Final Disposal of High-level Radioactive Waste in Germany

Size: px
Start display at page:

Download "Final Disposal of High-level Radioactive Waste in Germany"

Transcription

1 Energy Final Disposal of High-level Radioactive Waste in Germany The Gorleben Repository Project

2 Editorial department Federal Ministry of Economics and Technology (BMWi) Design and production PRpetuum GmbH, Munich Print Silber Druck ohg, Niestetal Photo credits BMWi Publisher Federal Ministry of Economics and Technology (BMWi) Public Relations/IA Berlin The Federal Ministry of Economics and Technology has been awarded the berufundfamilie audit certificate for its family-friendly HR policy. The certificate is granted by berufundfamilie ggmbh, an initiative of the Hertie Foundation. Last Revised October 2008

3 Energy Final Disposal of High-level Radioactive Waste in Germany The Gorleben Repository Project

4 2

5 3 Preface Today, nuclear power stations play an important role in the stable and cost-effective supply of electricity in Germany. Regardless of the outcome of debates on the future of nuclear energy in Germany, existing and future radioactive waste has to be disposed of safely and securely for extended periods. On account of our responsibility towards present and future generations, we need to take an objective approach based on scientific findings for the final disposal of radioactive waste. In the opinion of the BMWi, finding a solution to the repository issue should not be treated as a political football by divergent political interest groups. Supporters and opponents of nuclear energy alike should be equally committed to urgently addressing the issue of final radioactive waste disposal with a view to achieving prompt results. Our citizens rightly expect politicians and policymakers to exercise responsibility here. In this legislative term, the Federal Government made important decisions concerning the final disposal of low and medium-level waste, which account for approximately 90percent of the waste volumes forecast. The Konrad mine repository is to go into operation in 2013 for this purpose. A lot of controversy does, however, surround the further course of action to be taken for high-level radioactive waste. Exploration work has been underway at the Gorleben salt dome since 1979 for this very purpose. A moratorium on exploration has been imposed since 2000 even though the results of the exploration have been positive up to now, and the questions which gave rise to the moratorium have been answered. The next steps to be taken in resolving the repository issue are a source of controversial political debate. Arguments against further exploration in Gorleben are the alleged unsuitability of the salt dome, as well as demands to look for new repository sites in alternative host rocks. These arguments often ignore the scientific findings and results of the exploration conducted at the Gorleben salt dome over the past number of decades. In its capacity as the ministry responsible for fundamentals-oriented research on repositories, the BMWi has summarised the findings on the Gorleben salt dome in this brochure. The conclusion reaffirms the ministry s call to continue open exploration of the Gorleben salt dome. Only in this way a final statement on the suitability of Gorleben can be made, which will be the basis for further decisions on the final disposal of heat-generating high-level radioactive waste in Germany. Federal Minister of Economics and Technology

6 4 Table of Contents I. Introduction II. Why should rock salt be used for the final disposal of high-level radioactive waste? III. Gorleben repository project How was the Gorleben salt dome chosen? How far has exploration work progressed at the Gorleben salt dome? Why does the exploration moratorium still apply? IV. State of research Alternatives to rock salt in Germany Basic research within the responsibility of the Federal Ministry of Economics and Technology Can Gorleben be compared to the Asse II mine? V. Would it make sense to look for new repository sites? VI. Roadmap to a repository for high-level heat-generating waste Continuing and completing exploration work at the Gorleben salt dome Safety assessment and international verification Putting the repository into operation VII. Summary VIII. Literature IX. Annexes

7 5 Table of Figures Fig. 1: Geographical location of the Gorleben salt dome in Lower Saxony Fig. 2: Aerial photo of the Gorleben site Fig. 3: Properties of potential host rocks in Germany which are relevant for repository concepts Fig. 4: Fig. 5: Fig. 6: Location of the salt structures appraised by Richter-Bernburg & Hofrichter (1964) with regard to their suitability for the final disposal of radioactive waste Distribution of the sites examined in greater detail with regard to their suitability as a radioactive waste management center as part of the Federal Government site selection process (KEWA study) Location of the sites examined in greater detail with regard to their suitability as a radioactive waste management center as part of the site selection process conducted by the Land of Lower Saxony Fig. 7: Simplified geological section through the Gorleben salt dome Fig. 8: Section through the salt dome with excavations Fig. 9: Three-dimensional model of the outer shell of the Gorleben salt dome with the location of the mine workings Fig. 10: View of the gait road at the 840m level Fig. 11: Historical profile of exploration work at the Gorleben salt dome Fig. 12: Excavations with EB1 and areas still to be explored Fig. 13: Excavation work in a drift at the 840m level Fig. 14: Survey map of the regions with argillaceous rock deposits and salt domes in Germany which could be considered for the final disposal of high-level waste Fig. 15: Schematic illustration of a repository system in a deep geological formation Fig. 16: Demo experiments for direct final disposal Fig. 17: Comparison of the various repository concepts Fig. 18: Road headers at the Gorleben exploration mine Fig. 19: Diagram of the stages of development of the salt structures found in Germany Fig. 20: Salt structures in Northern Germany

8 6 List of Annexes Annex 1: Rock salt: recommended as a host rock for the final disposal of high-level waste Annex 2: 1964 selection procedure implemented by the Federal Institute for Soil Research Annex 3: Selection process applied by the Federal Government for an WMC in the period between 1973 and 1976 (KEWA study) Annex 4: The four phases of the selection process applied by the Land of Lower Saxony in 1976/ Annex 5: Examples of how repository sites have been identified worldwide Annex 6: Additional results of exploration work conducted to date on the Gorleben salt dome Annex 7: Annex 4 on the agreement on June 14, Annex 8: Important points of the public debate in Wendland on the exploration of the Gorleben salt dome Annex 9: Primary results of the BGR studies on crystalline rock, argillaceous rock and rock salt as host rocks Annex 10: Frequently asked questions on Gorleben

9 7 List of Abbreviations AkEnd BfS BGR Committee on a Site Selection Procedure for Repository Sites Federal Office for Radiation Protection Federal Institute for Geosciences and Natural Resources BMBF Federal Ministry of Education and Research } BMFT Federal Ministry for Research and Technology in legal succession BMwF Federal Ministry for Scientific Research BMI BMU BMWi DoE EB 1 IAEA IMAK HLW KEWA NLfB NMU OECD/NEA PTB PTKA-WTE Federal Ministry of the Interior Federal Ministry for the Environment, Nature Conservation and Nuclear Safety Federal Ministry of Economics and Technology Department of Energy (USA) Exploration area in Gorleben salt dome International Atomic Energy Agency Interministerial task force High-level waste Nuclear fuel reprocessing company State Office of Lower Saxony for Soil Research Ministry for the Environment and Climate Protection of Land Lower Saxony Organization for Economic Co-operation and Development/Nuclear Energy Agency National Metrology Institute Project Management Agency Forschungszentrum Karlsruhe Water Technology and Waste Management Division Project RSK WMC Reactor Safety Commission Radioactive waste management center

10 8 I. Introduction I. Introduction

11 9 In the debate surrounding the use of nuclear power in Germany, the public and policymakers alike often argue that, while Germany uses nuclear power, the problem of the final safe disposal of the radioactive waste produced is not resolved. Is this argument justified? Is it really true to say that the final safe disposal of waste in Germany is not possible? Or can it be rightly claimed that the repository issue in Germany is resolved? This brochure addresses these questions, provides answers, and forms an objective basis for discussions on the further course of action to be taken with regard to the final disposal of high-level heat-generating waste (HLW). The brochure explains how the Gorleben salt dome came to be a possible repository candidate, looks at the current international situation and the international policies that are in place, details the findings of exploration work to date, explains what results are available from 40 years of repository research, and examines the line of action to take going forward. The current situation of final disposal in Germany The final disposal of radioactive waste is an important sociopolitical issue not only on account of the controversial debate surrounding the safe use of nuclear energy to generate electricity, but also particularly because the radioactive waste has to be disposed of safely for a very long time without causing any harm to humans or to the environment. A large quantity of the waste is already present today and is being stored safely aboveground at interim storage facilities. More waste will be added. This radioactive waste has to be disposed of in a repository. The Federal Government is responsible for the construction of such a permanent disposal facility. Action is thus needed on the part of policymakers. Accordingly, the government parties agreed the following in their coalition agreement on November 11, 2005: The CDU, CSU and SPD acknowledge Germany s responsibility for the safe final disposal of radioactive waste and will tackle this issue in a speedy and resultoriented manner. We intend to solve this question by the end of the current electoral period. Fig. 1: Geographical location of the Gorleben salt dome in Lower Saxony

12 10 I. Introduction Fig. 2: Aerial photo of the Gorleben site A solution has been found for the final disposal of non-heat-generating low and medium-level waste. In March 2007, the plan approval for the former Konrad iron ore mine near Salzgitter was finally endorsed by the Federal Administrative Court and cannot be appealed. The mine is now being converted into a repository, with plans to put it into operation in Exploration work on the final disposal of highlevel waste, in particular, has been underway at the Gorleben salt dome since 1979 (Fig. 1 and 2). The exploration work has been interrupted since October 1, 2000 as a result of a moratorium imposed. This moratorium was agreed between the Federal Government and the four main electric utility companies on June 14, 2000 as part of the plan to phase out nuclear power. The moratorium on exploration is still in place today due to the divergent positions of policymakers as to the further course of action to be taken. Final disposal situation in other countries There is an international consensus that the final disposal of high-level waste in a purpose-built mine in deep geological formations is the best option and, from a technical perspective, can be implemented safely today. Consequently, many countries other than Germany such as Finland, France, Sweden and the USA are promoting repository projects in deep geological formations. Responsibility under nuclear law for repositories in Germany According to the German Atomic Energy Act ( 9a), the Federal Government is responsible for the final disposal of radioactive waste in Germany. Within the Federal Government itself, the Federal

13 11 Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) and the Federal Office for Radiation Protection (BfS), a subordinate authority, are responsible for the siting, planning, plant-related research and development, exploration, construction, operation and decommissioning of repositories for radioactive waste. The Federal Ministry of Economics and Technology (BMWi) is responsible for the nuclear energy industry and repository-related applied basic research. The Federal Institute for Geosciences and Natural Resources (BGR), a subordinate authority of the BMWi, deals with the primary geoscientific questions surrounding the final disposal of radioactive waste. Up until 1986, the Federal Ministry of the Interior (BMI) was responsible for final disposal tasks which are now under the jurisdiction of the BMU. On the basis of discussions led since the 1960s, and following consultations with various teams of experts, the BMI drew up criteria for the final disposal of radioactive waste in 1983, and published these in the form of the Safety Criteria for the Final Disposal of Radioactive Waste in a Mine (BMI 1983). These criteria still apply today and were the basis for the Konrad mine being approved as a repository for low and medium-level waste. Radioactive waste 3 High-level waste: This waste accounts for approximately ten percent of forecast waste volumes (approximately 22,000 m 3 by 2040, BfS 2007) and contains approximately 99 percent of the total radioactivity. Spent fuel elements from reactors and vitrified waste from reprocessing make up the vast majority of this waste. The radioactive decay of the radionuclides the waste contains causes considerable quantities of heat to be released. The level of gas generated is far lower than in the case of low-level and medium-level waste. The different physicochemical properties of these two individual waste categories mean that different requirements have to be met to permanently dispose of these wastes in deep geological formations. For this reason, Germany follows the dual repository concept which involves the final disposal of the two types of waste in separate repositories in different host rock formations. In contrast to other countries where low-level and intermediate-level radioactive waste is finally disposed of close to the surface, all radioactive waste in Germany should be finally disposed of in deep geological formations. The German concept for safe final disposal does not provide for waste retrieval once the repository has been sealed. Radioactive waste has different properties and is divided into two specific categories in Germany: 3 Low and medium-level waste: This waste constitutes about 90 percent of forecast waste volumes (approximately 277,000 m 3 by 2040, BfS 2007) but only contains approximately one percent of the radioactivity of the overall radioactive waste. This waste is primarily waste from nuclear power plants and from research and medicine. The radioactive decay of such waste does not result in any noteworthy production of heat. However, large quantities of gas are produced when the waste is stored. A small percentage of the medium-level waste can be assigned to heat-generating waste (e. g. fuel element hulls, reprocessing structural elements).

14 12 II. Why should rock salt be used for the final disposal of high-level radioactive waste? II. Why should rock salt be used for the final disposal of high-level radioactive waste?

15 13 The German disposal concept, which was developed using results from scientific research, is based on the following two principles for the final disposal of radioactive waste: 3 All radioactive waste generated should be finally disposed of in Germany in deep geological formations. 3 The geological barrier plays the most important role in isolating the waste, i. e. the rock salt encapsulating the radioactive waste in the case of Gorleben. Over 100 years experience in industrial salt-mining, and more than 40 years of intensive research, have given rise to an extensive knowledge base in Germany of the properties of rock salt which are relevant for the final disposal of radioactive waste, and of the numerous salt formations to be found in the country (Fig. 3 and Annex 1). This can be elaborated as follows: 3 Experience in mining in rock salt formations proves that stable underground structures can be constructed here. Thanks to the favorable mechanical properties of rock salt, cavities can be created without any special support and maintained for decades. 3 Under natural stratification conditions, the permeability of the rock salt toward gases and liquids is extremely low. The saline solutions found today in the Gorleben salt dome are just as old as the rock salt that formed the salt dome (solution trapped during sedimentation) i. e. over 200 million years old. This is an indicator for the fact that rock salt can be regarded as practically impervious as a host rock. 3 Rock salt exhibits a high level of specific thermal conductivity. For this reason, rock salt is particularly well suited as a host rock for high-level waste since the heat can be dissipated to the surrounding rock far better than in the case of crystalline or argillaceous rock, for example. Due to its specific properties, rock salt is particularly favorable as a host rock for the final disposal of high-level waste in Germany. Germany has the necessary scientific experience and extensive mining knowledge for final waste disposal in rock salt. 3 Rock salt reacts to mechanical load with a slow, flowing movement that is known as creeping. This particular property of rock salt causes cavities in the rock to be self sealed. As a result, the necessary geological barrier function is guaranteed in a natural way over very long periods of time once the emplacement process is complete.

16 14 II. Why should rock salt be used for the final disposal of high-level radioactive waste? Fig. 3: Properties of potential host rocks in Germany which are relevant for repository concepts Property Rock salt Clay/ Crystalline rock argillaceous rock (e. g. granite) Thermal conductivity High Low Medium Permeability Practically impermeable Very low to low Very low (unfractured) to permeable (fractured) Strength Medium Low to medium High Deformation behavior Visco-plastic (creep) Plastic to brittle Brittle Stability of cavities Self-supporting Artificial reinforcement required High (unfractured) to low (highly fractured) In-situ stress Isotropic Anisotropic Anisotropic Dissolution behavior High Very low Very low Sorption behavior Very low Very high Medium to high Heat resistance High Low High Favorable property Average Unfavorable property

17 III. Gorleben repository project 15 III. Gorleben repository project

18 16 1. How was the Gorleben salt dome chosen? 1. How was the Gorleben salt dome chosen? In the debate surrounding the Gorleben salt dome, it is often claimed that the Gorleben site was purely selected for political reasons and that technical and scientific reasons did not play a role in the ultimate selection of the site. This is not true, however. If we take a look at the history of the selection procedure for the Gorleben salt dome, it is clear that the site was selected in a highly scientific and methodical process. The selection procedure followed by the Federal Government In the period between 1964 and 1976, the Federal Government initially embarked on a search for salt structures which would be suitable candidates for a repository, and later implemented a selection process for a repository site for radioactive waste when searching for a location for a radioactive waste management center (WMC reprocessing, fuel element production, conditioning and final disposal should be concentrated at one site). radioactive waste, in a study it presented in 1964 [Richter-Bernburg & Hofrichter 1964]. Numerous criteria were applied for selecting the salt structures and for the comparative analysis of their suitability for the final disposal of radioactive waste (Annex 2). Since extensive knowledge of the outer shape and interior composition of the salt structures was not available in 1963/64, and additional studies were not carried out, the choice of the seven salt structures suggested cannot be put down to a systematic analysis of all the salt deposits available underground (Annex 2). Onsite work was terminated in 1966 on account of problems purchasing sites, and following the rejection of the projects in the regions affected. Fig. 4: Location of the salt structures (red triangles) appraised by Richter-Bernburg & Hofrichter (1964) with regard to their suitability for the final disposal of radioactive waste The sites identified in these processes (Annex 2 to 4) were chosen on the basis of the experience and results of numerous scientific searches, with predefined criteria for selection and exclusion, which were carried out from the middle of the 1960s to the start of the 1970s Initiated by recommendations and research work conducted by the American National Academy of Sciences, the then Federal Institute of Soil Research (Bundesanstalt für Bodenforschung) and the German Nuclear Energy Commission already voiced support for the final disposal of radioactive waste in salt deposits deep underground at the start of the 1960s. In 1963, the Federal Institute of Soil Research presented a report which underlined the particular suitability of salt formations as repositories, and contained an initial synopsis of the knowledge then available regarding salt structures in Germany [Martini 1963]. 6 Following an order from the then Federal Ministry for Scientific Research (BMwF) issued on December 12, 1963, the Federal Institute of Soil Research named seven salt structures (Fig. 4), which were considered suitable sites to mine caverns for the final disposal of 1. Heide, 2. Geesthacht, 3. Harsefeld, 4. Bunde/Jemgum, 5. Krummendeich, 6. Leutesheim, 7. Bremen-Lesum; yellow circles location of nuclear reactors

19 17 In 1973, the then Federal Ministry for Research and Technology (BMFT) commissioned the nuclear fuel reprocessing company KEWA to identify sites for a radioactive waste management center. This search focused on finding a site that would guarantee the environmentally friendly operation of surface facilities for the reprocessing and conditioning of radioactive waste. The repository was merely an additional requirement here. Precisely this element was reflected in the site selection criteria which formed the basis for the dual phase selection process. Comprehensive selection criteria (Annex 3) were applied in Phase 1 (overview investigations) and Phase 2 (regional investigations and interim site appraisals) of the Federal Government selection process known as the KEWA study. Taking geological expert reports into account, this study gave the sites at Ahlden (Lichtenhorst salt dome), Börger (Wahn salt dome) and Fassberg (Weesen-Lutterloh salt dome) the best rating (Fig. 5). Geological exploration work which the Federal Government commenced at these three sites in 1975 was suspended in August 1976 on account of local protests and not for technical or scientific reasons. Fig. 5: Areal distribution of the sites examined in greater detail with regard to their suitability as a radioactive waste management center as part of the Federal Government site selection process (KEWA study) (red triangles = sites) In the course of two multiphase selection processes, the Federal Government looked for salt structures for the purpose of final waste disposal and for a site for an WMC including a repository. Geological exploration work at the sites mentioned was suspended in 1966 and 1976 on account of protests from some of the local population. The selection process of the Land of Lower Saxony 1. Ahlden Lichtenhorst salt dome, 2. Börger Wahn salt dome, 3. Faßberg Weesen-Lutterloh salt dome, 4. Friedrichskoog (Schleswig-Holstein, coastal location), 5. Karlsruhe (reprocessing plant), 6. Lütau Juliusburg salt dome, 7. Uchte (sparsely populated, near Loccum), 8. Mahlberg tertiary potash deposits Oberrheintalgraben, 9. Sohlhöhe (Spessart), 10. Oberwesel (Southwestern Rhenish Massif); yellow circles location of nuclear reactors When the KEWA investigations and studies did not yield the desired result in 1976, Lower Saxony implemented a selection process for an WMC [see Tiggemann 2004]. The Land government of Lower Saxony deployed an interministerial task force (IMAK) for this purpose. In contrast to the procedure followed by the Federal Government, this process applied a far more extensive catalogue of criteria. The sites proposed in the KEWA studies were included. Despite initial strategic reservations, sites close to the border with the former GDR such as the Gorleben salt dome were no longer ruled out. 140 salt domes were considered in total. The selection process consisted of four specific phases (Annex 4). In the fourth phase, the four remaining sites the salt domes at Wahn, Lichtenhorst, Gorleben and Mariaglück/Höfer were subject to further intensive technical investigations and discussion (Fig. 6). The results identified the Gorleben salt dome as the most favorable candidate. The Federal Government, however, had reservations on account of Gorleben s proximity to the border with the GDR. In the cabinet bill for

20 18 1. How was the Gorleben salt dome chosen? the Land government, no preference was initially made with regard to the two best sites at Gorleben and Lichtenhorst. The bill merely recommended that only one of the two sites be explored. In February 1977, the cabinet of Lower Saxony finally chose Gorleben since this site best met all the selection criteria. The political reservations of the Federal Government were not considered to be of a serious nature. The Federal Government accepted the Gorleben site as the preliminary choice for the radioactive waste management center (WMC) on July 5, While the WMC project in Gorleben was the subject of disputes and protests, which were primarily directed at the reprocessing plants, it also received continuous support with regard to the creation of jobs in the economically less developed border area. The Gorleben Commission was founded in 1977 as a discussion platform for the region. On the initiative of the Land government of Lower Saxony, a public symposium known as the Gorleben hearing was held between March 28 and April 3, 1979 and was attended by many international participants. In his policy statement on May 16, 1979, Minister-President Dr. Albrecht recommended not building the reprocessing plant as part of the WMC but did recommend all parties remain committed to the Gorleben repository project. Government leaders from the Federal Government and Länder established a State Secretaries Committee for Disposal on July 6, In their official decision on September 28, 1979, they welcomed the willingness of the Land government of Lower Saxony to allow the construction of a repository in Gorleben as soon as the exploration work and mining-specific development of the salt dome find that this is a suitable site for a repository. For this reason, we will push ahead with exploration work and the mining-specific development of the Gorleben salt dome without delay [BMI 1981]. In line with the procedure at that time applied for the development of large-scale industrial projects, as soon as the site had been announced, the public was included in the processes and steps were taken, which also provided for hearings for the parties involved. In retrospect, it can be said that the Gorleben project was revolutionary in terms of the steps it took when communicating with the public, particularly by establishing the Gorleben Commission in 1977 and holding the international Gorleben hearing in the spring of Fig. 6: Location of the sites examined in greater detail with regard to their suitability as a radioactive waste management center as part of the site selection process conducted by the Land of Lower Saxony 1. Börger Wahn salt dome 2. Ahlden Lichtenhorst salt dome 3. Gorleben salt dome 4. Mariaglück mine Höfer salt dome; Blue = salt structures found in North Germany

Possibilities / Options

Possibilities / Options S1_15 Metallic Mercury Long-Term Storage Possibilities / Options Thomas Brasser GRS with contributions by Sven Hagemann Who is GRS ( Plant & Reactor Safety Ltd. ) Non-profit, independent expert and research

More information

Developing a Safety Case for Ontario Power Generation s L&ILW Deep Geologic Repository

Developing a Safety Case for Ontario Power Generation s L&ILW Deep Geologic Repository Developing a Safety Case for Ontario Power Generation s L&ILW Deep Geologic Repository T. Kempe, P. Gierszewski, R. Heystee, M. Jensen and H. Leung Ontario Power Generation, Canada NEA/EC/IAEA Symposium

More information

Selected aspects of the Danish repository program

Selected aspects of the Danish repository program www.oeko.de Selected aspects of the Danish repository program Views from the outside potentially (hopefully) helpful to improve the Danish discussion Gerhard Schmidt Dialogue Meeting Copenhagen, March

More information

4 Germany. Germany s current spent fuel policy has been shaped by:

4 Germany. Germany s current spent fuel policy has been shaped by: 4 Germany Germany s nuclear power program started in 1955 after the country officially renounced the development and possession of nuclear weapons. Germany s first nuclear power plant, the prototype reactor

More information

Deep geological disposal of radioactive waste in Switzerland - overview and outlook

Deep geological disposal of radioactive waste in Switzerland - overview and outlook Deep geological disposal of radioactive waste in Switzerland - overview and outlook Michael Schnellmann (Section Head Geosciences) Annual Convention 2015 Baden 20 th June 2015 Nagra Mandate from the Swiss

More information

Onkalo: Recent policies on the disposal of nuclear waste in Finland

Onkalo: Recent policies on the disposal of nuclear waste in Finland Onkalo: Recent policies on the disposal of nuclear waste in Finland Burkhard Auffermann, Finland Futures Research Centre Climate Policy Strategies and Energy Transition, session on Nuclear Waste Governance

More information

Waste Transfer Pricing Methodology for the disposal of higher activity waste from new nuclear power stations

Waste Transfer Pricing Methodology for the disposal of higher activity waste from new nuclear power stations Waste Transfer Pricing Methodology for the disposal of higher activity waste from new nuclear power stations December 2011 Contents Contents... i Introduction... 1 Executive Summary... 1 Background...

More information

Proposal for a RECOMMENDATION OF THE EUROPEAN COMMISSION

Proposal for a RECOMMENDATION OF THE EUROPEAN COMMISSION EUROPEAN COMMISSION Brussels, XXX [ ] (2013) XXX draft Proposal for a RECOMMENDATION OF THE EUROPEAN COMMISSION Providing minimum principles for the exploration and production of hydrocarbons (especially

More information

Presentation to the Nuclear Waste Technical Review Board

Presentation to the Nuclear Waste Technical Review Board Presentation to the Nuclear Waste Technical Review Board OCRWM International Program Presented by Thomas Isaacs, Director Office of Strategic Planning and International Programs July 16,. 1991 Presentation

More information

THE CONSTRUCTION OF. Natural Gas 11% Coal 12% Industry 49% Nuclear 18%

THE CONSTRUCTION OF. Natural Gas 11% Coal 12% Industry 49% Nuclear 18% THE CONSTRUCTION OF OLKILUOTO 3 IN FINLAND ND A CASE STUDY Summary The recent publication of the energy review and CoRWM s findings have ensured nuclear is currently top of the news agenda. With new build

More information

The Closure of the Asse Research Mine

The Closure of the Asse Research Mine The Closure of the Asse Research Mine Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Second Review Meeting May 17th 2006 Dr. Helmut Bossy Federal

More information

RADIOACTIVE WASTE MANAGEMENT AND DECOMMISSIONING IN FINLAND

RADIOACTIVE WASTE MANAGEMENT AND DECOMMISSIONING IN FINLAND RADIOACTIVE WASTE MANAGEMENT AND DECOMMISSIONING IN FINLAND 1. NATIONAL FRAMEWORK FOR MANAGEMENT AND REGULATION OF RADIOACTIVE WASTE AND DECOMMISSIONING 1.1 National framework 1.1.1 Overview of national

More information

NEW NUCLEAR POWER PLANT UNIT IN FINLAND ACCEPTED BY THE FINNISH PARLIAMENT

NEW NUCLEAR POWER PLANT UNIT IN FINLAND ACCEPTED BY THE FINNISH PARLIAMENT International Conference Nuclear Energy for New Europe 2002 Kranjska Gora, Slovenia, September 9-12, 2002 www.drustvo-js.si/gora2002 NEW NUCLEAR POWER PLANT UNIT IN FINLAND ACCEPTED BY THE FINNISH PARLIAMENT

More information

New legislation in the nuclear field in Sweden

New legislation in the nuclear field in Sweden 1 New legislation in the nuclear field in Sweden A presentation at INLA Congress 2012 (Manchester) - 11 October 2012 by Ingvar Persson, Swedish National Council for Nuclear Waste and PP 1 Presentation

More information

APPENDIX CC NUCLEAR WASTE STORAGE

APPENDIX CC NUCLEAR WASTE STORAGE APPENDIX CC NUCLEAR WASTE STORAGE APPENDIX CC NUCLEAR WASTE STORAGE MICHIEL P.H. BRONGERS 1 SUMMARY Nuclear wastes are generated from spent nuclear fuel, dismantled weapons, and products such as radio

More information

Long-term storage and disposal of spent fuel

Long-term storage and disposal of spent fuel Spent-fuel cask at the nuclear research center in Karlsruhe, FRG. (Credit: KFZ) Long-term storage and disposal of spent fuel by Alexander Nechaev, Vladimir Onufriev, and K.T.Thomas As widely known, both

More information

DRAFT Milestones and Recommendations: Fuel Cycle OECD/IEA 2010

DRAFT Milestones and Recommendations: Fuel Cycle OECD/IEA 2010 DRAFT Milestones and Recommendations: Fuel Cycle 1 OECD/IEA 2010 Fuel cycle: - established technologies for all steps of the NFC, though R&D can help improve technologies, reduce costs, Front end: uranium

More information

Deep Geologic Repository Joint Review Panel

Deep Geologic Repository Joint Review Panel Deep Geologic Repository Joint Review Panel November 8, 2013 Ms. Laurie Swami Vice-President Nuclear Services Ontario Power Generation Subject: Package #12 from the Joint Review Panel Dear Ms. Swami: As

More information

The Crisis Management System in Germany

The Crisis Management System in Germany The Crisis Management System in Germany www.bmi.bund.de Last update: January 2010 Contents Preliminary remarks... 5 1. Background... 5 2. Legal framework... 8 3. Crisis management at the federal level..

More information

SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT

SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT 1.0 SOIL IMPROVEMENT 1.1 General Soil Investigation Information are provided in Part B1 annex as a guide to the Contractor for his consideration

More information

A. WASTE MANAGEMENT A.1. INTRODUCTION AND GENERAL ISSUES ON HAZARDOUS WASTES AND SOLID WASTES

A. WASTE MANAGEMENT A.1. INTRODUCTION AND GENERAL ISSUES ON HAZARDOUS WASTES AND SOLID WASTES A. WASTE MANAGEMENT A.1. INTRODUCTION AND GENERAL ISSUES ON HAZARDOUS WASTES AND SOLID WASTES The objective of the German government s policy on waste is to achieve a recyclingbased economy that conserves

More information

The Geothermal Information System for Germany

The Geothermal Information System for Germany The Geothermal Information System for Germany www.geotis.de Britta Ganz T. Agemar, J. A. Alten, J. Kuder, K. Kühne, S. Schumacher & R. Schulz CGER Meeting 21 May 2012, Oslo Project Funding Partners Support

More information

Please send any queries regarding this document to claudio.pescatore@oecd.org

Please send any queries regarding this document to claudio.pescatore@oecd.org Unclassified English - Or. English Unclassified NEA/RWM/PEER(2012)2 Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 12-Jun-2012 English

More information

The International Peer Review under Aegis of the OECD/NEA, of SKB s Post-closure Safety Case for a Spent Fuel Repository in Sweden 14641

The International Peer Review under Aegis of the OECD/NEA, of SKB s Post-closure Safety Case for a Spent Fuel Repository in Sweden 14641 The International Peer Review under Aegis of the OECD/NEA, of SKB s Post-closure Safety Case for a Spent Fuel Repository in Sweden 14641 Claudio Pescatore OECD Nuclear Energy Agency (NEA), Paris, France.

More information

RC-17. Alejandro V. Nader National Regulatory Authority Montevideo - Uruguay

RC-17. Alejandro V. Nader National Regulatory Authority Montevideo - Uruguay RC-17 Radiation Protection in Waste Management and Disposal Implementing the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Alejandro V. Nader

More information

AGREEMENT ON AN INTERNATIONAL ENERGY PROGRAM. (As amended 30 November 2007)

AGREEMENT ON AN INTERNATIONAL ENERGY PROGRAM. (As amended 30 November 2007) AGREEMENT ON AN INTERNATIONAL ENERGY PROGRAM (As amended 0 November 2007) AGREEMENT ON AN INTERNATIONAL ENERGY PROGRAM (As amended 0 November 2007) TABLE OF CONTENTS PREAMBLE Article 1... 6 Chapter I EMERGENCY

More information

Joint Declaration. On the Establishment of the Regional Co-operation Council (RCC)

Joint Declaration. On the Establishment of the Regional Co-operation Council (RCC) Joint Declaration On the Establishment of the Regional Co-operation Council (RCC) Representatives of the Participating States of the South East European Co-operation Process (SEECP), the United Nations

More information

COMMISSION OPINION. of 28.2.2012

COMMISSION OPINION. of 28.2.2012 EUROPEAN COMMISSION Brussels, 28.2.2012 C(2012) 1236 final COMMISSION OPINION of 28.2.2012 relating to the draft permit for the permanent storage of carbon dioxide in block section P18-4 of block section

More information

the French experience

the French experience VLLW disposal and management of large volume of slightly contaminated materials the French experience Nicolas Solente Very Low Level Waste disposal in France The CIRES facility in Morvilliers VLLW waste

More information

International Action Plan On The Decommissioning of Nuclear Facilities

International Action Plan On The Decommissioning of Nuclear Facilities International Action Plan On The Decommissioning of Nuclear Facilities A. Introduction Decommissioning is defined by the International Atomic Energy Agency (the Agency) as the administrative and technical

More information

Chapter 6 Impact of Fukushima Daiichi Accident on Japan s Nuclear Fuel Cycle and Spent Fuel Management

Chapter 6 Impact of Fukushima Daiichi Accident on Japan s Nuclear Fuel Cycle and Spent Fuel Management Chapter 6 Impact of Fukushima Daiichi Accident on Japan s Nuclear Fuel Cycle and Spent Fuel Management Joonhong Ahn Abstract This chapter briefly summarizes the current status of spent nuclear fuel and

More information

Outlook for RWE s nuclear operations. Prof. Dr. Gerd Jäger London, 16 January 2012

Outlook for RWE s nuclear operations. Prof. Dr. Gerd Jäger London, 16 January 2012 Outlook for RWE s nuclear operations Prof. Dr. Gerd Jäger London, 16 January 2012 Overview of German nuclear power plants Power plant Net capacity MW Commercial commissioning Shutdown German nuclear power

More information

Nuclear Energy of Ukraine - History

Nuclear Energy of Ukraine - History Nuclear Energy of Ukraine - History 1950-s Uranium Industry was started 1962 Ministry of Energy and Electrification of Ukraine was established(ukraine a Republic of Soviet Union) 1965 Unique Energy System

More information

TR-01-16. Feasibility Studies Östhammar, Nyköping, Oskarshamn, Tierp, Hultsfred and Älvkarleby. Summary Report. Technical Report

TR-01-16. Feasibility Studies Östhammar, Nyköping, Oskarshamn, Tierp, Hultsfred and Älvkarleby. Summary Report. Technical Report Technical Report TR-01-16 Feasibility Studies Östhammar, Nyköping, Oskarshamn, Tierp, Hultsfred and Älvkarleby Summary Report Svensk Kärnbränslehantering AB June 2001 Svensk Kärnbränslehantering AB Swedish

More information

Nuclear Waste Management in Finland

Nuclear Waste Management in Finland Nuclear Waste Management in Finland Facts about Finland Independent Republic since 1917 Member State of the European Union since 1995 Capital: Helsinki Neighbouring countries: Estonia, Norway, Russia and

More information

SAPIERR PAVES THE WAY TOWARDS EUROPEAN REGIONAL REPOSITORY

SAPIERR PAVES THE WAY TOWARDS EUROPEAN REGIONAL REPOSITORY SAPIERR PAVES THE WAY TOWARDS EUROPEAN REGIONAL REPOSITORY Vladan Štefula DECOM Slovakia Jána Bottu 2, 917 01 Trnava, Slovakia stefula@decom.sk Charles McCombie ARIUS Täfernstrasse 11, 5405 Baden, Switzerland

More information

Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Provisional Translation Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report of Japan for the Second Review Meeting October 2005 Government

More information

Three main techniques are used to exploit the heat available: geothermal aquifers, hot dry rocks and ground-source heat pumps.

Three main techniques are used to exploit the heat available: geothermal aquifers, hot dry rocks and ground-source heat pumps. GEOTHERMAL ENERGY TECHNOLOGY DESCRIPTION Geothermal energy is the natural heat that exists within the earth and that can be absorbed by fluids occurring within, or introduced into, the crustal rocks. Although,

More information

Preliminary information on UK and Scotland. UK Environmental Law Association: making the law work for a better environment

Preliminary information on UK and Scotland. UK Environmental Law Association: making the law work for a better environment UKELA s response to Milieu consultants questionnaire on the effectiveness of the Recommendation 2014/70/EU on exploration and production of hydrocarbons (such as shale gas) using high- volume hydraulic

More information

Gas storage industry primer

Gas storage industry primer Gas storage industry primer Gas storage industry primer General Underground natural gas storage facilities are a vital and complementary component of the North American natural gas transmission and distribution

More information

UQ Student Energy Network

UQ Student Energy Network UQ Student Energy Network Kieran Sullivan UQ SEN President Wednesday 29 th October GHD Auditorium, AEB Email: uqenergyclub@gmail.com Facebook: UQ Student Energy Network UQ STUDENT ENERGY NETWORK (UQ SEN)

More information

Deployment Plan 2011 2016

Deployment Plan 2011 2016 IGD-TP Implementing Geological Disposal of Radioactive Waste Technology Platform Deployment Plan 2011 2016 June 2012 IGD-TP Implementing Geological Disposal of Radioactive Waste Technology Platform Deployment

More information

Technical concepts for storing HLW - Monitoring, renewal and refurbishment of storage facilitites

Technical concepts for storing HLW - Monitoring, renewal and refurbishment of storage facilitites Technical concepts for storing HLW - Monitoring, renewal and refurbishment of storage facilitites Dipl.-Ing. Dennis Köhnke Dipl.-Ing. Manuel Reichardt Institute for Building Materials, Concrete Construction

More information

The Control of Major Accident Hazards Regulations (Northern Ireland) 2015

The Control of Major Accident Hazards Regulations (Northern Ireland) 2015 STATUTORY RULES OF NORTHERN IRELAND 2015 No. 325 HEALTH AND SAFETY The Control of Major Accident Hazards Regulations (Northern Ireland) 2015 Made - - - - 26th August 2015 Coming into operation - 28th September

More information

(1) Discuss the determination of the need for public visitation. Visitor center density within 100 miles.

(1) Discuss the determination of the need for public visitation. Visitor center density within 100 miles. Chapter 4 Specifications Designs 3. Visitors Centers 3. Visitors Centers. The Introduction (Chapter 1) for these design data collection guidelines contains additional information concerning: preparing

More information

July 2015 Options for the Consolidated Storage of Spent Nuclear Fuel

July 2015 Options for the Consolidated Storage of Spent Nuclear Fuel July 2015 Options for the Consolidated Storage of Spent Nuclear Fuel This issue brief is one in a series being developed by the Bipartisan Policy Center s Nuclear Waste Initiative, which is exploring ways

More information

CHARACTERISTICS OF RADIOACTIVE WASTE FORMS CONDITIONED FOR STORAGE AND DISPOSAL: Guidance for the Development of Waste Acceptance Criteria

CHARACTERISTICS OF RADIOACTIVE WASTE FORMS CONDITIONED FOR STORAGE AND DISPOSAL: Guidance for the Development of Waste Acceptance Criteria IAEA-TECDOC-285 CHARACTERISTICS OF RADIOACTIVE WASTE FORMS CONDITIONED FOR STORAGE AND DISPOSAL: Guidance for the Development of Waste Acceptance Criteria REPORT BY AN ADVISORY GROUP MEETING ON CONDITIONING

More information

Storage and Disposal of Spent Fuel and High Level Radioactive Waste

Storage and Disposal of Spent Fuel and High Level Radioactive Waste Storage and Disposal of Spent Fuel and High Level Radioactive Waste A. Introduction 1. Although different types of reactors have different types of fuel, the descriptions in this summary are, for simplicity,

More information

NURTURE OF HUMAN RESOURCES FOR GEOLOGICAL REPOSITORY PROGRAM. Mr. A. Fujiwara Radioactive Waste Management Funding and Research Center (RWMC), Japan

NURTURE OF HUMAN RESOURCES FOR GEOLOGICAL REPOSITORY PROGRAM. Mr. A. Fujiwara Radioactive Waste Management Funding and Research Center (RWMC), Japan NURTURE OF HUMAN RESOURCES FOR GEOLOGICAL REPOSITORY PROGRAM Mr. A. Fujiwara Radioactive Waste Management Funding and Research Center (RWMC), Japan Mr. T. Tsuboya Radioactive Waste Management Funding and

More information

Office for Nuclear Regulation

Office for Nuclear Regulation ONR GUIDE CONTAINMENT: CHEMICAL PLANTS Document Type: Nuclear Safety Technical Assessment Guide Unique Document ID and Revision No: NS-TAST-GD-021 Revision 2 Date Issued: March 2013 Review Date: March

More information

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL. STRUCTURES 1. General. Critical structures may impact the integrity of a flood control project in several manners such as the excavation for construction of the structure, the type of foundation, backfill

More information

PRELIMINARY REPORT ON THE NORTHSTAR #1 CLASS II INJECTION WELL AND THE SEISMIC EVENTS IN THE YOUNGSTOWN, OHIO AREA

PRELIMINARY REPORT ON THE NORTHSTAR #1 CLASS II INJECTION WELL AND THE SEISMIC EVENTS IN THE YOUNGSTOWN, OHIO AREA PRELIMINARY REPORT ON THE NORTHSTAR #1 CLASS II INJECTION WELL AND THE SEISMIC EVENTS IN THE YOUNGSTOWN, OHIO AREA Tom Tomastik, Geologist, ODNR, Division of Oil and Gas Resources Management PURPOSE AND

More information

Developments/Potential of Shale Gas

Developments/Potential of Shale Gas Towards Future Technological l Developments/Potential Kurt M. Reinicke Institut für Erdöl- und Erdgastechnik (ITE), TU Clausthal organised by the European Parliament Brussels, 05. October 2011 1 CONTENT

More information

ENVIRONMENTAL IMPACT ASSESSMENT (EIA) AND THE DECISION ON ENVIRONMENTAL CONDITIONS IN RELATION TO THE INVESTMENT CONSTRUCTION PROCESS

ENVIRONMENTAL IMPACT ASSESSMENT (EIA) AND THE DECISION ON ENVIRONMENTAL CONDITIONS IN RELATION TO THE INVESTMENT CONSTRUCTION PROCESS ENVIRONMENTAL IMPACT ASSESSMENT (EIA) AND THE DECISION ON ENVIRONMENTAL CONDITIONS IN RELATION TO THE INVESTMENT CONSTRUCTION PROCESS FKA Furtek Komosa Aleksandrowicz sp.k. for Polska Agencja Informacji

More information

Nuclear Waste. - Barriers, Biosphere and Society. KASAM s Review of the Swedish Nuclear Fuel and Waste Management Co s (SKB s) RD&D Programme 2004

Nuclear Waste. - Barriers, Biosphere and Society. KASAM s Review of the Swedish Nuclear Fuel and Waste Management Co s (SKB s) RD&D Programme 2004 Nuclear Waste - Barriers, Biosphere and Society SOU 2005:47 Nuclear Waste - Barriers, Biosphere and Society KASAM s Review of the Swedish Nuclear Fuel and Waste Management Co s (SKB s) RD&D Programme 2004

More information

Site investigation at Forsmark and public acceptance

Site investigation at Forsmark and public acceptance Site investigation at Forsmark and public acceptance Presentation prepared for the Blue Ribbon Commission on America s Nuclear Future Kaj Ahlbom SKB International Former site manager for SKB site investigation

More information

WILLOCHRA BASIN GROUNDWATER STATUS REPORT 2009-10

WILLOCHRA BASIN GROUNDWATER STATUS REPORT 2009-10 WILLOCHRA BASIN GROUNDWATER STATUS REPORT 2009-10 SUMMARY 2009-10 The Willochra Basin is situated in the southern Flinders Ranges in the Mid-North of South Australia, approximately 50 km east of Port Augusta

More information

Licensing Process for New Nuclear Power Plants in Canada. INFO-0756 (Revision 1)

Licensing Process for New Nuclear Power Plants in Canada. INFO-0756 (Revision 1) Licensing Process for New Nuclear Power Plants in Canada INFO-0756 (Revision 1) May 2008 Licensing Process for New Nuclear Power Plants in Canada Minister of Public Works and Government Services Canada

More information

EMERGENCY RESPONSE FOR THE AREA SURROUNDING THE CATTENOM NUCLEAR POWER PLANT

EMERGENCY RESPONSE FOR THE AREA SURROUNDING THE CATTENOM NUCLEAR POWER PLANT EMERGENCY RESPONSE FOR THE AREA SURROUNDING THE CATTENOM NUCLEAR POWER PLANT Information for the population in Rhineland-Palatinate Issued by: Supervision and Service Directorate (ADD) Willy- Brandt- Platz

More information

Comparison of Recent Trends in Sustainable Energy Development in Japan, U.K., Germany and France

Comparison of Recent Trends in Sustainable Energy Development in Japan, U.K., Germany and France Comparison of Recent Trends in Sustainable Energy Development in Japan, U.K., Germany and France Japan - U.S. Workshop on Sustainable Energy Future June 26, 2012 Naoya Kaneko, Fellow Center for Research

More information

RADIOACTIVE WASTE MANAGEMENT PROGRAMMES IN OECD/NEA MEMBER COUNTRIES MEXICO [2005] NATIONAL NUCLEAR ENERGY CONTEXT

RADIOACTIVE WASTE MANAGEMENT PROGRAMMES IN OECD/NEA MEMBER COUNTRIES MEXICO [2005] NATIONAL NUCLEAR ENERGY CONTEXT RADIOACTIVE WASTE MANAGEMENT PROGRAMMES IN OECD/NEA MEMBER COUNTRIES MEXICO [2005] NATIONAL NUCLEAR ENERGY CONTEXT Commercial utilisation of nuclear power in Mexico started in 1990 and by 2002 there were

More information

Appendix 25. Content of a Competent Person s Report for Petroleum Reserves and Resources

Appendix 25. Content of a Competent Person s Report for Petroleum Reserves and Resources Appendix 25 Content of a Competent Person s Report for Petroleum Reserves and Resources (See rule 18.20) The Competent Person s Report for Petroleum Reserves and Resources must include the following: 1.

More information

BRO: the Dutch Key Register of the Subsurface

BRO: the Dutch Key Register of the Subsurface Fact sheet BRO: the Dutch Key Register of the Subsurface Data types explained January 2012 This BRO fact sheet, one of a series, is a publication of the Dutch Ministry of Infrastructure and the Environment.

More information

The integrity evaluation of the reactor building at unit4 in the Fukushima Daiichi nuclear power station

The integrity evaluation of the reactor building at unit4 in the Fukushima Daiichi nuclear power station The integrity evaluation of the reactor building at unit4 in the Fukushima Daiichi nuclear power station May 2012 Government and TEPCO s Mid-to Long Term Countermeasure Meeting Management Council Outline

More information

Real Options for the Future Energy Mix

Real Options for the Future Energy Mix August 08 Real Options for the Future Energy Mix A fair valuation of future investments In the coming years, both the demand for climate-friendly energy generation and the replacement of aging conventional

More information

Guidelines for the Estimation and Reporting of Australian Black Coal Resources and Reserves

Guidelines for the Estimation and Reporting of Australian Black Coal Resources and Reserves Guidelines for the Estimation and Reporting of Australian Black Coal Resources and Reserves 2001 Edition (as referred to in the Joint Ore Reserves Committee Code ( The JORC Code ) 1999 edition) Prepared

More information

Objectives. Describing Waterflooding. Infill Drilling. Reservoir Life Cycle

Objectives. Describing Waterflooding. Infill Drilling. Reservoir Life Cycle Objectives Describing Waterflooding Definition Objectives Candidates Patterns Oil, water, and gas saturations Fractional flow Performance measures Practices and problems Reservoir monitoring 1 2 Reservoir

More information

Nuclear Power, Nuclear Waste and Geological Disposal

Nuclear Power, Nuclear Waste and Geological Disposal Introduction Nuclear Power, Nuclear Waste and Geological Disposal Nuclear Power, Nuclear Waste and Geological Disposal Charles McCombie Arius Association 5405 Baden, Switzerland For many years, nuclear

More information

Security and Safeguards Considerations in Radioactive Waste Management. Canadian Nuclear Safety Commission

Security and Safeguards Considerations in Radioactive Waste Management. Canadian Nuclear Safety Commission Security and Safeguards Considerations in Radioactive Waste Management Raoul Awad Director General, Directorate of Security and Safeguards Canadian Nuclear Safety Commission Radioactive Waste Management

More information

Energy Act 2013 CHAPTER 32. Explanatory Notes have been produced to assist in the understanding of this Act and are available separately

Energy Act 2013 CHAPTER 32. Explanatory Notes have been produced to assist in the understanding of this Act and are available separately Energy Act 2013 CHAPTER 32 Explanatory Notes have been produced to assist in the understanding of this Act and are available separately Energy Act 2013 CHAPTER 32 CONTENTS PART 1 DECARBONISATION 1 Decarbonisation

More information

RADIOACTIVE WASTE MANAGEMENT PROGRAMMES IN OECD/NEA MEMBER COUNTRIES AUSTRALIA NATIONAL NUCLEAR ENERGY CONTEXT

RADIOACTIVE WASTE MANAGEMENT PROGRAMMES IN OECD/NEA MEMBER COUNTRIES AUSTRALIA NATIONAL NUCLEAR ENERGY CONTEXT RADIOACTIVE WASTE MANAGEMENT PROGRAMMES IN OECD/NEA MEMBER COUNTRIES AUSTRALIA NATIONAL NUCLEAR ENERGY CONTEXT Australia is one of the only developed countries that does not use electricity, either indigenous

More information

On-Site Inspection BY ZHENFU LI

On-Site Inspection BY ZHENFU LI On-Site Inspection BY ZHENFU LI O N - S I T E I N S P E C T I O N On-Site Inspection BY ZHENFU LI FACT BOX An on-site inspection (OSI) can involve a number of geophysical techniques. Noble gases such as

More information

Overview of Submarine Cable Route Planning & Cable Route Survey Activities. Graham Evans Director EGS Survey Group www.egssurvey.

Overview of Submarine Cable Route Planning & Cable Route Survey Activities. Graham Evans Director EGS Survey Group www.egssurvey. Overview of Submarine Cable Route Planning & Cable Route Survey Activities Graham Evans Director EGS Survey Group www.egssurvey.com Presentation Summary Submarine cable systems concept to reality Objectives

More information

Code of Conduct on the Safety and Security of Radioactive Sources

Code of Conduct on the Safety and Security of Radioactive Sources FOREWORD In recent years there has been a growing awareness of the potential for accidents involving radiation sources, some such accidents having had serious, even fatal, consequences. More recently still,

More information

Proceedings 2005 Rapid Excavation & Tunneling Conference, Seattle

Proceedings 2005 Rapid Excavation & Tunneling Conference, Seattle Proceedings 2005 Rapid Excavation & Tunneling Conference, Seattle EPB-TBM Face Support Control in the Metro do Porto Project, Portugal S. Babendererde, Babendererde Engineers LLC, Kent, WA; E. Hoek, Vancouver,

More information

AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES

AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES Question1 Read the following article from the Fremont Gazette and answer the questions that follow. (a) Identify and describe TWO water-related environmental

More information

COMPLAINT PARTIES. 2. COGA promotes the expansion of oil and gas supplies, markets, and transportation infrastructure.

COMPLAINT PARTIES. 2. COGA promotes the expansion of oil and gas supplies, markets, and transportation infrastructure. DISTRICT COURT, BOULDER COUNTY, COLORADO 1777 Sixth Street Boulder, CO 80302 Plaintiff: COLORADO OIL & GAS ASSOCIATION v. Defendant: COURT USE ONLY Case No. Division/Courtroom: CITY OF LAFAYETTE, COLORADO

More information

Geoscientists follow paths of exploration and discovery in quest of solutions to some of society's most challenging problems.

Geoscientists follow paths of exploration and discovery in quest of solutions to some of society's most challenging problems. Page 1 of 5 Geoscientists follow paths of exploration and discovery in quest of solutions to some of society's most challenging problems. Predicting the behavior of Earth systems and the universe. Finding

More information

Environmental Guidelines for Preparation of an Environmental Management Plan

Environmental Guidelines for Preparation of an Environmental Management Plan 2013 Environmental Guidelines for Preparation of an Environmental Management Plan Environmental Management Division Environmental Protection Agency 3/13/2013 ENVIRONMENTAL GUIDELINES FOR PREPARATION OF

More information

QBE Professional Indemnity Proposal Form Construction Consultants

QBE Professional Indemnity Proposal Form Construction Consultants Notice to the Proposed Insured QBE Professional Indemnity Proposal Form Your duty of disclosure If a proposer does not fully and faithfully give the facts as he knows them or ought to know them, he may

More information

INFORMATION SHEET ORDER NO. R5-2011-XXXX TRIANGLE ROCK PRODUCTS, INC. FLORIN ROAD AGGREGATE PLANT SACRAMENTO COUNTY

INFORMATION SHEET ORDER NO. R5-2011-XXXX TRIANGLE ROCK PRODUCTS, INC. FLORIN ROAD AGGREGATE PLANT SACRAMENTO COUNTY ORDER NO. R5-2011-XXXX INFORMATION SHEET Background Triangle Rock, Inc. (Discharger) submitted a Report of Waste Discharge (RWD) on 23 August 2010. The Discharger is expanding the mining operations at

More information

Carbon capture and storage: UK s fourth energy pillar, or broken bridge? SCCS Briefing 2009-03

Carbon capture and storage: UK s fourth energy pillar, or broken bridge? SCCS Briefing 2009-03 Carbon capture and storage: UK s fourth energy pillar, or broken bridge? SCCS Briefing 2009-03 Stuart Haszeldine s.haszeldine@ed.ac.uk Professor of Geology, School of GeoSciences, University of Edinburgh

More information

Methodological tool Tool for the demonstration and assessment of additionality

Methodological tool Tool for the demonstration and assessment of additionality CLEAN DEVELOPMENT MECHANISM TOOL01 Methodological tool Tool for the demonstration and assessment of additionality TABLE OF CONTENTS Page 1. INTRODUCTION... 3 2. SCOPE, APPLICABILITY, AND ENTRY INTO FORCE...

More information

Georgia Performance Standards Framework for Shaky Ground 6 th Grade

Georgia Performance Standards Framework for Shaky Ground 6 th Grade The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Tunnelling & Underground. Specialists

Tunnelling & Underground. Specialists Tunnelling & Underground Specialists Mined Tunnels Excavation at Ayer Rajah Avenue, Singapore Introduction Amberg & TTI Engineering Pte Ltd (AETTI) was established in Singapore in 2002 by Amberg Engineering

More information

Status, responsibilities and missions of ANDRA (France)

Status, responsibilities and missions of ANDRA (France) Status, responsibilities and missions of ANDRA (France) Marie-Claude DUPUIS ANDRA - CEO Contents 1. Legal framework, organization and general information 2. ANDRA today: An Industrial Operator An Innovating

More information

ANNEX D1 BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN THE DETAILED RISK ASSESSMENT FOR SAFETY

ANNEX D1 BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN THE DETAILED RISK ASSESSMENT FOR SAFETY ANNEX D1 BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN THE DETAILED RISK ASSESSMENT FOR SAFETY ANNEX D1: BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN DRA FOR SAFETY D1-1 ANNEX D1 BASIC CONSIDERATIONS

More information

Master Degree in Nuclear Engineering: Academic year 2007-2008

Master Degree in Nuclear Engineering: Academic year 2007-2008 Master Degree in Nuclear Engineering: Academic year 2007-2008 Number of students 2007-2008: University Politehnica Bucharest Total: 17 Language: Romanian For further information: www.cne.pub.ro Dates Title

More information

Nonrenewable Natural Gas. Natural Gas Basics. How Was Natural Gas Formed?

Nonrenewable Natural Gas. Natural Gas Basics. How Was Natural Gas Formed? Did You Know? Because natural gas is colorless, odorless, and tasteless, mercaptan (a chemical that smells like sulfur) is added before distribution, to give it a distinct unpleasant odor (it smells like

More information

COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS

COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS EUROPEAN COMMISSION Brussels, 15.7.2011 COM(2011) 441 final COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE

More information

ENGINE- Geothermal lighthouse projects in Europe

ENGINE- Geothermal lighthouse projects in Europe ENGINE- Geothermal lighthouse projects in Europe Information gathered during the ENGINE co-ordination action (ENhanced Geothermal Innovative Network for Europe) http://engine.brgm.fr/ Last update April

More information

Ground-borne Vibrations and Ground Settlements Arising from Pile Driving and Similar Operations

Ground-borne Vibrations and Ground Settlements Arising from Pile Driving and Similar Operations Buildings Department Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers APP-137 Ground-borne Vibrations and Ground Settlements Arising from Pile

More information

Deep Geothermal energy and groundwater in

Deep Geothermal energy and groundwater in Deep Geothermal energy and groundwater in the UK Jon Busby Deep Geothermal energy and groundwater in the UK Outline 1. UK geothermal 2. Deep saline aquifers 3. Engineered geothermal systems 4. Fractured

More information

Nuclear Safety Regulation Reform in Japan

Nuclear Safety Regulation Reform in Japan Nuclear Safety Regulation Reform in Japan 18th January 2012 Shuichi KANEKO Cabinet Secretariat Government of JAPAN 1 Contents Background of the Reform Process of the Reform Basic System for Nuclear Safety

More information

Geothermal. . To reduce the CO 2 emissions a lot of effort is put in the development of large scale application of sustainable energy.

Geothermal. . To reduce the CO 2 emissions a lot of effort is put in the development of large scale application of sustainable energy. Geothermal Energy With increasing fossil fuel prices, geothermal energy is an attractive alternative energy source for district heating and industrial heating. In recent years the use of geothermal energy

More information

Lists of estimated quantities to be performed and prices Estimated quantities to be performed. Prices

Lists of estimated quantities to be performed and prices Estimated quantities to be performed. Prices Schedule No. 2 Payment Schedule Task number according to Schedule No. 1 Scope of task Lists of estimated quantities to be performed and prices Estimated quantities to be performed Prices Date of execution

More information

REALIZATION OF THE GERMAN CONCEPT FOR INTERIM STORAGE OF SPENT NUCLEAR FUEL CURRENT SITUATION AND PROSPECTS

REALIZATION OF THE GERMAN CONCEPT FOR INTERIM STORAGE OF SPENT NUCLEAR FUEL CURRENT SITUATION AND PROSPECTS REALIZATION OF THE GERMAN CONCEPT FOR INTERIM STORAGE OF SPENT NUCLEAR FUEL CURRENT SITUATION AND PROSPECTS Bruno Thomauske Federal Office for Radiation Protection, Germany ABSTRACT The German government

More information

Position paper on the implications of deep sea disposal of radioctive waste

Position paper on the implications of deep sea disposal of radioctive waste Agenda Item 4 English only OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic Meeting of the Radioactive Substances Committee (RSC) Stockholm (Sweden): 20-23 April

More information

NEGOTIATING FRAMEWORK FOR TURKEY. Principles governing the negotiations

NEGOTIATING FRAMEWORK FOR TURKEY. Principles governing the negotiations NEGOTIATING FRAMEWORK FOR TURKEY Principles governing the negotiations 1. The negotiations will be based on Turkey's own merits and the pace will depend on Turkey's progress in meeting the requirements

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Section 1421 of SDWA tasks EPA with protecting USDWs for all current and future drinking water supplies across the country (see section 1.3 for the complete definition of a USDW). EPA s UIC Program

More information