The Techniques of Molecular Biology: Forensic DNA Fingerprinting
|
|
- Neal Terence Miller
- 1 years ago
- Views:
Transcription
1 Revised Fall 2011 The Techniques of Molecular Biology: Forensic DNA Fingerprinting The techniques of molecular biology are used to manipulate the structure and function of molecules such as DNA and proteins in order to understand more about how they function. These molecular biology techniques are not limited to fields such as genetics and cell biology, but they are now commonplace in all areas of biological research including microbiology, evolutionary biology, and botany. For this reason it is important for you to begin to gain experience with the basic fundamentals of molecular biology in the laboratory. One of the most widely publicized uses of molecular biology techniques is for the purpose of identification of criminals through what is commonly called Forensic DNA fingerprinting. DNA Fingerprinting Overview DNA fingerprinting can be used to help identify individuals by revealing the differences in the DNA sequence among different people. Certain non-coding regions of DNA exhibit significant differences in base pair sequence among individuals. Such regions are called polymorphisms (meaning many forms). Thus, you can compare the base pair sequence of a polymorphic region of DNA found at a crime scene with the base pair sequence of a polymorphic region of DNA obtained from the suspects. If the sequence of one of the suspects matches the sequence found at the crime scene, then you can be certain that the suspect was present at the crime scene. In order to simulate this process we must carry-out the following four procedures. 1. Isolate genomic DNA from the crime scene and from the suspects. 2. Amplify (make many copies of) a polymorphic region of the DNA using a technique called polymerase chain reaction (PCR). 3. Treat the DNA obtained in step 2 with enzymes called restriction endonucleases which will cut the DNA into smaller fragments. 4. Subject the fragments of DNA produced from step 3 to agarose gel electrophoresis which will allow you to visualize the DNA fragments and determine their size. Steps 1 and 2 will be conducted by the instructor before your lab begins. You will carry out step 3 the first week, and then step 4 will be conducted during a later lab period. Equipment Needed Almost all of the equipment needed for this lab will be provided to you; however, you will be required to wear gloves throughout all of the lab procedures. Latex and nonlatex gloves are available in the ASU Bookstore and can also be purchased at local drug or discount stores. You will also need to wear protective eyewear for some portions of the lab. We have goggles available for use in the lab, but if you would prefer to purchase your own, they are also available in the ASU Bookstore.
2 DNA Fingerprinting Lab 1: Genomic DNA Isolation & PCR Part 1: DNA Isolation DNA can be obtained from almost any tissue or biological fluid that is left at a crime scene. A hair, blood, and saliva are all possible sources of genomic DNA because all three will contain a few cells with nuclei. Isolating and purifying DNA from these cells is a very common technique in today s world of biotechnology. However, the quantity of DNA obtained from samples such as these will be very small; therefore, the next step in the process is to increase the quantity of DNA using a technique called the polymerase chain reaction (PCR). Part 2: Polymerase Chain Reaction (PCR) The polymerase chain reaction is one of the most important research techniques ever developed, and it has revolutionized most fields of biological research. Its development started in 1983 by Kary Mullis and his colleagues at Cetus Corporation, and in 1993 Mullis won the Nobel prize for this work. In short, the technique uses the enzyme DNA polymerase to make virtually unlimited copies of a piece of DNA. This polymerase enzyme takes monomers (deoxyribonucleoside triphosphates (datp, dgtp, dctp, dttp)), and links them together to make the polymer DNA. Only tiny amounts of the original piece of DNA, known as the template, are required, and millions of copies can be produced in just a few hours. This template is placed in tube along with the DNA polymerase, the monomers, and very short DNA pieces called primers. There are 3 basic steps to the PCR reaction, and these steps are repeated over and over to make millions of copies of the DNA product. Step 1 is to separate the double stranded template DNA into two single stranded DNA molecules. This step is called denaturating or melting the DNA. Because the double stranded DNA is held together by hydrogen bonds, the two strands are easily separated by heat (melted). Step 2 is to allow two short DNA primers to anneal (form base pairs) with the two single stranded templates. These primers must be present in order for the DNA polymerase to make a new DNA strand. The enzyme cannot start synthesizing a new DNA strand from scratch, but if bases are already present (the primers), it can add new nucleotides to it and thus synthesize a whole new strand. Step 3 is the actual synthesis of the new DNA strands which is called elongation. The DNA polymerase enzymatically joins new nucleotides first to the primers, and then to the growing DNA strand. The rate of nucleotide addition is very rapid; several hundred nucleotides will be polymerized within a minute. This process can be repeated many times. The rate of synthesis of new DNA strands is exponential because with each repetition the number of DNA molecules doubles. By the end of the 30 cycles the region you are amplifying will have replicated over a billion times. To see a great animation about PCR please visit the Dolan DNA Learning Center at: The polymerase chain reaction is also described in chapter 19 of your textbook on p
3 Part 3: Restriction Endonuclease Digestion The goal of this exercise is to differentiate between different DNA samples based on differences in base pair sequence. While it is possible to determine the entire linear sequences of bases in DNA, it is a laborious and potentially expensive process. However, thanks to modern molecular biology techniques there is an easier way to determine small differences in base pair sequence between two or more DNA samples. One way is through the use of enzymes called restriction endonucleases. These enzymes, which were discovered in bacteria, recognize specific sequences of base pairs and cut the DNA only at those specific recognition sites. You will use two enzymes called EcoR1 and Sal1, and they cut DNA at the following recognition sites which are indicated in bold: EcoR1 cuts here: GAATTC CTTAAG Whenever the EcoR1 enzyme encounters this pattern of six base pairs, it will cut the DNA at that site. CTGTGCAAGCATGACGTGAATTCGAGGTCAACACATG GACACGTTCGTACTGCACTTAAGCTCCAGTTGTGTAC 3
4 How many pieces of DNA would result from this cut? What differences are there in the pieces? Sal1 cuts here: GTCGAC CAGCTG Whenever the Sal1 enzyme encounters this pattern of six base pairs, it will cut the DNA at that site. TTCTGCACGTCGACAGATGCAGTGAGTGCACACAAGT CCGACGTGCAGCTGTCTACGTCACTCGTGTGTGTTCA How many pieces of DNA would result from this cut? What differences are there in the pieces? Compare the following two DNA fragments. Identify the recognition sites for EcoR1 and Sal1 in the fragments only single strands are shown for simplicity. GTGACACGTCTCGATGAATTCCAGGTGCCATGCAACGAGGTCGACGCTGGAC GACTGAATTCTGACAGTATGAAGTCGACCACACTTACACGGTCGACACTCAT How many pieces of DNA would result from the cuts? Sample 1: # of fragments Sample 2: # of fragments List the fragment sizes from sample 1 in order from largest to smallest. List the fragment sizes form sample 2 in order from largest to smallest. 4
5 Because polymorphic regions of the genome may differ significantly in base pair sequence among individuals, restriction sites may also differ among individuals. Sites that are present in one person s DNA may be absent in another person s DNA. Thus, restriction digestion of a polymorphic region from two different individuals will result in different numbers and sizes of DNA fragments. Therefore, if the DNA fragments obtained from a suspect s DNA exactly match the fragments obtained from DNA found at a crime scene, you can be certain that the suspect was at the crime scene. Restriction Endonuclease Digestion Protocol Each lab bench will be provided with a sample of DNA that was obtained from a crime scene and samples that were obtained from 8 different suspects. Each of the samples has already been amplified by PCR and is now ready to be digested with the restriction endonucleases. Each lab bench will also receive a tube containing the restriction enzymes EcoR1 and Sal1 in the appropriate buffer to allow the enzymes to function. You will pipet 5μl of the enzyme mixture into each of the tubes containing the suspects DNA samples and to the tube containing the crime scene sample. Be sure to use a clean pipet tip each time. 5
6 Part 4: DNA Fingerprinting Lab 2: Agarose Gel Electrophoresis We will purify our PCR products using a common procedure called agarose gel electrophoresis. Agarose is a polysaccharide that is purified from seaweed. The powdered agarose is mixed with a buffer solution and then dissolved by heating the mixture in a microwave. The molten agarose is then poured into a small plastic tray, and as the agarose cools it solidifies to form a gel. A small plastic comb is inserted in the tray while the agarose is still in its molten state, and after the gel solidifies the comb is removed leaving behind small wells. The DNA sample will be mixed with a loading dye and pipeted into the wells, and an electric current will then be applied to the gel which will cause the negatively charged DNA molecules to migrate through the gel toward the positive terminal. Specifically, the DNA will weave its way through tiny pores in the gel as it is pushed/pulled along by the electric current. Because electrophoresis is just a modified form of chromatography, the rate of migration of the DNA molecules is determined by the size of the molecules. Thus, the smaller molecules will migrate faster than larger molecules. In the figure the band of DNA indicated as B is the smallest and the band of DNA indicated as D is the largest. In this example, the rank order of size from smallest to largest is B < C < A < D. In order to see the DNA in the gel, a chemical called ethidium bromide (EtBr) was added to the agarose while it was still in its molten state. Ethidium bromide is a molecule that inserts or intercalates between the bases of double stranded DNA. Under UV light EtBr fluoresces, therefore DNA becomes visible under UV light in the presence of EtBr. EtBr is a potent mutagen (may cause genetic damage) and is moderately toxic. Always wear appropriate protective equipment, such as gloves and safety goggles, when handling EtBr or the agarose gels that contain EtBr. In addition, UV light is damaging to skin and eyes. Please use caution when near the UV light source and always wear safety glasses or a protective face mask. Ethidium intercalates between base pairs of DNA. (images from Dr. Steven Berg, Winona State University) Smaller molecules of DNA will migrate through the pores of the agarose toward the positive terminal faster than larger molecules of DNA. After a period of time, molecules of DNA of different sizes will be spread out within the gel. We will identify our bands of DNA under UV light when we compare our sample to the standard DNA markers we will also place in the gel. 6
7 Electrophoresis Protocol You will have about 10μl of each suspect and crime scene sample to which you will add a loading dye (your instructor will tell you the exact volume). The loading dye contains several dyes which will migrate through the gel when the electric current is applied. The smallest of these dyes is designed to migrate through the gel at least as fast as any small fragments of DNA. Therefore, when the first dye is nearing the end of the gel, you will know that the DNA is not far behind. It also contains a complex carbohydrate called ficoll that helps the DNA settle to the bottom when the sample is pipetted into the well. This dye comes as a 6x stock, and you want its final concentration to be approximately 1x. Check with your instructor to determine the appropriate volume to add to your samples and follow the instructions they provide. Your professor will pipet standard DNA markers, known as a ladder, into the first well on the left side of the gel. Next, you will pipet the suspects DNA (tubes 1-8) into wells 2-9. Finally, add the crime scene DNA into the last well. The gel will run at 100V for approximately 45 minutes and then the DNA bands will be identified by placing the gel on the UV light box. Interpreting the Gel Your professor will take a picture of the gel and either print it or post it online for you to download. Using the gel picture, estimate the sizes of all the bands by comparing them to sizes of the bands in the DNA ladder. Write that information into the following table. List DNA fragments by size: largest to smallest crime scene suspects Do any of the suspects DNA bands exactly match those from the DNA found at the crime scene? Which one(s)? 7
Genetics Faculty of Agriculture and Veterinary Medicine
Genetics 10201232 Faculty of Agriculture and Veterinary Medicine Instructor: Dr. Jihad Abdallah Topic 15:Recombinant DNA Technology 1 Recombinant DNA Technology Recombinant DNA Technology is the use of
BIOTECHNOLOGY. What can we do with DNA?
BIOTECHNOLOGY What can we do with DNA? Biotechnology Manipulation of biological organisms or their components for research and industrial purpose Usually manipulate DNA itself How to study individual gene?
PCR Polymerase Chain Reaction
Biological Sciences Initiative HHMI PCR Polymerase Chain Reaction PCR is an extremely powerful technique used to amplify any specific piece of DNA of interest. The DNA of interest is selectively amplified
GEL ELECTROPHORESIS OF PLASMID DNA
Purpose: In this lab you will determine the size of a circular piece of bacterial DNA (a plasmid) by cutting it into smaller pieces with enzymes and finding the size of the pieces using agarose gel electrophoresis.
Crime Scenes and Genes
Glossary Agarose Biotechnology Cell Chromosome DNA (deoxyribonucleic acid) Electrophoresis Gene Micro-pipette Mutation Nucleotide Nucleus PCR (Polymerase chain reaction) Primer STR (short tandem repeats)
Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology
Lecture 13: DNA Technology DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology DNA Sequencing determine order of nucleotides in a strand of DNA > bases = A,
DNA CLONING: amplification of unique DNA molecules. In vivo-in different host cells
DNA CLONING DNA CLONING: amplification of unique DNA molecules In vitro-pcr In vivo-in different host cells POLYMERASE CHAIN REACTION (PCR) PCR THE POLYMERASE CHAIN REACTION (PCR) PROVIDES AN EXTREMELY
Polymerase Chain Reaction (PCR)
PR037 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name Polymerase Chain Reaction (PCR) Teacher s Guidebook (Cat. # BE 305) think proteins!
Objectives: Vocabulary:
Introduction to Agarose Gel Electrophoresis: A Precursor to Cornell Institute for Biology Teacher s lab Author: Jennifer Weiser and Laura Austen Date Created: 2010 Subject: Molecular Biology and Genetics
DNA: A Person s Ultimate Fingerprint
A partnership between the UAB Center for Community Outreach Development and McWane Center DNA: A Person s Ultimate Fingerprint This project is supported by a Science Education Partnership Award (SEPA)
HiPer Restriction Digestion Teaching Kit
HiPer Restriction Digestion Teaching Kit Product Code: HTBM015 Number of experiments that can be performed: 10 Duration of Experiment Protocol: 1-1.5 hours Agarose Gel Electrophoresis : 1 hour Storage
DNA and Forensic Science
DNA and Forensic Science Micah A. Luftig * Stephen Richey ** I. INTRODUCTION This paper represents a discussion of the fundamental principles of DNA technology as it applies to forensic testing. A brief
RESTRICTION ENZYME ANALYSIS OF DNA
University of Massachusetts Medical School Regional Science Resource Center SUPPORTING MATHEMATICS, SCIENCE AND TECHNOLOGY EDUCATION 222 Maple Avenue, Stoddard Building Shrewsbury, MA 01545-2732 508.856.5097
Lab 5: DNA Fingerprinting
Lab 5: DNA Fingerprinting You are about to perform a procedure known as DNA fingerprinting. The data obtained may allow you to determine if the samples of DNA that you will be provided with are from the
PCR-based technologies
Using molecular marker technology in studies on plant genetic diversity DNA-based technologies PCR-based technologies PCR basics Copyright: IPGRI and Cornell University, 2003 PCR basics 1 Contents! The
Worked solutions to student book questions Chapter 13 DNA
Q1. Copy the structural formula of deoxyribose sugar. Now indicate where covalent bonds form to link this group to: a a phosphate group b a base group A1. Q2. Give the sequence of bases that will pair
The most popular method for doing this is called the dideoxy method or Sanger method (named after its inventor, Frederick Sanger, who was awarded the
DNA Sequencing DNA sequencing is the determination of the precise sequence of nucleotides in a sample of DNA. The most popular method for doing this is called the dideoxy method or Sanger method (named
Lecture 27: Agarose Gel Electrophoresis for DNA analysis
Lecture 27: Agarose Gel Electrophoresis for DNA analysis During Lecture 9 and 10 we have studied basics of protein electrophoresis. Recalling our discussion during lecture, protein needs to be boiled with
HiPer Restriction Fragment Length Polymorphism (RFLP) Teaching Kit
HiPer Restriction Fragment Length Polymorphism (RFLP) Teaching Kit Product Code: HTBM026 Number of experiments that can be performed: 5/25 Duration of Experiment Protocol:3.5 hours Agarose Gel Electrophoresis:1
Lecture 37: Polymerase Chain Reaction
Lecture 37: Polymerase Chain Reaction We have already studied basics of DNA/RNA structure and recombinant DNA technology in previous classes. Polymerase Chain Reaction (PCR) is another revolutionary method
Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA
Page 1 of 5 Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA Genetics Exercise: Understanding how meiosis affects genetic inheritance and DNA patterns
Lecture 10. mrna: Transcription Translation Start Translation Stop Transcription Start (AUG) (UAG, UAA, or UGA) Terminator S-D Sequence
Lecture 10 Analysis of Gene Sequences Anatomy of a bacterial gene: Promoter Coding Sequence (no stop codons) mrna: Transcription Translation Start Translation Stop Transcription Start (AUG) (UAG, UAA,
DNA Fingerprinting. Biotechnology - Electrophoresis & DNA Fingerprinting Biology 100 - Concepts of Biology 8.1. Name Instructor Lab Section.
Biotechnology - Electrophoresis & DNA Fingerprinting Biology 100 - Concepts of Biology 8.1 Name Instructor Lab Section Objectives: To gain a better understanding of: Fundamental Biotechnology Techniques
HiPer RT-PCR Teaching Kit
HiPer RT-PCR Teaching Kit Product Code: HTBM024 Number of experiments that can be performed: 5 Duration of Experiment: Protocol: 4 hours Agarose Gel Electrophoresis: 45 minutes Storage Instructions: The
EXPERIMENT 10: Restriction Digestion and Analysis of Lambda DNA
Biochemistry Lab CHE 431 Page 1 of 7 OBJECTIVE: EXPERIMENT 10: Restriction Digestion and Analysis of Lambda DNA DNA splicing, the cutting and linking of DNA molecules, is one of the basic tools of modern
PRELAB DISCUSSION #12
PRELAB DISCUSSION #12 ANNOUNCEMENTS KEY DATES: CH6C Labs: Dec2-8 th CH6 Write-up: pdf due 9 pm the evening before your CH6C Lab and hardcopy due at the beginning of CH6C lab. (The write up template outlining
DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA
DNA Fingerprinting Unless they are identical twins, individuals have unique DNA DNA fingerprinting The name used for the unambiguous identifying technique that takes advantage of differences in DNA sequence
The purpose of today s lab is to:
Cancer Gene Detection Instructions The purpose of today s lab is to: gain an understanding of the p53 tumor suppressor gene and its role in familial cancers; analyze p53 mutations from normal and tumor
eculab MolecuLab 45 DNA Sequencing - A Classroom Exercise Student Manual 950 Walnut Ridge Drive Hartland, WI 53029-9388 USA
Mo eculab DNA Sequencing - A Classroom Exercise Student Manual 950 Walnut Ridge Drive Hartland, WI 53029-9388 USA Revision 11/2011 Student Manual BACKGROUND DNA sequencing technology was developed in the
An introduction to PCR and real-time PCR Dr. F. Waldherr CONGEN Biotechnologie GmbH
An introduction to PCR and real-time PCR Dr. F. Waldherr CONGEN Biotechnologie GmbH DNA basic principles DNA carries the information of life on Earth DNA is present in all organisms (some viruses use RNA)
Recombinant DNA Technology
PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 8 Recombinant DNA Technology The Role of Recombinant DNA Technology in Biotechnology Biotechnology
Chapter 10 Manipulating Genes
How DNA Molecules Are Analyzed Chapter 10 Manipulating Genes Until the development of recombinant DNA techniques, crucial clues for understanding how cell works remained lock in the genome. Important advances
CHAPTER 14 LECTURE NOTES: RECOMBINANT DNA TECHNOLOGY
CHAPTER 14 LECTURE NOTES: RECOMBINANT DNA TECHNOLOGY I. General Info A. Landmarks in modern genetics 1. Rediscovery of Mendel s work 2. Chromosomal theory of inheritance 3. DNA as the genetic material
Chapter 20: Biotechnology: DNA Technology & Genomics
Biotechnology Chapter 20: Biotechnology: DNA Technology & Genomics The BIG Questions How can we use our knowledge of DNA to: o Diagnose disease or defect? o Cure disease or defect? o Change/improve organisms?
Sequencing a Genome: Inside the Washington University Genome Sequencing Center. Activity Supplement Paper PCR (DNA Amplification)
Sequencing a Genome: Inside the Washington University Genome Sequencing Center Activity Supplement (DNA Amplification) Project Outline The multimedia project Sequencing a Genome: Inside the Washington
Cloning GFP into Mammalian cells
Protocol for Cloning GFP into Mammalian cells Studiepraktik 2013 Molecular Biology and Molecular Medicine Aarhus University Produced by the instructors: Tobias Holm Bønnelykke, Rikke Mouridsen, Steffan
Biotechnology Test Test
Log In Sign Up Biotechnology Test Test 15 Matching Questions Regenerate Test 1. Plasmid 2. PCR Process 3. humulin 4. pluripotent 5. polymerase chain reaction (PCR) a b Is much smaller than the human genome,
IIID 14. Biotechnology in Fish Disease Diagnostics: Application of the Polymerase Chain Reaction (PCR)
IIID 14. Biotechnology in Fish Disease Diagnostics: Application of the Polymerase Chain Reaction (PCR) Background Infectious diseases caused by pathogenic organisms such as bacteria, viruses, protozoa,
T C G A A C T G A G G A C T A T. 4) What type of bonds hold the two strands of DNA together? Are they strong or weak bonds?
Fo Sci DNA Questions #1 Name Key Use PPT slides 1-11 to answer the following questions. 1) Who are these gentlemen and what did they discover? James Watson and Frances Crick discovered the structure of
LAB 7 DNA RESTRICTION for CLONING
BIOTECHNOLOGY I DNA RESTRICTION FOR CLONING LAB 7 DNA RESTRICTION for CLONING STUDENT GUIDE GOALS The goals of this lab are to provide the biotech student with experience in DNA digestion with restriction
Denaturing Gradient Gel Electrophoresis (DGGE)
Craig Tepper 9/10 Modified from Laboratory of Microbial Ecology, University of Toledo Denaturing Gradient Gel Electrophoresis (DGGE) Background Information Denaturing gradient gel electrophoresis (DGGE)
Recombinant DNA & Genetic Engineering. Tools for Genetic Manipulation
Recombinant DNA & Genetic Engineering g Genetic Manipulation: Tools Kathleen Hill Associate Professor Department of Biology The University of Western Ontario Tools for Genetic Manipulation DNA, RNA, cdna
LAB 12 PLASMID MAPPING
STUDENT GUIDE LAB 12 PLASMID MAPPING GOAL The objective of this lab is to perform restriction digestion of plasmid DNA and construct a plasmid map using the results. OBJECTIVES After completion, the student
DNA Technology Mapping a plasmid digesting How do restriction enzymes work?
DNA Technology Mapping a plasmid A first step in working with DNA is mapping the DNA molecule. One way to do this is to use restriction enzymes (restriction endonucleases) that are naturally found in bacteria
MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS
MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS Richard L. Hodinka, Ph.D. University of South Carolina School of Medicine Greenville Greenville Health System, Greenville, SC hodinka@greenvillemed.sc.edu
LAB 16 HUMAN DNA TYPING USING POLYMERASE CHAIN REACTION (PCR)
LAB 16 HUMAN DNA TYPING USING PCR LAB 16 HUMAN DNA TYPING USING POLYMERASE CHAIN REACTION (PCR) STUDENT GUIDE GOAL The goal of this lab is to use polymerase chain reaction (PCR) to compare a human DNA
11/19/2008. Gene analysis. Sequencing PCR. Northern-blot RT PCR. Western-blot Sequencing. in situ hybridization. Southern-blot
Recombinant technology Gene analysis Sequencing PCR RNA Northern-blot RT PCR Protein Western-blot Sequencing Southern-blot in situ hybridization in situ hybridization Function analysis Histochemical analysis
AGAROSE GEL ELECTROPHORESIS
CSS451 CSS/HRT 451 AGAROSE GEL ELECTROPHORESIS Wells Guo-qing Song And David Douches OUTLINE CSS451 Concept Applications Factors affecting Migration 1. DNA or RNA Molecular Weight 2. Voltage 3. Agarose
Extraction from Buccal Epithelial Cells
Genomic DNA Extraction from Buccal Epithelial Cells The purpose of this lab is to collect a DNA sample from the cells that line the inside of your mouth and to use this sample to explore one of the most
Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College
Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Primary Source for figures and content: Eastern Campus Tortora, G.J. Microbiology
DNA Electrophoresis Lesson Plan
DNA Electrophoresis Lesson Plan Primary Learning Outcomes: Students will learn how to properly load a well in an agarose gel. Students will learn how to analyze the results of DNA electrophoresis. Students
The Chinese University of Hong Kong School of Life Sciences Biochemistry Program CUGEN Ltd.
The Chinese University of Hong Kong School of Life Sciences Biochemistry Program CUGEN Ltd. DNA Forensic and Agarose Gel Electrophoresis 1 OBJECTIVES Prof. Stephen K.W. Tsui, Dr. Patrick Law and Miss Fion
1/12 Dideoxy DNA Sequencing
1/12 Dideoxy DNA Sequencing Dideoxy DNA sequencing utilizes two steps: PCR (polymerase chain reaction) amplification of DNA using dideoxy nucleoside triphosphates (Figures 1 and 2)and denaturing polyacrylamide
Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes.
Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes. Recombinant DNA technology has had-and will havemany important
Biotechnology. Selective breeding Use of microbes (bacteria & yeast)
Biotechnology bio and technology The use of living organisms to solve problems or make useful products. Biotechnology has been practiced for the last 10,000 years. Selective breeding Use of microbes (bacteria
Exercise 5: Detection of a Human Alu Element by PCR
Exercise 5: Detection of a Human Alu Element by PCR (adapted from Dolan DNA Learning Center, Cold Spring Harbor Laboratory, NY and Science Outreach, Washington University, St. Louis, MO) Background Information
2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99.
1. True or False? A typical chromosome can contain several hundred to several thousand genes, arranged in linear order along the DNA molecule present in the chromosome. True 2. True or False? The sequence
GeNei TM Restriction Digestion Teaching Kit Manual
Teaching Kit Manual Cat No. New Cat No. KT01 106211 KT01A 106212 KT01B 106213 Revision No.: 01010606 CONTENTS Page No. Objective 3 Principle 3 Kit Description 7 Materials Provided 9 Procedure 10 Observation
AGAROSE GEL ELECTROPHORESIS:
AGAROSE GEL ELECTROPHORESIS: BEST PRACTICES (BACK TO THE BASICS) Unit of Tropical Laboratory Medicine April 2009 Marcella Mori WORKFLOW OF AGAROSE GEL ELECTROPHORESIS: THREE STEPS Agarose gel electrophoresis
Isolation and Electrophoresis of Plasmid DNA
Name Date Isolation and Electrophoresis of Plasmid DNA Prior to lab you should be able to: o Explain what cloning a gene accomplishes for a geneticist. o Describe what a plasmid is. o Describe the function
Chapter 12 - DNA Technology
Bio 100 DNA Technology 1 Chapter 12 - DNA Technology Among bacteria, there are 3 mechanisms for transferring genes from one cell to another cell: transformation, transduction, and conjugation 1. Transformation
The Biotechnology Education Company
EDVTEK P.. Box 1232 West Bethesda, MD 20827-1232 The Biotechnology 106 EDV-Kit # Principles of DNA Sequencing Experiment bjective: The objective of this experiment is to develop an understanding of DNA
electrode Electrophoresis tank with gel Agarose Gel DNA migration
Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 5 - Electrophoresis & Quantification of PCR DNA Please bring a portable USB memory device to lab Once we have performed
CCR Biology - Chapter 9 Practice Test - Summer 2012
Name: Class: Date: CCR Biology - Chapter 9 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Genetic engineering is possible
Forensic DNA Testing Terminology
Forensic DNA Testing Terminology ABI 310 Genetic Analyzer a capillary electrophoresis instrument used by forensic DNA laboratories to separate short tandem repeat (STR) loci on the basis of their size.
Lecture 38: DNA Fingerprinting
Lecture 38: DNA Fingerprinting (DNA technology) The most awesome and powerful tool acquired by man since the splitting of atoms - The Time Magazine (USA) Conventional fingerprint of an individual comes
PCR Optimization. Table of Contents Fall 2012
Table of Contents Optimizing the Polymerase Chain Reaction Introduction.....1 Review of Mathematics........ 3 Solving Problems of Dilution and Concentration: Two Approaches.. 4 Experiment Overview 7 Calculations
CAP BIOINFORMATICS Su-Shing Chen CISE. 10/5/2005 Su-Shing Chen, CISE 1
CAP 5510-8 BIOINFORMATICS Su-Shing Chen CISE 10/5/2005 Su-Shing Chen, CISE 1 Genomic Mapping & Mapping Databases High resolution, genome-wide maps of DNA markers. Integrated maps, genome catalogs and comprehensive
1. Molecular computation uses molecules to represent information and molecular processes to implement information processing.
Chapter IV Molecular Computation These lecture notes are exclusively for the use of students in Prof. MacLennan s Unconventional Computation course. c 2013, B. J. MacLennan, EECS, University of Tennessee,
Polymerase Chain Reaction (PCR)
Polymerase Chain Reaction (PCR) Paul C Winter, Belfast City Hospital, Belfast, UK The polymerase chain reaction is a technique that allows DNA molecules of interest (usually gene sequences) to be copied
VLLM0421c Medical Microbiology I, practical sessions. Protocol to topic J10
Topic J10+11: Molecular-biological methods + Clinical virology I (hepatitis A, B & C, HIV) To study: PCR, ELISA, your own notes from serology reactions Task J10/1: DNA isolation of the etiological agent
Real-Time PCR Vs. Traditional PCR
Real-Time PCR Vs. Traditional PCR Description This tutorial will discuss the evolution of traditional PCR methods towards the use of Real-Time chemistry and instrumentation for accurate quantitation. Objectives
DNA Separation Methods. Chapter 12
DNA Separation Methods Chapter 12 DNA molecules After PCR reaction produces many copies of DNA molecules Need a way to separate the DNA molecules from similar sized molecules Only way to genotype samples
The correct answer is c B. Answer b is incorrect. Type II enzymes recognize and cut a specific site, not at random sites.
1. A recombinant DNA molecules is one that is a. produced through the process of crossing over that occurs in meiosis b. constructed from DNA from different sources c. constructed from novel combinations
Biotechnology and Recombinant DNA
Biotechnology and Recombinant DNA Recombinant DNA procedures - an overview Biotechnology: The use of microorganisms, cells, or cell components to make a product. Foods, antibiotics, vitamins, enzymes Recombinant
THE POLYMERASE CHAIN REACTION (PCR)
THE POLYMERASE CHAIN REACTION (PCR) OBTECTIVE: To amplify a region of ribosomal DNA from a small amount of genomic DNA. INTRODUCTION: The polymerase chain reaction (PCR) was developed in 1983 by Kary Mullis,
Beginner s Guide to Real-Time PCR
Beginner s Guide to Real-Time PCR 02 Real-time PCR basic principles PCR or the Polymerase Chain Reaction has become the cornerstone of modern molecular biology the world over. Real-time PCR is an advanced
How Does a Genetic Counselor Detect Mutant Genes? SECTION E. How Genes and the Environment Influence Our Health CHAPTER 3
CHAPTER 3 How Genes and the Environment Influence Our Health SECTION E How Does a Genetic Counselor Detect Mutant Genes? Chapter 3 Modern Genetics for All Students T 211 Chapter 3: Section E Background
Transformation Protocol
To make Glycerol Stocks of Plasmids ** To be done in the hood and use RNase/DNase free tips** 1. In a 10 ml sterile tube add 3 ml autoclaved LB broth and 1.5 ul antibiotic (@ 100 ug/ul) or 3 ul antibiotic
Appendix D: Pre-lab Assignments and Gel Electrophoresis Worksheet
Appendix D: Pre-lab Assignments and Gel Electrophoresis Worksheet PCR Pre-Lab (pg. 1-3) PCR Pre-Lab Answers (pg. 4-7) RNAi Pre-Lab (pg. 8) RNAi Pre-Lab Answers (pg. 9-10 Gel Electrophoresis Worksheet (pg.
DNA. Form and Function
DNA Form and Function DNA: Structure and replication Understanding DNA replication and the resulting transmission of genetic information from cell to cell, and generation to generation lays the groundwork
Last Modified July 11, 2012 Polymerase Chain Reaction (PCR) Life on the Edge
Last Modified July 11, 2012 A Polymerase Chain Reaction (PCR) Life on the Edge B C Acknowledgements NASA Astrobiology Institute Georgia Institute of Technology Center for Ribosomal Origins and Evolution
Lab 1: Who s Your Daddy? (AKA DNA Purification and PCR)
Lab 1: Who s Your Daddy? (AKA DNA Purification and PCR) Goals of the lab: 1. To understand how DNA s chemical properties can be exploited for purification 2. To learn practical applications of DNA purification
MOLECULAR GENETICS GENETIC ENGINEERING RECOMBINANT DNA. Molecular Genetics Activity #6 page 1
AP BIOLOGY MOLECULAR GENETICS ACTIVITY #6 NAME DATE HOUR RECOMBINANT DNA GENETIC ENGINEERING Molecular Genetics Activity #6 page 1 GENETIC ENGINEERING Molecular Genetics Activity #6 page 2 PART I: PRODUCING
Microbiology Laboratory: MOLECULAR IDENTIFICATION OF UNKNOWN BACTERIA
Microbiology Laboratory: MOLECULAR IDENTIFICATION OF UNKNOWN BACTERIA Classical Microbiology courses are typically structured to introduce the identification of bacterial species using a series of biochemical
In this lab you will be investigating BRCA to determine whether or not it functions to serve a positive or a negative effect on the body.
BRCA 1 and BRCA 2 are two genes that have been linked to a person s risk for developing cancer and specifically Breast Cancer. When either or both of these two genes are found to be mutated in a person,
Name Class Date. KEY CONCEPT Mutations are changes in DNA that may or may not affect phenotype. frameshift mutation
Unit 7 Study Guide Section 8.7: Mutations KEY CONCEPT Mutations are changes in DNA that may or may not affect phenotype. VOCABULARY mutation point mutation frameshift mutation mutagen MAIN IDEA: Some mutations
Paper Clip PCR PURPOSE
Paper Clip PCR PURPOSE The purpose of this activity is to reinforce basic DNA concepts and to introduce students to the technique of PCR and its many uses. Part one of the activity uses a virtual PCR animation
Protocol. Introduction to TaqMan and SYBR Green Chemistries for Real-Time PCR
Protocol Introduction to TaqMan and SYBR Green Chemistries for Real-Time PCR Copyright 2008, 2010 Applied Biosystems. All rights reserved. Ambion and Applied Biosystems products are for Research Use Only.
POLYMERASE CHAIN REACTION (PCR)
POLYMERASE CHAIN REACTION (PCR) The polymerase chain reaction (PCR) is a technique used to amplify specific segments of DNA that may range in size from ca. 200-2000 or more base pairs. Two recent papers
PTC DNA Fingerprint Gel
BIO 141 PTC DNA Fingerprint Analysis (Modified 3/14) PTC DNA Fingerprint Gel taster non- non- non- non- 100 bp taster taster taster taster taster taster taster ladder Tt tt Tt TT tt tt Tt tt 500 bp 300
A STUDY ON THE EFFECTIVENESS OF PEER TUTORING AS A TEACHING METHOD IN HIGH SCHOOL BIOTECHNOLOGY LABS. June Camerlengo. Santa Fe High School
A STUDY ON THE EFFECTIVENESS OF PEER TUTORING AS A TEACHING METHOD IN HIGH SCHOOL BIOTECHNOLOGY LABS. 1 June Camerlengo Santa Fe High School A STUDY ON THE EFFECTIVENESS OF PEER TUTORING AS A TEACHING
Gene Mapping Techniques
Gene Mapping Techniques OBJECTIVES By the end of this session the student should be able to: Define genetic linkage and recombinant frequency State how genetic distance may be estimated State how restriction
DNA PROFILING IN FORENSIC SCIENCE
DA PROFILIG I FORESIC SCIECE DA is the chemical code that is found in every cell of an individual's body, and is unique to each individual. Because it is unique, the ability to examine DA found at a crime
Name Class Date WHAT I KNOW. organisms with specific traits for certain functions. For example, some plants provide food.
Genetic Engineering Science as a Way of Knowing Q: How and why do scientists manipulate DNA in living cells? 15.1 How do humans take advantage of naturally occurring variation among organisms? WHAT I KNOW
Chapter 20: Biotechnology
Name Period The AP Biology exam has reached into this chapter for essay questions on a regular basis over the past 15 years. Student responses show that biotechnology is a difficult topic. This chapter
DNA Fingerprinting By Restriction Enzyme Digestion of DNA
Introduction DNA Fingerprinting By Restriction Enzyme Digestion of DNA In this exercise you will be learning how variation in DNA sequence can be used to distinguish between individual DNA molecules and
PCR Product Pre-Sequencing Kit
All goods and services are sold subject to the terms and conditions of sale of the company within USB Corporation or the group which supplies them. A copy of these terms and conditions is available on
GENOTYPING ASSAYS AT ZIRC
GENOTYPING ASSAYS AT ZIRC A. READ THIS FIRST - DISCLAIMER Dear ZIRC user, We now provide detailed genotyping protocols for a number of zebrafish lines distributed by ZIRC. These protocols were developed
Polyacrylamide Gel Electrophoresis. Polyacrylamide Gel Electrophoresis. Polyacrylamide Gels. Polyacrylamide Gels. Polyacrylamide Gels
Polyacrylamide Gel Electrophoresis Jeff Prischmann Diagnostic Lab Manager North Dakota State Seed Department Polyacrylamide Gel Electrophoresis Troubleshooting Applications Polyacrylamide gels are formed