Combinatorial Synthesis and Discovery of an Antibiotic Compound Developed by Scott E. Wolkenberg and Andrew I. Su, The Scripps Research Institute

Size: px
Start display at page:

Download "Combinatorial Synthesis and Discovery of an Antibiotic Compound Developed by Scott E. Wolkenberg and Andrew I. Su, The Scripps Research Institute"

Transcription

1 Introduction and Background: Combinatorial Synthesis and Discovery of an Antibiotic Compound Developed by Scott E. Wolkenberg and Andrew I. Su, The Scripps Research Institute Biology and chemistry interact in many ways. The two fields affect one another greatly, and experts in each field often work in the other. The reason for this interaction and influence is the success each has had in increasing our understanding of the other. For instance, all of the components of living organisms are molecules, and these in turn are made up of atoms. The dizzyingly complex interactions of these many molecules lead to the functions and behaviors of living systems. While the study of living systems is surely biology, the study of interacting atoms and molecules is undoubtedly chemistry. As a result, chemists have been drawn to the study of these wonderfully complicated chemical systems, and they have made discoveries that have advanced our understanding of biological systems tremendously. Biology has had a similar impact on chemistry. Chemistry is chiefly concerned with reactions, with transforming one substance into another. Despite great advances in chemical understanding of reactions, there remain reactions that chemists cannot perform under reasonable conditions. There exist, however, biological systems that perform such reactions routinely under mild conditions. By studying these systems, biologists and chemists have learned of reaction pathways and molecular interactions they never could have anticipated. ne of the areas in which there is the most interaction between chemistry and biology is drug discovery. The very nature of a drug requires consideration of both chemistry and biology since it is, by definition, a chemical interacting with a biological system to effect some change. The way drugs are discovered has changed dramatically in the past years due to the development of a new methodology for synthesis called combinatorial chemistry. In this experiment, we aim to expose you to this method and express its usefulness in drug discovery. Combinatorial chemistry is a method for discovering molecules that possess a desired property. The property can be almost anything: electrical conductivity or semiconductivity, an attractive color, a sweet odor, the ability to block pollen from binding to a histamine receptor, the ability to kill cancerous tumor cells, the ability to kill bacterial cells. What distinguishes combinatorial chemistry is its ability to screen many (thousands to millions) of new compounds for a desired property. istorically, the way compounds with desired properties were discovered and developed was by finding some "lead compound" in nature which exhibited the desired property. The chemical structure of lead compounds were then modified using chemical reactions in order to optimize the property. This approach has proven effective (it is responsible for most of the drugs currently available), but it is very slow since each compound is synthesized individually. Combinatorial chemistry changes the paradigm for discovery by introducing the notion that compounds should be synthesized as mixtures. When mixtures are produced in chemical reactions, the number of compounds produced increases exponentially. For example, consider a reaction which joins two types of molecules, A and B, to form a molecule A B. If, as has historically been done, one molecule of each component is combined in a reaction, one product molecule results: A1 + B1 A1 B1. If, however, two of each component is included in the same reaction vessel, four product compounds are produced: A1 + A2 + B1 + B2 A1 B1 + + A2 B1 + A2 B2. If three of each component is included in the same reaction vessel, nine product compounds are produced, and so on. By combining more and more components in these types of reactions, huge mixtures (or "libraries") can be produced. The number of tests for the desired property is greatly reduced if those tests are carried out on mixtures of compounds instead of individual compounds. (It is much simpler to perform an antibiotic screen on one mixture of 1000 than on 1000 individual compounds.) nce it has been determined that a mixture has the desired property, the problem changes to identifying which of the many compounds in the mixture is the active one. The process of making that determination is called "deconvolution." There are many methods for deconvoluting an active mixture of compounds, each with advantages and disadvantages. Regardless of the specific method employed, it is possible to identify active compounds performing fewer chemical reactions and fewer tests for the desired property than if the compounds were synthesized and tested individually. Identification of an antibiotic using combinatorial chemistry: In this experiment, you will produce libraries of compounds based on the A B model discussed above. You will simultaneously generate 6 libraries, test them for antibiotic activity, and deconvolute them to discover which individual compound has antibiotic properties. S1

2 The chemical reaction which forms the basis for this reaction is the condensation of an aldehyde (A) and a hydrazine (B) to form a hydrazone (A B) and water. R 1 C 2 R 2 R 2 R 1 C A B A B The parts of the molecules labeled with "R" and numbers represent the variable parts. They can be almost any grouping of atoms, so long as they do not interfere with the reaction shown above. A shorthand for describing the reaction above is to say A1 + B2. In this experiment, three aldehydes (A) and three hydrazines (B) will be combined in a combinatorial procedure to produce 9 hydrazones (A B). The structures of the six components are shown below. Br 2 A1 A2 A3 C C C B1 B2 2 C 2 C 2 2 You will then screen the mixtures for antibiotic activity. This method entails the growth of a "lawn" (a uniform layer) of bacterial cells on a solid support (agar). You will then lay paper disks treated with a library of compounds on top of the agar. The solutions will diffuse through the agar about 2 cm from the disk. If the solutions contain a compound with antibiotic activity, there will be no growth in a circle surrounding the disk. Laboratory Safety:* The bacterial host used in most molecular biology and teaching laboratories is Escherichia coli. Since E. coli is often associated with outbreaks of disease, concern may arise over its safety. Unfortunately, media reports on E. coli disease do not contain the background information necessary for understanding this issue. There are many naturally occurring strains of E. coli. They inhabit the lower intestinal tracts of many animals, including humans, cattle, and swine. The strains found in different animals vary genetically, and can even vary between individuals of the same species. owever, some genetic variants of E. coli do cause disease. These variants contain genes not found in the harmless organisms. These genes encode toxins and proteins that enable the organism to invade cells within the body. The nature of the disease gene varies; E. coli strains with different disease genes have been associated with several diseases. Some E. coli have genes for enterotoxin, which causes the travelers' diarrhea. The E. coli that causes the sometimes fatal hemolyticuremic syndrome have genes that encode a toxin different from the travelers' diarrhea toxin, and additionally have genes that enable them to invade and disrupt cells lining in the intestinal tract. S2

3 Laboratory strains of E. coli used in molecular biology research do not contain any of these disease genes and are harmless under normal conditions. If introduced into a cut or into the eye, laboratory strains could conceivably cause infection, so standard safety precautions should be taken when handling the organisms. Every day, hundreds of scientists and their students handle these organisms (many in a rather cavalier manner) without any notable consequences. We do not recommend cavalier handling of any strain of E. coli, but the history of scientists with the organism should be reassuring. Tips for andling E. coli:* Wipe down lab bench with a 10% bleach solution, soapy water, or disinfectant at the end of laboratory sessions. Wash hands before leaving laboratory. Collect for treatment bacterial cultures, as well as tubes, pipets, and any other materials that have come into contact with cultures. Disinfect these materials in one of two ways: o Treat with 10% bleach solution for 15 min or more before disposing in the regular garbage. o Autoclave at 121 C for 15 min. Dispose of sterilized materials in the regular garbage. *adapted from the Teacher's Manual accompanying # Petrifilm Transformation Kit, Carolina Biological Supply Co. Chemical safety is a serious concern and great care has been taken to ensure that the chemicals used in this experiment pose as little health threat as possible. The chemicals included in this experiment are not toxic in the amounts used. For instance, compound A1, 2-nitrobenzaldehyde, is toxic to a typical adult when 18 g (18,000 mg) are consumed orally. In this lab, 54 mg of this compound will be used for the entire class. Despite the lack of toxicity, some of the compounds are irritating to the skin and eyes so standard laboratory safety procedures should be followed. ands should be washed when leaving the laboratory, and any spills should be reported and cleaned up immediately. Lab Procedure: TE: KEEP PETRI DISES CVERED AT ALL TIMES. REDUCE YUR RISK F CTAMIATI BY UCVERIG TEM LY WE USIG TEM. 1. Using a marker, label the bottoms of two petri dishes (previously inoculated with a bacterial culture) as shown below. The bottom is the side which contains the yellow agar. Do not remove the top cover of the plates. Divide each of the petri dishes into 3 sections. Label the sections of one plate M1, M2, M3, and the sections of the second plate,,. In addition, label the plates with your initials to distinguish them from your classmates. Turn the plates back over so the bottom is down and the top is up. M1 M2 M3 SEW SEW 2. Using the transfer pipet for each solution, add the appropriate reagents to each of the six 1.5 ml tubes according to the table below. Be sure to add the reagents in the proper order and be sure to add the correct number of drops. For instance, to prepare M1, add 5 drops B1 to tube M1, then add 5 drops B2 to tube M1, then add 5 drops to tube M1, then add 15 drops A1 to tube M1. Tube # Add 5 drops then 5 drops then 5 drops then 15 drops M1 B1 B2 A1 M2 B1 B2 A2 M3 B1 B2 A3 A1 A2 A3 B1 A1 A2 A3 B2 A1 A2 A3 Record any observations you make during the addition. S3

4 3. Cap each tube and shake for seconds. Again record your observations of the mixtures. 4. Using a pair of forceps washed with ethanol, dip a paper disk briefly in the contents of tube M1 Allow any excess to drip back into the tube, and then gently place the paper disk into the center of the petri dish region labeled M1. Rinse the forceps with ethanol, and repeat for the remaining 5 mixtures. 5. Incubate the two agar plates at 37 C for 24 h. Be careful when carrying the plates to the incubator. Data Analysis: Please listen in lab for details on viewing your incubated plates 1. Using the table below, record the results of the experiment. Place a "+" in the table for mixtures that resulted in an inhibition of growth. Place a " " in the table for mixtures that resulted in no inhibition of growth. Include a copy of this table in your lab notebook/report. Mixture Contents Result M1 A1, B1, B2, M2 A2, B1, B2, M3 A3, B1, B2, B1, A1, A2, A3 B2, A1, A2, A3, A1, A2, A3 Each mixture contains three compounds. For instance, M1 contains the compounds A1 B1, A1 B2, and. Therefore, in the mixtures that show inhibition of growth (antibiotic activity) there are three compounds. ow can we tell which of the three compounds is the one with the antibiotic activity? In fact, we have already done the experiments needed to make this determination. 2. The table below enables us to determine all the compounds we made. The outside of the table shows the starting materials for the reactions we performed: A1, A2, A3, B1, B2, and. Whenever an A molecule comes in contact with a B molecule they react to form A B molecules. We can see this in the table by looking at the inside: when we trace A1 down in the first column, we see that it forms A1 B1, A1 B2, and molecules. Fill in the rest of the table in the same way by tracing across and down. A1 A2 A3 B1 B2 3. The inside of the table represents the contents of each mixture M1. For instance, the mixture M1 is represented by the first column in the table (see the shading in the left table). Likewise, M2 and M3 are represented by the second and third columns. Mixture is represented by the first row in the table (see the shading in the right table). Similarly, and are represented by the second and third rows of the table. 4. We can use this table to determine which compound in our active mixtures shows antibiotic activity. Fill in the table below as you did in part 2. Shade in the column that corresponds to the mixture M1 M3 that shows antibiotic S4

5 activity. ow shade in the row that corresponds to the mixture that shows antibiotic activity. The position in the table where the shaded row and shaded column intersect is the active compound. Determine the best antibiotic compound made in this experiment, and clearly report that in your discussion/conclusion. Post-lab questions: 1. What is the advantage to working with mixtures? ow many reactions would we need to run in order to make each compound individually? ow many antibiotic activity tests would we need to run in order to screen each compound individually? Compare these numbers with the number of reactions and antibiotic activity screens we ran in this experiment. 2. What might be some possible disadvantages to working with mixtures? 3. Consider a larger system, one with 10 hydrazines and 10 aldehydes. A. ow many possible hydrazones can be made from these starting materials? B. Using the same methods described in this lab, how many chemical reactions and antibiotic screens are necessary to identify any active hydrazones? C. Plot the number of chemical reactions and antibiotic screens as a function of the number of compounds synthesized and screened for antibiotic activity for a) the traditional (one at a time) method and b) the combinatorial method described in this lab. D. Evaluate the method of deconvolution used in this lab using the example data shown below for a large (10 10) system. Can you imagine any other circumstances in which, aside from synthesizing individual compounds, there is no way to determine which compound is active? M7 M8 M9 M10 M11 1M12 M13 M14 M15 M16 M17 M18 M19 M20 B1 B2 B4 B5 B6 B7 B8 B9 B10 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 4. Can you imagine any other deconvolution strategies? Remember the goal is to minimize the number of chemical reactions and antibiotic screens required to unambiguously identify active compounds. 5. Propose a mechanism for the reaction that formed any active antibiotic in your experiment. S5

Effects of Antibiotics on Bacterial Growth and Protein Synthesis: Student Laboratory Manual

Effects of Antibiotics on Bacterial Growth and Protein Synthesis: Student Laboratory Manual Effects of Antibiotics on Bacterial Growth and Protein Synthesis: Student Laboratory Manual I. Purpose...1 II. Introduction...1 III. Inhibition of Bacterial Growth Protocol...2 IV. Inhibition of in vitro

More information

Biological Sciences Initiative

Biological Sciences Initiative Biological Sciences Initiative HHMI Student Activities Measuring Antibiotic Resistance Introduction: You might be aware that antibiotics were once thought of as a magic bullet; a nearly perfect drug for

More information

Bacterial Transformation with Green Fluorescent Protein. Table of Contents Fall 2012

Bacterial Transformation with Green Fluorescent Protein. Table of Contents Fall 2012 Bacterial Transformation with Green Fluorescent Protein pglo Version Table of Contents Bacterial Transformation Introduction..1 Laboratory Exercise...3 Important Laboratory Practices 3 Protocol...... 4

More information

Transformation of the bacterium E. coli. using a gene for Green Fluorescent Protein

Transformation of the bacterium E. coli. using a gene for Green Fluorescent Protein Transformation of the bacterium E. coli using a gene for Green Fluorescent Protein Background In molecular biology, transformation refers to a form of genetic exchange in which the genetic material carried

More information

Transformation Kit BACTERIAL TRANSFORMATION: GREEN FLUORESCENT PROTEIN. Partnership for Biotechnology and Genomics Education

Transformation Kit BACTERIAL TRANSFORMATION: GREEN FLUORESCENT PROTEIN. Partnership for Biotechnology and Genomics Education Transformation Kit BACTERIAL TRANSFORMATION: GREEN FLUORESCENT PROTEIN Partnership for Biotechnology and Genomics Education Barbara Soots Linda Curro Education Coordinator University of California Davis

More information

How Does a Doctor Test for AIDS?

How Does a Doctor Test for AIDS? Edvo-Kit #S-70 How Does a Doctor Test for AIDS? S-70 Experiment Objective: The Human Immunodefi ciency Virus (HIV) is an infectious agent that causes Acquired Immunodefi ciency Syndrome (AIDS) in humans.

More information

Lab Exercise 3: Media, incubation, and aseptic technique

Lab Exercise 3: Media, incubation, and aseptic technique Lab Exercise 3: Media, incubation, and aseptic technique Objectives 1. Compare the different types of media. 2. Describe the different formats of media, plate, tube etc. 3. Explain how to sterilize it,

More information

H H H O. Pre-Lab Exercises Lab 6: Organic Chemistry. Lab 6: Organic Chemistry Chemistry 100. 1. Define the following: a.

H H H O. Pre-Lab Exercises Lab 6: Organic Chemistry. Lab 6: Organic Chemistry Chemistry 100. 1. Define the following: a. Lab 6: Organic hemistry hemistry 100 1. Define the following: a. ydrocarbon Pre-Lab Exercises Lab 6: Organic hemistry Name Date Section b. Saturated hydrocarbon c. Unsaturated hydrocarbon 2. The formula

More information

Laboratory Biosafty In Molecular Biology and its levels

Laboratory Biosafty In Molecular Biology and its levels Laboratory Biosafty In Molecular Biology and its levels Workshop 16-17 Oct..2012 Guidelines Does not mean optional Laboratory Biosafety The Laboratory Biosafety Manual is an important WHO publication

More information

Austin Peay State University Department of Chemistry CHEM 1021 TESTING FOR ORGANIC FUNCTIONAL GROUPS

Austin Peay State University Department of Chemistry CHEM 1021 TESTING FOR ORGANIC FUNCTIONAL GROUPS TESTING FOR ORGANIC FUNCTIONAL GROUPS Caution: Chromic acid is hazardous as are many of the organic substances in today s experiment. Treat all unknowns with extreme care. Many organic substances are flammable.

More information

Policies. Prep Room Policies

Policies. Prep Room Policies Introduction INTRODUCTION The Microbiology Prep Room is located in 531A Life Sciences Building. The telephone number is 372-8609. It is open from 7:30 a.m. to 4:30 p.m. during the fall and spring semesters.

More information

Module 3: Strawberry DNA Extraction

Module 3: Strawberry DNA Extraction Module 3: Strawberry DNA Extraction Teacher/Leader Target Audience: 7-12 Life Science, Biology, Ag Science Overview: In this lab, students will extract DNA from a strawberry using everyday materials and

More information

Name Date Class CHAPTER 1 REVIEW. Answer the following questions in the space provided.

Name Date Class CHAPTER 1 REVIEW. Answer the following questions in the space provided. CHAPTER 1 REVIEW Matter and Change SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. a Technological development of a chemical product often (a) lags behind basic research

More information

ANTIBIOTIC INHIBITION OF BACTERIA

ANTIBIOTIC INHIBITION OF BACTERIA ANTIBIOTIC INHIBITION OF BACTERIA STANDARDS 3.2.10B, 3.2.12B Apply process knowledge and evaluate experimental information 3.3.10B, 3.3.12B Chemical and structural basis of living organisms Westminster

More information

NNIN Nanotechnology Education

NNIN Nanotechnology Education NNIN Nanotechnology Education How Quickly Do Bacteria Grow? Teacher s Guide Purpose: Students will relate real-world applications to mathematical concepts by monitoring bacterial growth over one week and

More information

Amino Acids, Peptides, and Proteins

Amino Acids, Peptides, and Proteins 1 Amino Acids, Peptides, and Proteins Introduction Amino Acids Amino acids are the building blocks of proteins. In class you learned the structures of the 20 common amino acids that make up proteins. All

More information

Enzyme Activity Measuring the Effect of Enzyme Concentration

Enzyme Activity Measuring the Effect of Enzyme Concentration 6 Measuring the Effect of Enzyme Concentration Enzymes are proteins that serve as biological catalysts in a wide variety of life sustaining chemical reactions that take place in cells. As catalysts, enzymes

More information

Protocol for Disinfection of Cell Culture and Tissue Culture in Media:

Protocol for Disinfection of Cell Culture and Tissue Culture in Media: Protocol for Disinfection of Cell Culture and Tissue Culture in Media: Location: Hickory Hall 001 Director: Dr. Guido Verbeck DECONTAMINATION OF CELL CULTURE WASTE Cell culture has become a common laboratory

More information

Activity 4 Long-Term Effects of Drug Addiction

Activity 4 Long-Term Effects of Drug Addiction Activity 4 Long-Term Effects of Drug Addiction Core Concept: Addictive drugs may lead to long-term changes in brain function. Class time required: Approximately 60-80 minutes Teacher Provides: Copy of

More information

Name Date Class. This section explains what kinds of organisms cause infectious disease and how infectious diseases are spread.

Name Date Class. This section explains what kinds of organisms cause infectious disease and how infectious diseases are spread. Fighting Disease Name Date Class Infectious Disease This section explains what kinds of organisms cause infectious disease and how infectious diseases are spread. Use Target Reading Skills Before you read,

More information

Dot Blot Analysis. Teacher s Guidebook. (Cat. # BE 502) think proteins! think G-Biosciences www.gbiosciences.com

Dot Blot Analysis. Teacher s Guidebook. (Cat. # BE 502) think proteins! think G-Biosciences www.gbiosciences.com PR110 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name Dot Blot Analysis Teacher s Guidebook (Cat. # BE 502) think proteins! think G-Biosciences

More information

THE ACTIVITY OF LACTASE

THE ACTIVITY OF LACTASE THE ACTIVITY OF LACTASE Lab VIS-8 From Juniata College Science in Motion Enzymes are protein molecules which act to catalyze the chemical reactions in living things. These chemical reactions make up the

More information

Quantifying Bacterial Concentration using a Calibrated Growth Curve

Quantifying Bacterial Concentration using a Calibrated Growth Curve BTEC 4200 Lab 2. Quantifying Bacterial Concentration using a Calibrated Growth Curve Background and References Bacterial concentration can be measured by several methods, all of which you have studied

More information

DNA CAN BE TRANSFERRED BETWEEN BACTERIA GENETIC ENGINEERING USING RECOMBINANT DNA TECHNOLOGY

DNA CAN BE TRANSFERRED BETWEEN BACTERIA GENETIC ENGINEERING USING RECOMBINANT DNA TECHNOLOGY Bacterial Transformation DNA CAN BE TRANSFERRED BETWEEN BACTERIA Background Information Plasmid Transformed Cell Figure 1: Bacterial Transformation Quick Reference Abbreviations GFP pgfp gfp Green fl uorescent

More information

Catalytic Activity of Enzymes

Catalytic Activity of Enzymes Catalytic Activity of Enzymes Introduction Enzymes are biological molecules that catalyze (speed up) chemical reactions. You could call enzymes the Builders and Do-ers in the cell; without them, life could

More information

Induction of Enzyme Activity in Bacteria:The Lac Operon. Preparation for Laboratory: Web Tutorial - Lac Operon - submit questions

Induction of Enzyme Activity in Bacteria:The Lac Operon. Preparation for Laboratory: Web Tutorial - Lac Operon - submit questions Induction of Enzyme Activity in Bacteria:The Lac Operon Preparation for Laboratory: Web Tutorial - Lac Operon - submit questions I. Background: For the last week you explored the functioning of the enzyme

More information

GENETIC TRANSFORMATION OF BACTERIA WITH THE GENE FOR GREEN FLUORESCENT PROTEIN (GFP)

GENETIC TRANSFORMATION OF BACTERIA WITH THE GENE FOR GREEN FLUORESCENT PROTEIN (GFP) GENETIC TRANSFORMATION OF BACTERIA WITH THE GENE FOR GREEN FLUORESCENT PROTEIN (GFP) LAB BAC3 Adapted from "Biotechnology Explorer pglo Bacterial Transformation Kit Instruction Manual". (Catalog No. 166-0003-EDU)

More information

Fighting the Battles: Conducting a Clinical Assay

Fighting the Battles: Conducting a Clinical Assay Fighting the Battles: Conducting a Clinical Assay 6 Vocabulary: In Vitro: studies in biology that are conducted using components of an organism that have been isolated from their usual biological surroundings

More information

Experiment 10 Enzymes

Experiment 10 Enzymes Experiment 10 Enzymes Enzymes are proteins that act as catalysts for biological reactions. Enzymes, like all catalysts, speed up reactions without being used up themselves. They do this by lowering the

More information

Blood-Based Cancer Diagnostics

Blood-Based Cancer Diagnostics The Biotechnology Education Company Blood-Based Cancer Diagnostics EDVO-Kit 141 Store entire experiment at room temperature. EXPERIMENT OBJECTIVE: The objective of this experiment is to learn and understand

More information

THE UNIVERSITY OF NEWCASTLE- SCHOOL of BIOMEDICAL SCIENCES

THE UNIVERSITY OF NEWCASTLE- SCHOOL of BIOMEDICAL SCIENCES Page: 1 of 7 1. Purpose: 1.1. To describe the procedures to be used when dealing with chemical or microbiological spills. 2. Equipment: 2.1. Spill Kit 2.2. Miscellaneous items as listed 3. Materials: 3.1.

More information

Transformation Protocol

Transformation Protocol To make Glycerol Stocks of Plasmids ** To be done in the hood and use RNase/DNase free tips** 1. In a 10 ml sterile tube add 3 ml autoclaved LB broth and 1.5 ul antibiotic (@ 100 ug/ul) or 3 ul antibiotic

More information

GROWING BACTERIA INTRODUCTION

GROWING BACTERIA INTRODUCTION GROWING BACTERIA INTRODUCTION E. coli is a normal part of the bacterial flora of the human gut. It is not generally considered pathogenic, although some strains are highly toxic (recent food poisonings

More information

Hazardous Waste Procedures

Hazardous Waste Procedures Hazardous Waste Procedures Hazardous waste is defined as a waste, or combination of wastes, which because of its quantity, concentration, or physical or chemical characteristics may pose a substantial

More information

Properties of Acids and Bases

Properties of Acids and Bases Properties of Acids and Bases (Adapted from Flinn Scientific Acid Base Test Kit I #AP4567) Introduction Battery acid, stomach acid, acid rain just a few acids in our everyday life! What does it mean when

More information

BUGS" THAT PRODUCE DRUGS TO KILL "BUGS Microbes Produce Antibiotics

BUGS THAT PRODUCE DRUGS TO KILL BUGS Microbes Produce Antibiotics BUGS" THAT PRODUCE DRUGS TO KILL "BUGS Microbes Produce Antibiotics Science in the Real World Microbes In Action BUGS" THAT PRODUCE DRUGS TO KILL "BUGS is a curriculum unit developed as part of the Science

More information

UTILIZATION of PLASMA ACTIVATED WATER in Biotechnology, Pharmacology and Medicine. JSC TECHNOSYSTEM-ECO Moscow, Russia April, 2009

UTILIZATION of PLASMA ACTIVATED WATER in Biotechnology, Pharmacology and Medicine. JSC TECHNOSYSTEM-ECO Moscow, Russia April, 2009 UTILIZATION of PLASMA ACTIVATED WATER in Biotechnology, Pharmacology and Medicine JSC TECHNOSYSTEM-ECO Moscow, Russia April, 2009 METHOD of WATER ACTIVATION with PLASMA of GAS DISCHARGE ANODE VACUUM WATER

More information

Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein

Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein INTRODUCTION Green Fluorescent Protein (GFP) is a novel protein produced by the bioluminescent

More information

Combinatorial Chemistry and solid phase synthesis seminar and laboratory course

Combinatorial Chemistry and solid phase synthesis seminar and laboratory course Combinatorial Chemistry and solid phase synthesis seminar and laboratory course Topic 1: Principles of combinatorial chemistry 1. Introduction: Why Combinatorial Chemistry? Until recently, a common drug

More information

The Huntington Library, Art Collections, and Botanical Gardens. How Sweet It Is: Enzyme Action in Seed Germination

The Huntington Library, Art Collections, and Botanical Gardens. How Sweet It Is: Enzyme Action in Seed Germination The Huntington Library, Art Collections, and Botanical Gardens How Sweet It Is: Enzyme Action in Seed Germination Overview This experiment is intended to familiarize students with the macromolecule starch,

More information

ELISA BIO 110 Lab 1. Immunity and Disease

ELISA BIO 110 Lab 1. Immunity and Disease ELISA BIO 110 Lab 1 Immunity and Disease Introduction The principal role of the mammalian immune response is to contain infectious disease agents. This response is mediated by several cellular and molecular

More information

Disc Diffusion Susceptibility Methods

Disc Diffusion Susceptibility Methods Disc Diffusion Susceptibility Methods Introduction When a filter paper disc impregnated with a chemical is placed on agar the chemical will diffuse from the disc into the agar. This diffusion will place

More information

Factors Affecting Enzyme Activity

Factors Affecting Enzyme Activity INTRODUCTION Factors Affecting Enzyme Activity The chemical reactions occurring in living things are controlled by enzymes. An enzyme is a protein in the cell which lowers the activation energy of a catalyzed

More information

Synthesis of Aspirin and Oil of Wintergreen

Synthesis of Aspirin and Oil of Wintergreen Austin Peay State University Department of hemistry hem 1121 autions Purpose Introduction Acetic Anhydride corrosive and a lachrymator all transfers should be done in the vented fume hood Methanol, Ethanol

More information

Process of Science: Using Diffusion and Osmosis

Process of Science: Using Diffusion and Osmosis Process of Science: Using Diffusion and Osmosis OBJECTIVES: 1. To understand one way to approach the process of science through an investigation of diffusion and osmosis. 2. To explore how different molecules

More information

The Properties of Water (Instruction Sheet)

The Properties of Water (Instruction Sheet) The Properties of Water (Instruction Sheet) Property : High Polarity Activity #1 Surface Tension: PILE IT ON. Materials: 1 DRY penny, 1 eye dropper, water. 1. Make sure the penny is dry. 2. Begin by estimating

More information

DETECTION OF BACTERIAL MOTILITY. To demonstrate bacterial motility by microscopic and macroscopic techniques.

DETECTION OF BACTERIAL MOTILITY. To demonstrate bacterial motility by microscopic and macroscopic techniques. DETECTION OF BACTERIAL MOTILITY I. OBJECTIVES To demonstrate bacterial motility by microscopic and macroscopic techniques. To observe flagella in prepared slides stained by specific flagellar stains. II.

More information

MATERIALS (COMPLETE LIST):

MATERIALS (COMPLETE LIST): Mold Control DESCRIPTION: Using three types of cleaning solutions (sodium hypochlorite, quaternary ammonium compounds, and borates), students analyze which product is most effective for controlling yeast

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

Enzymes Lab Pre-Lab Exercise

Enzymes Lab Pre-Lab Exercise Pre-Lab Exercise Name 1. For the reaction we are studying in this week s lab: a. What is the name of the enzyme? b. What is the substrate? c. What are the products of the reaction? 2. What is the purpose

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

Instructions. Torpedo sirna. Material. Important Guidelines. Specifications. Quality Control

Instructions. Torpedo sirna. Material. Important Guidelines. Specifications. Quality Control is a is a state of the art transfection reagent, specifically designed for the transfer of sirna and mirna into a variety of eukaryotic cell types. is a state of the art transfection reagent, specifically

More information

C. difficile Infections

C. difficile Infections C. difficile Infections Introduction C. difficile is a type of bacteria that can cause diarrhea and infection of the colon. This bacterium is more likely to infect patients at hospitals and other healthcare

More information

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION LIVING ENVIRONMENT

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION LIVING ENVIRONMENT FOR TEACHERS ONLY LE The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION LIVING ENVIRONMENT Tuesday, June 21, 2011 9:15 a.m. to 12:15 p.m., only SCORING KEY AND RATING GUIDE Directions

More information

Mold. Clean Up, Removal, Safety Concerns

Mold. Clean Up, Removal, Safety Concerns Mold & Clean Up, Removal, Safety Concerns What is Mold? What are the Symptoms? Should I be concerned? What is Toxic Mold? Molds are fungi that can be found both indoors and outdoors. It s not know how

More information

Paper Chromatography: Separation and Identification of Five Metal Cations

Paper Chromatography: Separation and Identification of Five Metal Cations Paper Chromatography: Separation and Identification of Five Metal Cations Objectives Known and unknown solutions of the metal ions Ag +, Fe 3+, Co 2+, Cu 2+ and Hg 2+ will be analyzed using paper chromatography.

More information

Welcome to Implementing Inquirybased Microbial Project. Veronica Ardi, PhD

Welcome to Implementing Inquirybased Microbial Project. Veronica Ardi, PhD Welcome to Implementing Inquirybased Microbial Project Veronica Ardi, PhD Microbiology Laboratory Courses CourseSmart: ebook resources http://instructors.coursesmart.com/ Microbiology Laboratory Courses

More information

Laboratory Exercise # 11: Differentiation of the Species Staphylococcus and Streptococcus

Laboratory Exercise # 11: Differentiation of the Species Staphylococcus and Streptococcus Laboratory Exercise # 11: Differentiation of the Species Staphylococcus and Streptococcus Purpose: The purpose of this laboratory exercise is to explore the differences between Staphylococcal species and

More information

Experiment 8 Synthesis of Aspirin

Experiment 8 Synthesis of Aspirin Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The

More information

Enzymes: Amylase Activity in Starch-degrading Soil Isolates

Enzymes: Amylase Activity in Starch-degrading Soil Isolates Enzymes: Amylase Activity in Starch-degrading Soil Isolates Introduction This week you will continue our theme of industrial microbiologist by characterizing the enzyme activity we selected for (starch

More information

Unit A: Studying Materials Scientifically

Unit A: Studying Materials Scientifically ITEM BANKS Unit A: Studying Materials Scientifically Multiple choice: Circle the best answer. 1. What safety rules should you always follow while doing a science laboratory? a. Wear safety goggles at all

More information

LAB 14 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)

LAB 14 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) STUDENT GUIDE LAB 14 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) GOAL The goal of this laboratory lesson is to explain the concepts and technique of enzyme linked immunosorbent assay (ELISA). OBJECTIVES

More information

SAMPLE. Bacterial Transformation. Lab 8 BACKGROUND INFORMATION. Neo/SCI Student s Guide Name... Teacher/Section...

SAMPLE. Bacterial Transformation. Lab 8 BACKGROUND INFORMATION. Neo/SCI Student s Guide Name... Teacher/Section... 1431489 REV 001 Neo/SCI Lab 8 Bacterial Transformation BACKGROUND INFORMATION What Is Biotechnology? Before you start doing biotechnology laboratory exercises, it is important to know exactly what biotechnology

More information

Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!****

Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!**** AP BIOLOGY BIOCHEMISTRY ACTIVITY #9 NAME DATE HOUR CATALASE LAB INTRODUCTION Hydrogen peroxide (H 2 O 2 ) is a poisonous byproduct of metabolism that can damage cells if it is not removed. Catalase is

More information

In order to be useful, a smear must have the following qualities:

In order to be useful, a smear must have the following qualities: Smear Preparation and Simple Stain Objectives: Make bacterial smear slides (usually called smears) Distinguish cells on these slides using a simple stain procedure Unstained microbial cells are nearly

More information

Name Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible

Name  Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible Lab #3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon

More information

A Fishy Tale. Observing the Circulatory System of a Goldfish with a Compound Light Microscope

A Fishy Tale. Observing the Circulatory System of a Goldfish with a Compound Light Microscope A Fishy Tale Observing the Circulatory System of a Goldfish with a Compound Light Microscope A Fishy Tale About this Lesson In this lesson, students will explore a computer animation of the human body

More information

TEACHER ACTIVITY GUIDE

TEACHER ACTIVITY GUIDE Page 1/5 EXPECTED OUTCOMES TEACHER ACTIVITY GUIDE ROOT BEER PRODUCTION Taken from IFT Experiments in Food Science Series This activity will allow student an opportunity to explore yeast fermentation by

More information

UltraClean PCR Clean-Up Kit

UltraClean PCR Clean-Up Kit UltraClean PCR Clean-Up Kit Catalog No. Quantity 12500-50 50 Preps 12500-100 100 Preps 12500-250 250 Preps Instruction Manual Please recycle Version: 02212013 1 Table of Contents Introduction... 3 Protocol

More information

Laboratory 5: Properties of Enzymes

Laboratory 5: Properties of Enzymes Laboratory 5: Properties of Enzymes Technical Objectives 1. Accurately measure and transfer solutions with pipettes 2. Use a Spectrophotometer to study enzyme action. 3. Properly graph a set of data. Knowledge

More information

EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion

EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1 Introduction This lab is designed for you to discover the properties of electrochemical cells. It requires little previous knowledge of electrochemical

More information

Biosafety Level 2 (BSL-2) Safety Guidelines

Biosafety Level 2 (BSL-2) Safety Guidelines BLS-4 Biosafety Level 2 (BSL-2) Safety Guidelines BSL-3 BSL-2 BSL-1 BSL-2 builds upon BSL-1. If you work in a lab that is designated a BSL-2, the microbes used pose moderate hazards to laboratory staff

More information

1. 4. 1: Biochemistry of macromolecules and metabolic pathways

1. 4. 1: Biochemistry of macromolecules and metabolic pathways 1. 4 Investigating enzymes Many factors affect the activity of enzymes and it is very easy to investigate these factors using common enzymes. Enzymes work at their optimum temperature and ph. Any changes

More information

Biology 3A Laboratory: Enzyme Function

Biology 3A Laboratory: Enzyme Function Biology 3A Laboratory: Enzyme Function Objectives To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate the effect

More information

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6 RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES Bio 171 Week 6 Procedure Label test tubes well, including group name 1) Add solutions listed to small test tubes 2) For

More information

GELATIN "CELL" DIFFUSION

GELATIN CELL DIFFUSION GELATIN "CELL" DIFFUSION Sizes of cells vary greatly, depending on whether they are prokaryotic or eukaryotic, and also by cell type (some neurons are a meter long!). No matter what its size, materials

More information

Biopharmaceuticals and Biotechnology Unit 2 Student Handout. DNA Biotechnology and Enzymes

Biopharmaceuticals and Biotechnology Unit 2 Student Handout. DNA Biotechnology and Enzymes DNA Biotechnology and Enzymes 35 Background Unit 2~ Lesson 1 The Biotechnology Industry Biotechnology is a process (or a technology) that is used to create products like medicines by using micro-organisms,

More information

LAB 16 Rapid Colony Transformation of E. coli with Plasmid DNA

LAB 16 Rapid Colony Transformation of E. coli with Plasmid DNA LAB 16 Rapid Colony Transformation of E. coli with Plasmid DNA Objective: In this laboratory investigation, plasmids containing fragments of foreign DNA will be used to transform Escherichia coli cells,

More information

Effective Methods For Culturing Breast Cancer Cell Lines

Effective Methods For Culturing Breast Cancer Cell Lines Abstract Effective Methods For Culturing Breast Cancer Cell Lines William H. Marshall II Life Science Team Cell culturing is one of the most useful and prolific techniques practiced in biological science

More information

Ann.wellhouse@TouchStoneScience.net 1. Enzyme Function

Ann.wellhouse@TouchStoneScience.net 1. Enzyme Function Ann.wellhouse@TouchStoneScience.net 1 Enzyme Function National Science Standards Science as Inquiry: Content Standard A: As a result of activities in grades 9-12, all students should develop: Abilities

More information

GUIDELINES FOR THE REGISTRATION OF BIOLOGICAL PEST CONTROL AGENTS FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

GUIDELINES FOR THE REGISTRATION OF BIOLOGICAL PEST CONTROL AGENTS FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS GUIDELINES FOR THE REGISTRATION OF BIOLOGICAL PEST CONTROL AGENTS FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS -ii- GUIDELINES ON THE REGISTRATION OF BIOLOGICAL PEST CONTROL AGENTS FOOD AND

More information

Surface Tension: Liquids Stick Together Teacher Version

Surface Tension: Liquids Stick Together Teacher Version Surface Tension: Liquids Stick Together Teacher Version In this lab you will learn about properties of liquids, specifically cohesion, adhesion, and surface tension. These principles will be demonstrated

More information

Chromatography...Oh Yeah!

Chromatography...Oh Yeah! Chromatography...Oh Yeah! What s In Kool-Aid? An Introduction to Extraction and Chromatography OVERVIEW: The purpose of the experiment is to separate and analyze the components of prepared Kool- Aid using

More information

Organic Chemistry Calculations

Organic Chemistry Calculations Organic Chemistry Calculations There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations

More information

The Techniques of Molecular Biology: Forensic DNA Fingerprinting

The Techniques of Molecular Biology: Forensic DNA Fingerprinting Revised Fall 2011 The Techniques of Molecular Biology: Forensic DNA Fingerprinting The techniques of molecular biology are used to manipulate the structure and function of molecules such as DNA and proteins

More information

Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity

Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity Today you analyze the results of your bacterial transformation from last week and determine the efficiency

More information

PAPER CHROMATOGRAPHY

PAPER CHROMATOGRAPHY PAPER CHROMATOGRAPHY INTRODUCTION Chromatography is a technique that is used to separate and to identify components of a mixture. This analytical technique has a wide range of applications in the real

More information

UltraClean Forensic DNA Isolation Kit (Single Prep Format)

UltraClean Forensic DNA Isolation Kit (Single Prep Format) UltraClean Forensic DNA Isolation Kit (Single Prep Format) Catalog No. Quantity 14000-10 10 preps 14000-S 1 prep Instruction Manual Please recycle Version: 10302012 1 Table of Contents Introduction...

More information

Vitamin C Content of Fruit Juice

Vitamin C Content of Fruit Juice 1 Vitamin C Content of Fruit Juice Introduction Vitamin C Vitamins are organic compounds that have important biological functions. For instance, in humans they enable a variety of enzymes in the body to

More information

Genomic DNA Extraction Kit INSTRUCTION MANUAL

Genomic DNA Extraction Kit INSTRUCTION MANUAL Genomic DNA Extraction Kit INSTRUCTION MANUAL Table of Contents Introduction 3 Kit Components 3 Storage Conditions 4 Recommended Equipment and Reagents 4 Introduction to the Protocol 4 General Overview

More information

Scott & White Institutional Biosafety Committee Compliance Program Biohazardous Material Spill Clean-Up Procedure Policy #IBC.002

Scott & White Institutional Biosafety Committee Compliance Program Biohazardous Material Spill Clean-Up Procedure Policy #IBC.002 I. Purpose Biohazardous material usage on the Scott & White campus is regulated by the Scott & White Institutional Biosafety Committee (IBC). Those investigators choosing to perform research with biohazardous

More information

Agrobacterium tumefaciens-mediated transformation of Colletotrichum graminicola and Colletotrichum sublineolum

Agrobacterium tumefaciens-mediated transformation of Colletotrichum graminicola and Colletotrichum sublineolum Agrobacterium tumefaciens-mediated transformation of Colletotrichum graminicola and Colletotrichum sublineolum Flowers and Vaillancourt, 2005. Current Genetics 48: 380-388 NOTE added by L. Vaillancourt:

More information

The Immune System and Disease

The Immune System and Disease Chapter 40 The Immune System and Disease Section 40 1 Infectious Disease (pages 1029 1033) This section describes the causes of disease and explains how infectious diseases are transmitted Introduction

More information

Microarray Technology

Microarray Technology Microarrays And Functional Genomics CPSC265 Matt Hudson Microarray Technology Relatively young technology Usually used like a Northern blot can determine the amount of mrna for a particular gene Except

More information

A Greener Synthesis of Creatine

A Greener Synthesis of Creatine A Greener Synthesis of Creatine Carl S Lecher 1 and Ryan J Bernhardt, 2 Marian College, Indianapolis, I Chemical Concepts Addition to nitriles, vacuum filtration, melting point determination Green Lessons

More information

Archived. Gloves should be changed frequently during the analysis.

Archived. Gloves should be changed frequently during the analysis. Introduction Gloves and laboratory coats Small tools Specific clean-up and housekeeping procedures are used to help protect evidence samples from conditions and agents that might serve to destroy, deteriorate,

More information

Carnegie Mellon University s Policy and Procedures for Recombinant and Synthetic Nucleic Acid Materials Spills

Carnegie Mellon University s Policy and Procedures for Recombinant and Synthetic Nucleic Acid Materials Spills Carnegie Mellon University s Policy and Procedures for Recombinant and Synthetic Nucleic Acid Materials Spills Background In accordance with Section IV-B-2-b-(6) of the NIH Guidelines for Research Involving

More information

Science in the Real World Microbes In Action

Science in the Real World Microbes In Action Science in the Real World Microbes In Action Edited by: Teresa Thiel, Ph.D. University of Missouri-St. Louis Program Director & Microbiologist Slick Oil Lab is a curriculum unit developed as part of the

More information

What Forensics Information Does Blood Typing Provide?

What Forensics Information Does Blood Typing Provide? The Biotechnology Education Company EDVO-Kit 191 What Forensics Information Does Blood Typing Provide? See Page 3 for storage instructions. EXPERIMENT OBJECTIVE: The objective of this experiment is to

More information

Acid-Base Extraction.

Acid-Base Extraction. Acid-Base Extraction. Extraction involves dissolving a compound or compounds either (1) from a solid into a solvent or (2) from a solution into another solvent. A familiar example of the first case is

More information