chiusano Politecnico di Torino. Pag. 1. Physical Design. Phases of database design. Physical design: Inputs. Phases of database design Application requirements Conceptual design Database Management Systems Conceptual schema Logical design ER or UML Physical Design Relational tables Logical schema Physical design

More information

Question 1. Relational Data Model [17 marks] Question 2. SQL and Relational Algebra [31 marks]

Question 1. Relational Data Model [17 marks] Question 2. SQL and Relational Algebra [31 marks] EXAMINATIONS 2005 MID-YEAR COMP 302 Database Systems Time allowed: Instructions: 3 Hours Answer all questions. Make sure that your answers are clear and to the point. Write your answers in the spaces provided.

More information

Database Systems. National Chiao Tung University Chun-Jen Tsai 05/30/2012

Database Systems. National Chiao Tung University Chun-Jen Tsai 05/30/2012 Database Systems National Chiao Tung University Chun-Jen Tsai 05/30/2012 Definition of a Database Database System A multidimensional data collection, internal links between its entries make the information

More information

D B M G Data Base and Data Mining Group of Politecnico di Torino

D B M G Data Base and Data Mining Group of Politecnico di Torino Database Management Data Base and Data Mining Group of tania.cerquitelli@polito.it A.A. 2014-2015 Optimizer objective A SQL statement can be executed in many different ways The query optimizer determines

More information

Design Theory for Relational Databases: Functional Dependencies and Normalization

Design Theory for Relational Databases: Functional Dependencies and Normalization Design Theory for Relational Databases: Functional Dependencies and Normalization Juliana Freire Some slides adapted from L. Delcambre, R. Ramakrishnan, G. Lindstrom, J. Ullman and Silberschatz, Korth

More information

Chapter 5: Logical Database Design and the Relational Model Part 2: Normalization. Introduction to Normalization. Normal Forms.

Chapter 5: Logical Database Design and the Relational Model Part 2: Normalization. Introduction to Normalization. Normal Forms. Chapter 5: Logical Database Design and the Relational Model Part 2: Normalization Modern Database Management 6 th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden Robert C. Nickerson ISYS

More information

University of Massachusetts Amherst Department of Computer Science Prof. Yanlei Diao

University of Massachusetts Amherst Department of Computer Science Prof. Yanlei Diao University of Massachusetts Amherst Department of Computer Science Prof. Yanlei Diao CMPSCI 445 Midterm Practice Questions NAME: LOGIN: Write all of your answers directly on this paper. Be sure to clearly

More information

Chapter 10. Functional Dependencies and Normalization for Relational Databases. Copyright 2007 Ramez Elmasri and Shamkant B.

Chapter 10. Functional Dependencies and Normalization for Relational Databases. Copyright 2007 Ramez Elmasri and Shamkant B. Chapter 10 Functional Dependencies and Normalization for Relational Databases Copyright 2007 Ramez Elmasri and Shamkant B. Navathe Chapter Outline 1 Informal Design Guidelines for Relational Databases

More information

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92. Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure

More information

BCA. Database Management System

BCA. Database Management System BCA IV Sem Database Management System Multiple choice questions 1. A Database Management System (DBMS) is A. Collection of interrelated data B. Collection of programs to access data C. Collection of data

More information

Chapter 5: FUNCTIONAL DEPENDENCIES AND NORMALIZATION FOR RELATIONAL DATABASES

Chapter 5: FUNCTIONAL DEPENDENCIES AND NORMALIZATION FOR RELATIONAL DATABASES 1 Chapter 5: FUNCTIONAL DEPENDENCIES AND NORMALIZATION FOR RELATIONAL DATABASES INFORMAL DESIGN GUIDELINES FOR RELATION SCHEMAS We discuss four informal measures of quality for relation schema design in

More information