Mechanisms to increase propulsive force for individuals poststroke

Size: px
Start display at page:

Download "Mechanisms to increase propulsive force for individuals poststroke"

Transcription

1 Hsiao et al. Journal of NeuroEngineering and Rehabilitation (2015) 12:40 DOI /s JOURNAL OF NEUROENGINEERING JNERAND REHABILITATION RESEARCH Open Access Mechanisms to increase propulsive force for individuals poststroke HaoYuan Hsiao 1*, Brian A Knarr 2, Jill S Higginson 3 and Stuart A Binder-Macleod 4 Abstract Background: Propulsive force generation is critical to walking speed. Trialing limb angle and ankle moment are major contributors to increases in propulsive force during gait. For able-bodied individuals, trailing limb angle contributes twice as much as ankle moment to increases in propulsive force during speed modulation. The aim of this study was to quantify the relative contribution of ankle moment and trailing limb angle to increases in propulsive force for individuals poststroke. Methods: A biomechanical-based model previously developed for able-bodied individuals was evaluated and enhanced for individuals poststroke. Gait analysis was performed as subjects (N = 24) with chronic poststroke hemiparesis walked at their self-selected and fast walking speeds on a treadmill. Results: Both trailing limb angle and ankle moment increased during speed modulation. In the paretic limb, the contribution from trailing limb angle versus ankle moment to increases in propulsive force is 74% and 17%. In the non-paretic limb, the contribution from trailing limb angle versus ankle moment to increases in propulsive force is 67% and 22%. Conclusions: Individuals poststroke increase propulsive force mainly by changing trailing limb angle in both the paretic and non-paretic limbs. This strategy may contribute to the inefficiency in poststroke walking patterns. Future work is needed to examine whether these characteristics can be modified via intervention. Keywords: Stroke, Gait, Propulsion, Speed, Ankle moment, Trailing limb angle Background Current gait rehabilitation for individuals poststroke focuses on increasing gait velocity because it is a powerful indicator of function and prognosis after stroke [1]. Walking speed has been shown to be associated with community walking ability, and an increase in gait velocity that produces a transition to a higher level of ambulation results in better community participation and quality of life [1]. Because walking speed is also a reliable and responsive measurement, many recent clinical trials that target improved walking use walking speed as a primary outcome measure [2]. Thus, aiming to maximize walking speed is commonly a therapeutic goal. Previous studies have shown that walking speed is related to propulsive force, defined as the anterior component of the ground reaction force (AGRF) during gait * Correspondence: 1 Biomechanics and Movement Science Program, University of Delaware, 540 S. College Avenue, Suite 201F, Newark, DE 19716, USA Full list of author information is available at the end of the article [3]. More importantly, a recent study showed that improvements in paretic propulsive force are correlated to changes in self-selected walking speed and changes in fastest comfortable walking speed following a 12-week locomotor intervention [4]. Thus, paretic propulsive force can be modified through intervention and is related to the improvement in walking speed. Understanding the mechanism to increase propulsive force would allow for the design of rehabilitation strategies for improving paretic propulsion and ultimately lead to increase walking speed. There are two critical factors for propulsive force generation: ankle moment and the position of the center of pressure (COP) relative to the body center of mass (COM) [5]. Peterson et al. showed that ankle moment is correlated to propulsive force for able-bodied individuals and in the non-paretic leg for individuals poststroke [5]. This finding is consistent with previous studies that showed ankle plantarflexor muscle activity is associated with the propulsive force in the paretic limb [6] and that ankle moment is 2015 Hsiao et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

2 Hsiao et al. Journal of NeuroEngineering and Rehabilitation (2015) 12:40 Page 2 of 8 related to walking speed [7]. Another critical predictor for propulsive force is the position of the COP relative to the body COM. This relative position affects the orientation of the ground reaction force (GRF) vector and, therefore, determines the proportion of the GRF being distributed anteriorly. Tyrell et al measured trailing limb angle (TLA), defined as the angle between the lab s vertical axis and the vector from the 5 th metatarsal joint to the great trochanter, and found that stroke survivors increased peak TLA and propulsion as walking speed progressively increased [8]. Similarly, another study measured the angle between the vertical and the vector from the COM of the foot to the COM of the pelvis. They found that this angle is an important predictor and is positively related to propulsive force during able-bodied and hemiparetic walking [5]. Using a simplistic quasi-static model, our lab has determined the relative contribution of ankle moment and TLA to propulsive force in able-bodied individuals [9]. We showed that the TLA contributes almost twice as much as ankle moment to increases in propulsive force when able-bodied individuals increase their walking speeds [9]. However, individuals poststroke may adopt different strategies to increase their propulsive force compared with able-bodied individuals. The purpose of this study was to test the accuracy of our previous model and to quantify the relative contribution of ankle moment and TLA to increases in propulsive force for individuals poststroke. Methods A total of 24 individuals poststroke participated in this study (10 female; 15 left hemiparetic; average age 60 years; body weight 89 kg; stroke onset 5 years). Exclusion criteria included congestive heart failure, peripheral artery disease with claudication, diabetes not under control via medication or diet, shortness of breath without exertion, unstable angina, resting heart rate outside the range of 40 to 100 beats per minute, resting blood pressure outside the range of 90/60 to 170/90 mm Hg, inability to communicate with the investigators, pain in lower limbs or spine, total knee replacement, cerebellar involvement, and neglect (star cancellation test). Subjects that walked with a negative TLA at the instant of peak AGRF were also excluded from this study. This study was approved by the Institutional Review Board of the University of Delaware and each subject provided written informed consent for participation in this study. Experimental procedure Each subject walked at their self-selected (SS) and fast (FS) walking speeds wearing a safety harness that provided no body weight support. For safety, subjects were allowed to use a handrail located at the side of the treadmill. Verbal instructions on using the handrail as minimal as possible were provided. SS walking speed was defined as the subject s comfortable walking speed and FS walking speed was the fastest speed that subjects could maintain for 4 minutes of continuous walking. Gait analysis was performed on an instrumented split-belt treadmill (Bertec Corp., Columbus, OH, USA) recording three dimensional forces with two embedded 6 degree-of-freedom force plates capturing at 1080 Hz. Kinematic data were recorded with a 62 marker set and eight camera passive motion capture system that detects motion of the reflective markers at 60 Hz (Motion Analysis Corp., Santa Rosa, CA, USA). Data processing was completed using Cortex and Visual 3D (C-Motion Inc., Bethesda, MD, USA). Kinematic data were filtered using a bi-directional Butterworth lowpass filter at 6 Hz. Peak AGRF (F a ) was defined as the maximum AGRF during stance between the onset of the propulsion (anterior) phase of anterior-posterior ground reaction forces and toe-off. Ankle moment (M a ) was defined as the ankle plantarflexion moment during stance. TLA was defined as the angle between the laboratory s vertical axis and the vector joining the greater trochanter with the fifth metatarsal head (see [9] for more detailed description). Handrail forces in the vertical and horizontal directions were analyzed at the instant of peak paretic AGRF during each subject s fast walking speeds. The AGRF, ankle moment, and TLA at the instant of peak AGRF were used in our model. All data were averaged across strides with 30 seconds trial duration for a given speed. Model development and validation A model previously developed for able-bodied individuals [9] (see Eq.1, wheref a is the AGRF, M a is the ankle moment, and TLA is the trailing limb angle) was first applied to the data obtained from individuals poststroke in this study. This model was evaluated using data from the paretic and non-paretic leg at SS and FS walking speeds. The model explained between 54-70% of the variance in propulsiveforce;however,thetrendlineslopesforthemeasured versus the predicted propulsive forces were approximately 0.77, indicating that the model over-estimated propulsive force for individuals poststroke. F a ¼ 7:013M a sinðtlaþ ð1þ Thus, an enhanced model was developed for better accuracy. For the enhanced model, rather than using the constant, 7.013, a variable, d, was included to account for the lever arm length of the ground reaction force (Figure 1). In addition, TLA was replaced by TLAcop, the angle between the laboratory s vertical axis and the vector joining the greater trochanter with the COP, to provide a better estimation of the ground reaction force angle (Eq.2).

3 Hsiao et al. Journal of NeuroEngineering and Rehabilitation (2015) 12:40 Page 3 of M a1 Δ sintla cop þ ΔM a sintla cop1 ΔF a ¼ 6 d 1 þ Δd þδm a Δ sintla cop Δd M a1 sintla cop1 d 1 ð5þ Figure 1 Diagram of variables of interest. F a was the anterior component of the ground reaction force. M a was the ankle plantarflexion moment. COP was the center of pressure. TLA cop was measured as the angle between the laboratory s vertical axis and the vector joining the greater trochanter with the COP. d was the perpendicular distance from the ankle joint to the vector joining the greater trochanter with the COP. F a ¼ 1 d M asin TLA cop Using Eq.2, the increase in propulsive force was calculated: ΔF a ¼ F a2 F a1 ¼ 1 d 2 M a2 sintla cop2 1 d 1 M a1 sintla cop1 ; ð2þ ð3þ where Δ denotes the change from the SS to the FS session, subscript 1 denotes the value at the SS session and subscript 2 denotes the value at the FS session. Letting, sin TLA 2 =sintla 1 + Δ sin TLA, M a2 = M a1 + ΔM a, and d 2 = d 1 + Δd, weget 1 ΔF a ¼ d 1 þ Δd M ð a1 þ ΔM a Þ sintla cop1 þ ΔsinTLA cop 1 d 1 M a1 sintla cop1 Rearranging Eq.4, we get ð4þ Based on Eq.5, four components contribute to the 1 change in propulsive force: d 1 þδd M a1δ sintla cop, 1 d 1 þδd ΔM 1 a1 sintla cop1, d 1 þδd ΔM aδ sintla cop, and 1 d 1 þδd Δd d 1 M a1 sintla cop1. The first component represents the contribution of the changes in TLA to propulsive force. The second component represents the contribution of the changes in ankle moment to propulsive force. The third component represents the contribution from the interaction between changes in TLA and ankle moment. The last component represents the relative contribution from changes in lever arm length to propulsive force. Each of the above terms was calculated and negative values were set to 0 (no contribution). The relative contributions were then calculated by dividing each term by the sum of all 1 terms. Note that d 1 þδd would have no impact on the relative contributions because it exists in all terms and would be cancelled out during the calculation. Model validation and statistical analysis Pearson s correlation coefficients (r) were calculated by comparing the predicted to the measured peak AGRF to evaluate the ability of the model to predict propulsive force for all subjects at two different speeds. The slopes of the trendlines were calculated by setting the intercepts to 0. In addition, a paired t-test was used to detect whether differences exist between the predicted and the experimental changes in peak AGRF. A 1-tailed paired t-test was used to detect increases in biomechanical measurements from SS to FS. The significance level was set at an alpha of Results The model predicted peak AGRF was the product of ankle moment and sin (TLA cop ) divided by the lever arm length (d) (Eq. 2). We validated the model in both the paretic and non-paretic leg at SS and FS walking speeds (Figure 2). The enhanced model explained more than 75% of the variance in propulsive force with the trendlines slopes close to 1. Model predicted changes in propulsive force were calculated from Eq.3. This model also explained more than 75% of the variance in changes in propulsive force with speed (Figure 3). No significant differences were found between the predicted (mean: paretic = N, non-paretic = N) versus the measured (mean: paretic = 20.1 N, non-paretic = N) changes in propulsive force (t = 1.34, p = 0.19 for the paretic and t = -0.53, p = 0.6 for the non-paretic).

4 Hsiao et al. Journal of NeuroEngineering and Rehabilitation (2015) 12:40 Page 4 of 8 The participants demonstrated a range of walking speeds (Table 1) and biomechanical measurements (Figure 4). Walking speed increased 26%. Significant increases were observed in all biomechanical variables (p < 0.01 for AGRF, TLA cop, d, and p < 0.05 for ankle moment) in both limbs. The relative contributions of the four components of Eq.5 to increases in propulsive force were quantified for each limb (Table 1). For the paretic limb propulsion, on average, the contributions of changes in TLA, ankle moment, lever arm length, and the interaction between TLA and ankle moment to increases in propulsive force were 74%, 17%, 2%, and 7%, respectively (Table 1). Thus, the ratio of the contribution of TLA versus ankle moment to increases in paretic propulsion was approximately 4:1. One subject (#24) did not increase paretic propulsive force during speed modulation. Eight subjects showed that the increases in TLA contributed more than 95% of increases in paretic propulsive forces and 11 subjects showed less than 2% contribution from the ankle moment to the increased propulsive force. Three subjects showed greater contribution from ankle moment (93%, 77%, and 66%) to propulsive force than from TLA. For the non-paretic limb, on average, the contribution of changes in TLA, ankle moment, lever arm length, and the interaction between TLA and ankle moment to increases in propulsive force were 67%, 22%, 6%, and 5%, respectively (Table 1). Thus, the ratio of the contribution of TLA versus ankle moment to increases in non-paretic propulsion was approximately 3:1. One subject (#13) did not increase non-paretic propulsive force during speed modulation. Five subjects showed that increases in TLA contributed more than 95% of increases in non-paretic propulsive forces and 7 subjects showed less than 2% contribution from the ankle moment to the increased propulsive force. One subject (#6) had a minor increase in propulsive force with decreased lever arm length and no increase in TLA or ankle moment. Three subjects showed greater contributions from increases in ankle moment (58%, 65%, and 63%) than from increases in TLA. Discussion In this study we found that the biomechanical-based model developed from able-bodied individuals (using ankle moment and TLA to predict propulsive force) over-estimated the propulsive force in stroke survivors. Thus, an enhanced model was developed and validated to describe the relationships between ankle moment, TLA (measured from the center of pressure), lever arm length between the GRF and the ankle joint, and propulsive force. The main finding was that individuals poststroke increase their propulsive force mostly by increasing TLA with relatively little contribution from ankle moment. In contrast to our previous model developed from able-bodied individuals, the lever arm length of the GRF was included as a variable in the present model. Because the lever arm length can vary with the position of the ankle joint, the position of the COP, and the angle of the GRF vector (Figure 1), this length is likely to be different Figure 2 Relationships between the measured and predicted peak anterior ground reaction force (AGRF). (A) Paretic propulsion during self-selected walking speed. (B) Non-paretic propulsion during self-selected walking speed. (C) Paretic propulsion during fast walking speed. (D) Non-paretic propulsion during fast walking speed.

5 Hsiao et al. Journal of NeuroEngineering and Rehabilitation (2015) 12:40 Page 5 of 8 Figure 3 Relationships between the measured and predicted changes in peak anterior ground reaction force (AGRF). (A) Changes in paretic propulsion. (B) Changes in non-paretic propulsion. across individuals and to change with walking speeds. The present study showed that this length increased during speed modulation (Figure 4). In addition, rather than measure TLA from the great trochanter to the 5 th metatarsal, the present study measured to the foot s COP. Measuring TLA to the COP allowed our model to capture the variance in COP position at late stance and therefore enhanced our model. For a population with a wide range in joint angles and COP positions, such as stroke survivors, variations across walking speeds and among individuals in these parameters can be large and, therefore, needed to be considered. Participants in this study showed a range of self-selected walking speeds from 0.27 to 1.51(m/s) and fast walking speeds from 0.4 to 1.68(m/s). Thus, the present model seemed to work for a wide range of walking speeds. In agreement with previous studies, the present results showed that individuals poststroke increased TLA and peak AGRF at their fast walking speeds. Tyrell and colleagues observed increases in peak hip extension angle and peak TLA in the paretic limb when individuals poststroke progressively increased their walking speeds [8]. Similarly, increases in paretic peak TLA and AGRF during fast speed were also reported in a previous study of the effects of fast treadmill walking on poststroke gait [10]. Changes in TLA observed in this study were greater than the within-session minimal detectable change (1 ) for this variable [11]. Also consistent with previous studies, increases in ankle plantarflexion moment were observed at the fast speed in the present study. Nadeau and colleagues found an increase in muscle utilization ratio, the ratio of the ankle plantarflexion moment used during gait to the maximal moment estimated from dynamometric measurements [12], at the fast walking speed in chronic stroke survivors [13]. However, in a study of the relationship between joint power and walking speeds in individuals poststroke, increases in paretic ankle plantarflexion power at fast walking speed were only significant for the higher functioning group [14]. Interestingly, although our results showed an average increase in ankle moment, 10 of 24 subjects did not increase their paretic ankle moment and 7 subjects did not increase their non-paretic ankle moment at the fast speed compared with their self-selected speed. In the paretic limb, the majority of the change in propulsive force was contributed from the change in TLA (74%); relatively little contribution from ankle moment (17%) was observed in the paretic leg during speed modulation (Table 1). This finding is similar to our previously reported results in able-bodied individuals that showed that TLA was the major contributor (66%) to increases in propulsive force during speed modulation [9]. One possible explanation of this greater contribution from TLA could be due to the weakness or inability to modulate the force in the paretic ankle plantarflexor muscles in stroke survivors. Jonkers and colleagues found that lower functioning hemiparetic subjects engaged excessive plantarflexor power generation at SS walking speeds and therefore no further increase was revealed during the fast walking speed condition [14]. The inability to modulate ankle plantarflexor muscles in individuals poststroke may only allow them to modulate TLA to increase propulsive force. Our results showed a wide variation of contributions from the paretic ankle moment to increases in propulsive force across individuals. Interestingly, in contrast to what we had anticipated, the average walking speed for the 10 subjects who showed no contribution from ankle moment to the increase in propulsion was substantially higher than the average walking speed of the rest of 14 subjects (1.0 versus 0.66 m/s). In fact, subjects 18 and 22 increased both paretic and non-paretic propulsion without increasing ankle moment, yet both of these individuals were amongst the 5 th fastest walkers. Thus, individuals who adopted the TLA strategy to increase propulsive force were not only limited to slower ambulators. In the non-paretic limb, the contribution from TLA (67%) to the increase in propulsive force was also greater than the contribution from ankle moment (22%). Thus,

6 Hsiao et al. Journal of NeuroEngineering and Rehabilitation (2015) 12:40 Page 6 of 8 Table 1 Walking speeds and relative contributions to increases in propulsive force from changes in each variables Subject Age (yrs) SS (m/s) FS (m/s) Relative contribution to paretic propulsion Relative contribution to non-paretic propulsion Handrail forces/bw TLA M a mix d TLA M a mix d Vertical Horizontal N/A N/A N/A N/A N/A N/A N/A N/A * * Mean SD max min SS = self-selected walking speed, FS = fast walking speed, TLA = trailing limb angle, M a = ankle moment, mix = interaction term, d = lever arm length. N/A denotes that handrail forces data not available. Handrail forces were normalized by bodyweight. Positive values of handrail forces in the vertical and horizontal direction indicate forces pointing downwards and backwards, respectively. *Subject#24 did not increase paretic propulsive force and subject#13 did not increase non-paretic propulsion during speed modulation. Thus, the relative contributions of the variables for these two subjects were not included in the overall averages in Table 1. on average, the ratio of the contribution of TLA versus ankle moment to the increase in propulsive force was about 3:1 in the non-paretic limb and 4:1 in the paretic limb. This ratio in the non-paretic limb is closer to the ratio reported in able-bodied individuals (2:1). In addition, compared to the paretic limb, fewer subjects adopted the strategy that uses TLA alone to increase propulsive force on their non-paretic limbs. For individuals post-stroke, the rate of force development and voluntary activation of the plantarflexor muscle has been shown to be considerably reduced in the paretic limb compared to the nonparetic limb [15]. Investigations on whether improving paretic ankle plantarflexor strength will modify the strategy adopted to increase propulsion would provide insight into the reason why individuals select particular strategies to increase propulsion. Although changing TLA alone may allow for increasing propulsive force without requiring additional force to be generated from the ankle plantarflexor muscles, the lack of push-off force may eventually lead to more mechanical work being needed to complete the redirection of the COM velocity during the step to step transition [16,17]. Using a simple walking model, Kuo studied the mechanical energy needed to overcome energetic losses incurred

7 Hsiao et al. Journal of NeuroEngineering and Rehabilitation (2015) 12:40 Page 7 of 8 Figure 4 Means and standard errors of the measured variables in both limbs at self-selected (SS) and fast (FS) walking speeds (N = 24). White bars represent data from SS and black bars represent data from FS. (A) AGRF normalized by body weight. (B) Trailing limb angle. (C) Ankle moment normalized by body weight. (D) Lever arm length for GRF. * p 0.05 and ** p at heel strike and found that an impulse applied to the stance foot immediately before heel strike is four times less costly than driving the stance leg via torque at the hip [18]. Thus, the excessive reliance on increasing TLA and the concomitant increase in hip torque alone, rather than also increasing ankle moment to increase propulsive force, may demand more mechanical work for individuals poststroke. Future investigation to determine if greater mechanical work is actually observed for individuals who depend on TLA alone to increase propulsive force during gait is needed. It is worth noting that although the average increases in TLA reported from this study were comparable to the previously reported values in able-bodied individuals, the TLA at self-selected and fast walking speeds in this study were still relatively small compared with able-bodied individuals [9]. That is, stroke survivors still need to improve TLA to restore normal walking pattern. However, for individuals who do not increase their ankle moment to increase propulsion, gait interventions targeting improving TLA may lead to a more energy inefficient gait. Thus, the capacity to increase ankle plantarflexion moments may be a criteria to evaluate individuals who will benefit most from interventions that increases walking speed or propulsion. One factor that the present study did not measure is risk of falling. Although physiological constraints such as muscle strength or energy cost are important factors in gait, preference of strategy may be influenced by fear of falling [19]. For example, if increasing ankle moment to increase walking speed could lead to increase in risk of falling, individuals poststroke may avoid this strategy regardless of metabolic efficiency. Thus, future investigation measuring balance in conjunction with TLA and ankle moment is important for understanding the mechanism individual select to increase propulsion and for directing gait intervention. There were limitations in this study. First, our model was not applicable for individuals who did not position their feet posterior to their body at terminal stance. A foot position anterior to the COM would result in a negative TLA. Based on our model, a negative TLA would produce a posterior ground reaction force and therefore generate a braking force rather than a propulsive force. Thus, individuals with negative TLA were excluded from this study. Second, subjects participating in this study were allowed to hold onto the handrails. The use of handrails could influence gait patterns and force distribution. For example, subjects could use the handrail to support part of their

8 Hsiao et al. Journal of NeuroEngineering and Rehabilitation (2015) 12:40 Page 8 of 8 body weight and therefore decrease the force needed from their legs. In addition, the use of a handrail may cause individuals to lean their body toward the handrail rather than staying upright. This body leaning may affect the angle of the ground reaction force without being captured by our model as TLA and ankle moment did not account for upper body movements. Thus, the accuracy of our model could be affected by handrail use. However, verbal instructions on using the handrail as minimal as possible were provided during data collection. Our results showed that the handrail forces were subject-specific and were not correlated to mechanisms of increasing propulsion (see Table 1). For example, subjects#12, #18 and #21 used similar handrail forces but very different lower extremity strategies to increase propulsion. Another potential limitation in this study was the sensitivity of our model. Three participants had small increases in walking speed from selfselected to fast (subjects #1, #6, and #13). Each of these subjects showed large contributions from changes in the lever arm length. Thus, our model may not be suitable for analyzing very small increases in walking speeds. Finally, the present study did not have an age-matched control group and therefore could not exclude the effect of age on mechanisms to increase propulsion. Thus, future studies comparing individuals poststroke and age-matched ablebodied individuals are needed. However, based on the data presented in Table 1, there was no obvious relationship between subjects ages (range: years) and the mechanism for increasing propulsion. Conclusions This is the first study that quantified the relative contribution of ankle moment and TLA to the increase in propulsive force during poststroke gait. By enhancing a previously developed biomechanical-based model, the present results showed that individuals poststroke increase propulsive force mainly by changing TLA for both the paretic and non-paretic limbs. In addition, the present model has the potential application to determine the mechanism used to improve propulsive force pre and post intervention. Abbreviations AGRF: Anterior ground reaction force; COP: Center of pressure; COM: Center of mass; GRF: Ground reaction force; TLA: Trailing limb angle; SS: Self-selected; FS: Fast. Competing interests The authors declare that they have no competing interests. Authors contributions All authors have substantive intellectual contributions to model developing and manuscript drafting. All authors read and approved the final manuscript. Acknowledgement We thank Louis Awad, Christopher Cutsail, and Kevin Lenoir for data collection and processing. Source of funding NIH R44HD062065, NIH R01HD038582, and NIH RO1 NR Author details 1 Biomechanics and Movement Science Program, University of Delaware, 540 S. College Avenue, Suite 201F, Newark, DE 19716, USA. 2 Delaware Rehabilitation Institute, Newark, DE 19716, USA. 3 Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA. 4 Department of Physical Therapy, University of Delaware, Newark, DE 19716, USA. Received: 13 January 2015 Accepted: 7 April 2015 References 1. Schmid A, Duncan PW, Studenski S, Lai SM, Richards L, Perera S, et al. Improvements in speed-based gait classifications are meaningful. Stroke. 2007;38: Dobkin BH, Plummer-D Amato P, Elashoff R, Lee J. International randomized clinical trial, stroke inpatient rehabilitation with reinforcement of walking speed (SIRROWS), improves outcomes. Neurorehabil Neural Repair. 2010;24: Bowden MG, Balasubramanian CK, Neptune RR, Kautz SA. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke. 2006;37: Bowden MG, Behrman AL, Neptune RR, Gregory CM, Kautz SA. Locomotor rehabilitation of individuals with chronic stroke: difference between responders and nonresponders. Arch Phys Med Rehabil. 2013;94: Peterson CL, Cheng J, Kautz SA, Neptune RR. Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking. Gait Posture. 2010;32: Turns LJ, Neptune RR, Kautz SA. Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking. Arch Phys Med Rehabil. 2007;88: Olney SJ, Griffin MP, McBride ID. Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: a regression approach. Phys Ther. 1994;74: Tyrell CM, Roos MA, Rudolph KS, Reisman DS. Influence of systematic increases in treadmill walking speed on gait kinematics after stroke. Phys Ther. 2011;91: Hsiao H, Knarr BA, Higginson JS, Binder-Macleod SA. The relative contribution of ankle moment and trailing limb angle to propulsive force during gait. Hum Mov Sci. 2015;39: Kesar TM, Reisman DS, Perumal R, Jancosko AM, Higginson JS, Rudolph KS, et al. Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait Posture. 2011;33: Kesar TM, Binder-Macleod SA, Hicks GE, Reisman DS. Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke. Gait Posture. 2011;33: Nadeau S, Gravel D, Arsenault AB, Bourbonnais D. A mechanical model to study the relationship between gait speed and muscular strength. IEEE Trans Rehabil Eng. 1996;4: Nadeau S, Gravel D, Arsenault AB, Bourbonnais D. Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors. Clin Biomech (Bristol, Avon). 1999;14(2): Jonkers I, Delp S, Patten C. Capacity to increase walking speed is limited by impaired hip and ankle power generation in lower functioning persons post-stroke. Gait Posture. 2009;29: Fimland MS, Moen PMR, Hill T, Gjellesvik TI, Tørhaug T, Helgerud J, et al. Neuromuscular performance of paretic versus non-paretic plantar flexors after stroke. Eur J Appl Physiol. 2011;111: Huang Y, Meijer OG, Lin J, Bruijn SM, Wu W, Lin X, et al. The effects of stride length and stride frequency on trunk coordination in human walking. Gait Posture. 2010;31: Soo CH, Donelan JM. Coordination of push-off and collision determine the mechanical work of step-to-step transitions when isolated from human walking. Gait Posture. 2012;35: Kuo AD. Energetics of actively powered locomotion using the simplest walking model. J Biomech Eng. 2001;124: Barak Y, Wagenaar RC, Holt KG. Gait characteristics of elderly people with a history of falls: a dynamic approach. Phys Ther. 2006;86:

Terminology of Human Walking From North American Society for Gait and Human Movement 1993 and AAOP Gait Society 1994

Terminology of Human Walking From North American Society for Gait and Human Movement 1993 and AAOP Gait Society 1994 Gait Cycle: The period of time from one event (usually initial contact) of one foot to the following occurrence of the same event with the same foot. Abbreviated GC. Gait Stride: The distance from initial

More information

Review of Last Lecture - TE

Review of Last Lecture - TE Gait Review of Last Lecture - TE Interventions to increase flexibility Generating muscle force depends on Open chain vs. closed chain PNF Balance strategies Benefits of aerobic exercise Gait An individual

More information

Gait. Maturation of Gait Beginning ambulation ( Infant s gait ) Upper Limb. Lower Limb

Gait. Maturation of Gait Beginning ambulation ( Infant s gait ) Upper Limb. Lower Limb Gait Terminology Gait Cycle : from foot strike to foot strike Gait Phase : stance (60%) : swing (40%) Velocity : horizontal speed along progression Cadence : no. of steps per unit time Step length : distance

More information

Body posture or posture control in back pain patients

Body posture or posture control in back pain patients Body posture or posture control in back pain patients André Ljutow Centre for Pain Medicine, Nottwil What is this lecture about? Due to the possibility to measure human posture questions like «What is

More information

SUMMARY This PhD thesis addresses the long term recovery of hemiplegic gait in severely affected stroke patients. It first reviews current rehabilitation research developments in functional recovery after

More information

Neuromechanical Redundancy for Gait Compensation in Transtibial Amputees. Kinsey Herrin, B.S. Advisor: Young-Hui Chang, Ph.D.

Neuromechanical Redundancy for Gait Compensation in Transtibial Amputees. Kinsey Herrin, B.S. Advisor: Young-Hui Chang, Ph.D. Neuromechanical Redundancy for Gait Compensation in Transtibial Amputees Kinsey Herrin, B.S. Advisor: Young-Hui Chang, Ph.D. 1 Transtibial Amputees Limb length Ankle Normal joint mobility Direct muscular

More information

The Use of the Lokomat System in Clinical Research

The Use of the Lokomat System in Clinical Research International Neurorehabilitation Symposium February 12, 2009 The Use of the Lokomat System in Clinical Research Keith Tansey, MD, PhD Director, Spinal Cord Injury Research Crawford Research Institute,

More information

Landing Biomechanics Utilizing Different Tasks: Implications in ACL Injury Research. Adam Hernandez Erik Swartz, PhD ATC Dain LaRoche, PhD

Landing Biomechanics Utilizing Different Tasks: Implications in ACL Injury Research. Adam Hernandez Erik Swartz, PhD ATC Dain LaRoche, PhD A Gender Comparison of Lower Extremity Landing Biomechanics Utilizing Different Tasks: Implications in ACL Injury Research Adam Hernandez Erik Swartz, PhD ATC Dain LaRoche, PhD Anterior Cruciate Ligament

More information

Hip Rehab: Things to Consider. Sue Torrence, MS, PT, ATC Lead Physical Therapist

Hip Rehab: Things to Consider. Sue Torrence, MS, PT, ATC Lead Physical Therapist Hip Rehab: Things to Consider Sue Torrence, MS, PT, ATC Lead Physical Therapist Where to Start? Objectives: Discuss injuries related to hip dysfunction Review commonly used functional tests for posteriolateral

More information

1/15/14. Walking vs Running. Normal Running Mechanics. Treadmill vs. Overground Are they the same? Importance of Gait Analysis.

1/15/14. Walking vs Running. Normal Running Mechanics. Treadmill vs. Overground Are they the same? Importance of Gait Analysis. angle (deg) 1/1/14 Normal Running Mechanics Walking vs Running Irene Davis, PhD, PT, FACSM, FAPTA, FASB Director, Spaulding National Running Center Walking Periods of DOUBLE SUPPORT Running Periods of

More information

Q4E Case Study 21. Gait Analysis: Effect of an unstable shoe construction

Q4E Case Study 21. Gait Analysis: Effect of an unstable shoe construction Q4E Case Study 21 Gait Analysis: Effect of an unstable shoe construction Introduction Linear and angular kinematics during walking have been widely analysed whilst waking barefoot and in shoes (Lythgo

More information

CHAPTER 5 BALANCE SUPPORT AFTER STROKE

CHAPTER 5 BALANCE SUPPORT AFTER STROKE CHAPTER 5 BALANCE SUPPORT AFTER STROKE The effect of balance support on the energy cost of walking after stroke IJmker T, Houdijk H, Lamoth CJ, Jarbandhan AV, Rijntjes D, Beek PJ, van der Woude LH. Archives

More information

Lab #7 - Joint Kinetics and Internal Forces

Lab #7 - Joint Kinetics and Internal Forces Purpose: Lab #7 - Joint Kinetics and Internal Forces The objective of this lab is to understand how to calculate net joint forces (NJFs) and net joint moments (NJMs) from force data. Upon completion of

More information

KIN 335 - Biomechanics LAB: Ground Reaction Forces - Linear Kinetics

KIN 335 - Biomechanics LAB: Ground Reaction Forces - Linear Kinetics KIN 335 - Biomechanics LAB: Ground Reaction Forces - Linear Kinetics Reading Assignment: 1) Luhtanen, P. and Komi, P.V. (1978). Segmental contribution to forces in vertical jump. European Journal of Applied

More information

PATHOLOGIC GAIT -- MUSCULOSKELETAL. Focal Weakness. Ankle Dorsiflexion Weakness COMMON GAIT ABNORMALITIES

PATHOLOGIC GAIT -- MUSCULOSKELETAL. Focal Weakness. Ankle Dorsiflexion Weakness COMMON GAIT ABNORMALITIES Pathological Gait I: Musculoskeletal - 1 PATHOLOGIC GAIT -- MUSCULOSKELETAL Normal walking is the standard against which pathology is measured Efficiency is often reduced in pathology COMMON GAIT ABNORMALITIES

More information

Footwear Science Publication details, including instructions for authors and subscription information: http://www.tandfonline.

Footwear Science Publication details, including instructions for authors and subscription information: http://www.tandfonline. This article was downloaded by: [University of Nebraska at Omaha], [Nick Stergiou] On: 20 April 2012, At: 12:35 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number:

More information

Effect of equinus foot placement and intrinsic muscle response on knee extension during stance

Effect of equinus foot placement and intrinsic muscle response on knee extension during stance Gait & Posture 23 (2006) 32 36 www.elsevier.com/locate/gaitpost Effect of equinus foot placement and intrinsic muscle response on knee extension during stance J.S. Higginson a,b, *, F.E. Zajac a,b,c, R.R.

More information

Temporal spatial data, the gait cycle and gait graphs Richard Baker

Temporal spatial data, the gait cycle and gait graphs Richard Baker University of Salford: An Introduction to Clinical Gait Analysis 1.1 Temporal spatial data, the gait cycle and gait graphs Richard Baker Temporal spatial parameters Distance parameters Human walking is

More information

STROKE CARE NOW NETWORK CONFERENCE MAY 22, 2014

STROKE CARE NOW NETWORK CONFERENCE MAY 22, 2014 STROKE CARE NOW NETWORK CONFERENCE MAY 22, 2014 Rehabilitation Innovations in Post- Stroke Recovery Madhav Bhat, MD Fort Wayne Neurological Center DISCLOSURE Paid speaker for TEVA Neuroscience Program.

More information

Kimberly Anderson-Erisman, PhD Director of Education University of Miami & Miami Project to Cure Paralysis

Kimberly Anderson-Erisman, PhD Director of Education University of Miami & Miami Project to Cure Paralysis Webinar title: What is the Vibe? Vibration Therapy as a Rehabilitation Tool Presenter/presenters: Kimberly Anderson-Erisman, PhD Director of Education University of Miami & Miami Project to Cure Paralysis

More information

BESTest Balance Evaluation Systems Test Fay Horak PhD Copyright 2008

BESTest Balance Evaluation Systems Test Fay Horak PhD Copyright 2008 BESTest Balance Evaluation Systems Test Fay Horak PhD Copyright 2008 TEST NUMBER/SUBJECT CODE DATE EXAMINER NAME EXAMINER Instructions for BESTest 1. Subjects should be tested with flat heeled shoes or

More information

Original research papers

Original research papers Pol. J. Sport Tourism, 9, 8-7 DOI:.78/v97---z 8 Original research papers THE IMPACT OF ANKLE JOINT STIFFENING BY SKI EQUIPMENT ON MAINTENANCE OF BODY BALANCE The impact of ski equipment on body balance

More information

Spine Care Centre (SCC) protocols for Multiple Sclerosis Update 1 August 2015

Spine Care Centre (SCC) protocols for Multiple Sclerosis Update 1 August 2015 Spine Care Centre (SCC) protocols for Multiple Sclerosis Update 1 August 2015 Introduction Multiple sclerosis (MS) affects nerves in the brain and spinal cord, causing a wide range of symptoms including

More information

SCIENTISTS HAVE DEBATED the energetic cost associated. Metabolic and Mechanical Energy Costs of Reducing Vertical Center of Mass Movement During Gait

SCIENTISTS HAVE DEBATED the energetic cost associated. Metabolic and Mechanical Energy Costs of Reducing Vertical Center of Mass Movement During Gait 13 ORIGINAL ARTICLE Metabolic and Mechanical Energy Costs of Reducing Vertical Center of Mass Movement During Gait Keith E. Gordon, PhD, Daniel P. Ferris, PhD, Arthur D. Kuo, PhD ABSTRACT. Gordon KE, Ferris

More information

Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions

Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions ARTICLE Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions Arthur D. Kuo, 1 J. Maxwell Donelan, 2 and Andy Ruina 3 1 Departments of Mechanical Engineering & Biomedical

More information

Basic gait parameters : Reference data for normal subjects, 10-79 years of age

Basic gait parameters : Reference data for normal subjects, 10-79 years of age Journal of Rehabilitation Research and Development Vol. 30 No. 2 1993 Pages 210 223 'V"Ze Department of Veterans Affairs A Technical Note Basic gait parameters : Reference data for normal subjects, 10-79

More information

1. Compare and contrast the key factors in compensation-based instruments and the new Neuromuscular Recovery Scale (NRS).

1. Compare and contrast the key factors in compensation-based instruments and the new Neuromuscular Recovery Scale (NRS). A New Outcome Measure for Spinal Cord Injury Based on Pre-injury Function, Not Compensation: Neuromuscular Recovery Scale Combined Sections Meeting 2013 San Diego, CA January 21-24, 2013 D. Michele Basso

More information

BIOMECHANICAL ANALYSIS OF THE STANDING LONG JUMP

BIOMECHANICAL ANALYSIS OF THE STANDING LONG JUMP APPLICATIONS, BASIS & COMMUNICATIONS 186 BIOMECHANICAL ANALYSIS OF THE STANDING LONG JUMP WEN-LAN WU 1, JIA-HROUNG WIT, HWAI-TING LIN\ GWO-JAW WANG 4 1 School of Sports Medicine, Kaohsiung Medical University,

More information

User Guide MTD-3. Motion Lab Systems, Inc.

User Guide MTD-3. Motion Lab Systems, Inc. User Guide MTD-3 Motion Lab Systems, Inc. This manual was written by Motion Lab Systems using ComponentOne Doc-To-Help. Updated Tuesday, June 07, 2016 Intended Audience This manual is written to provide

More information

Review Last Lecture. Definition of Gait? What are the 2 phases of gait? 5 parts of stance phase? 3 parts of swing phase?

Review Last Lecture. Definition of Gait? What are the 2 phases of gait? 5 parts of stance phase? 3 parts of swing phase? Abnormal Gait Review Last Lecture Definition of Gait? What are the 2 phases of gait? 5 parts of stance phase? 3 parts of swing phase? Abnormal Gait An altered gait pattern reflecting any lower extremity

More information

THE INFLUENCE OF WALL PAINTING ON SHOULDER MUSCLE ACTIVITY AND HORIZONTAL PUSH FORCE

THE INFLUENCE OF WALL PAINTING ON SHOULDER MUSCLE ACTIVITY AND HORIZONTAL PUSH FORCE THE INFLUENCE OF WALL PAINTING ON SHOULDER MUSCLE ACTIVITY AND HORIZONTAL PUSH FORCE Background: Patricia M. Rosati and Clark R. Dickerson Department of Kinesiology, University of Waterloo, Waterloo, ON

More information

Research Report. Lower-Extremity Strength Differences Predict Activity Limitations in People With Chronic Stroke

Research Report. Lower-Extremity Strength Differences Predict Activity Limitations in People With Chronic Stroke Research Report Lower-Extremity Strength Differences Predict Activity Limitations in People With Chronic Stroke Patricia Kluding, Byron Gajewski Background. Body system impairments following stroke have

More information

12/11/2012. Treadmill walking with body weight support. Stroke rehabilitation

12/11/2012. Treadmill walking with body weight support. Stroke rehabilitation Treadmill walking with body weight support Odense 27.10.12 Mona K. Aaslund (PhD and specialist in Neurological Physiotherapy) Stroke rehabilitation Mobilisation should be repetitive, specific to everyday

More information

Physics 160 Biomechanics. Newton s Laws

Physics 160 Biomechanics. Newton s Laws Physics 160 Biomechanics Newton s Laws Questions to Think About Why does it take more force to cause an object to start sliding than it does to keep it sliding? Why is a ligament more likely to tear during

More information

Mary LaBarre, PT, DPT,ATRIC

Mary LaBarre, PT, DPT,ATRIC Aquatic Therapy and the ACL Current Concepts on Prevention and Rehab Mary LaBarre, PT, DPT,ATRIC Anterior Cruciate Ligament (ACL) tears are a common knee injury in athletic rehab. Each year, approximately

More information

The goals of surgery in ambulatory children with cerebral

The goals of surgery in ambulatory children with cerebral ORIGINAL ARTICLE Changes in Pelvic Rotation After Soft Tissue and Bony Surgery in Ambulatory Children With Cerebral Palsy Robert M. Kay, MD,* Susan Rethlefsen, PT,* Marty Reed, MD, K. Patrick Do, BS,*

More information

Predicting Aerobic Power (VO 2max ) Using The 1-Mile Walk Test

Predicting Aerobic Power (VO 2max ) Using The 1-Mile Walk Test USING A WALKING TEST 12/25/05 PAGE 1 Predicting Aerobic Power (VO 2max ) Using The 1-Mile Walk Test KEYWORDS 1. Predict VO 2max 2. Rockport 1-mile walk test 3. Self-paced test 4. L min -1 5. ml kg -1 1min

More information

Role of Upper Limbs: Slip-induced Falls

Role of Upper Limbs: Slip-induced Falls International Journal of Applied Science and Technology Vol. 2 No. 7; August 2012 Role of Upper Limbs: Slip-induced Falls Sukwon Kim, Ph.D Department of Physical Education Chonbuk National University Jeon-ju

More information

Mechanics of the Human Spine Lifting and Spinal Compression

Mechanics of the Human Spine Lifting and Spinal Compression Mechanics of the Human Spine Lifting and Spinal Compression Hamill and Knutzen: Chapter 7 Nordin and Frankel: Ch. 10 by Margareta Lindh Hall: Ch. 9 (more muscle anatomy detail than required) Low Back Pain

More information

Differences in the gait characteristics of people with diabetes and transmetatarsal amputation compared with age-matched controls

Differences in the gait characteristics of people with diabetes and transmetatarsal amputation compared with age-matched controls Gait and Posture 7 (1998) 200 206 Differences in the gait characteristics of people with diabetes and transmetatarsal amputation compared with age-matched controls Michael J. Mueller a, *, Gretchen B.

More information

Locomotion Skills. Walking Running Horizontal Jump Hopping Skipping

Locomotion Skills. Walking Running Horizontal Jump Hopping Skipping Locomotion Skills Walking Running Horizontal Jump Hopping Skipping Walking Progressive alternation of leading legs and continuous contact with the supporting surface. Walking cycle or Gait cycle involves

More information

Psoas Syndrome. The pain is worse from continued standing and from twisting at the waist without moving the feet.

Psoas Syndrome. The pain is worse from continued standing and from twisting at the waist without moving the feet. Psoas Syndrome The iliopsoas muscle is a major body mover but seldom considered as a source of pain. Chronic lower back pain involving the hips, legs, or thoracic regions can often be traced to an iliopsoas

More information

DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE. F. R. Soha, I. A. Szabó, M. Budai. Abstract

DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE. F. R. Soha, I. A. Szabó, M. Budai. Abstract ACTA PHYSICA DEBRECINA XLVI, 143 (2012) DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE F. R. Soha, I. A. Szabó, M. Budai University of Debrecen, Department of Solid State Physics Abstract

More information

Neural Plasticity and Locomotor Recovery: Robotics in Research

Neural Plasticity and Locomotor Recovery: Robotics in Research International Neurorehabilitation Symposium February 12, 2009 Neural Plasticity and Locomotor Recovery: Robotics in Research Keith Tansey, MD, PhD Director, Spinal Cord Injury Research Crawford Research

More information

adj., departing from the norm, not concentric, utilizing negative resistance for better client outcomes

adj., departing from the norm, not concentric, utilizing negative resistance for better client outcomes Why Eccentrics? What is it? Eccentric adj., departing from the norm, not concentric, utilizing negative resistance for better client outcomes Eccentrics is a type of muscle contraction that occurs as the

More information

Pattern Characterization of Running and Cutting Maneuvers in Relation to Noncontact

Pattern Characterization of Running and Cutting Maneuvers in Relation to Noncontact Pattern Characterization of Running and Cutting Maneuvers in Relation to Noncontact ACL Injury Brenna Hearn During running and cutting maneuvers, the anterior cruciate ligament (ACL) is commonly injured

More information

How to read Dashboard Reports

How to read Dashboard Reports How to read Dashboard Reports The premise behind RPM 2 is to assess bilateral equivalence of the lower limbs. It has long been understood that bi-lateral equivalence is the key to improved athletic performance.

More information

Read a chapter on Angular Kinematics

Read a chapter on Angular Kinematics Read a chapter on Angular Kinematics Angular Kinematics Hamill & Knutzen (Ch 9) Hay (Ch. 4), Hay & Ried (Ch. 10), Kreighbaum & Barthels (Module Ι) or Hall (Ch. 11) Reporting Angles Measurement of Angles

More information

Physiological mobilization of very acute SCI patients effects on the cardiovascular system

Physiological mobilization of very acute SCI patients effects on the cardiovascular system International Neurorehabilitation Symposium, University Irchel, Zuerich, Switzerland, 12.2.-13.02.2009 Physiological mobilization of very acute SCI patients effects on the cardiovascular system R. Rupp,

More information

Muscle strength and weight-bearing symmetry relate to sit-to-stand performance in individuals with stroke

Muscle strength and weight-bearing symmetry relate to sit-to-stand performance in individuals with stroke Gait & Posture 22 (2005) 126 131 www.elsevier.com/locate/gaitpost Muscle strength and weight-bearing symmetry relate to sit-to-stand performance in individuals with stroke Melanie J. Lomaglio a,b, Janice

More information

12. Physical Therapy (PT)

12. Physical Therapy (PT) 1 2. P H Y S I C A L T H E R A P Y ( P T ) 12. Physical Therapy (PT) Clinical presentation Interventions Precautions Activity guidelines Swimming Generally, physical therapy (PT) promotes health with a

More information

Lab # 3 - Angular Kinematics

Lab # 3 - Angular Kinematics Purpose: Lab # 3 - Angular Kinematics The objective of this lab is to understand the relationship between segment angles and joint angles. Upon completion of this lab you will: Understand and know how

More information

Biomechanical Analysis of the Deadlift (aka Spinal Mechanics for Lifters) Tony Leyland

Biomechanical Analysis of the Deadlift (aka Spinal Mechanics for Lifters) Tony Leyland Biomechanical Analysis of the Deadlift (aka Spinal Mechanics for Lifters) Tony Leyland Mechanical terminology The three directions in which forces are applied to human tissues are compression, tension,

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

INFORMATION SOCIETIES TECHNOLOGY (IST) PROGRAMME

INFORMATION SOCIETIES TECHNOLOGY (IST) PROGRAMME INFORMATION SOCIETIES TECHNOLOGY (IST) PROGRAMME Project Number IST-1999-10954 Project Title: Virtual Animation of the Kinematics of the Human for Industrial, Educational and Research Purposes Title of

More information

by Argyrios Stampas, MD, Carolin Dohle, MD, and Elizabeth Dominick, PT, DPT, NCS

by Argyrios Stampas, MD, Carolin Dohle, MD, and Elizabeth Dominick, PT, DPT, NCS by Argyrios Stampas, MD, Carolin Dohle, MD, and Elizabeth Dominick, PT, DPT, NCS Therapist Jennifer Metz (right) helps a patient use a body-weight support treadmill system. Up and Moving Blending dedication

More information

GAIT PARAMETERS YOU CAN MEASURE IN THE CLINIC

GAIT PARAMETERS YOU CAN MEASURE IN THE CLINIC GAIT PARAMETERS YOU CAN MEASURE IN THE CLINIC CADENCE: steps/minute Have patient walk 30 seconds and count each step, then multiply times 2. You can also just do this for 60 seconds. (Average speed for

More information

Short-term Maximal-Intensity Resistance Training Increases Volitional Function and Strength in Chronic Incomplete Spinal Cord Injury: A Pilot Study

Short-term Maximal-Intensity Resistance Training Increases Volitional Function and Strength in Chronic Incomplete Spinal Cord Injury: A Pilot Study RESEARCH ARTICLES Short-term Maximal-Intensity Resistance Training Increases Volitional Function and Strength in Chronic Incomplete Spinal Cord Injury: A Pilot Study Arun Jayaraman, PT, PhD, Christopher

More information

Lab #4 - Linear Impulse and Momentum

Lab #4 - Linear Impulse and Momentum Purpose: Lab #4 - Linear Impulse and Momentum The objective of this lab is to understand the linear and angular impulse/momentum relationship. Upon completion of this lab you will: Understand and know

More information

Exercises for Low Back Injury Prevention

Exercises for Low Back Injury Prevention DIVISION OF AGRICULTURE RESEARCH & EXTENSION University of Arkansas System Family and Consumer Sciences Increasing Physical Activity as We Age Exercises for Low Back Injury Prevention FSFCS38 Lisa Washburn,

More information

Joint stiffness and gait pattern evaluation in children with Down syndrome

Joint stiffness and gait pattern evaluation in children with Down syndrome Available online at www.sciencedirect.com Gait & Posture 28 (2008) 502 506 www.elsevier.com/locate/gaitpost Joint stiffness and gait pattern evaluation in children with Down syndrome Manuela Galli a,d,

More information

Sit stand desks and musculo skeletal health. Katharine Metters

Sit stand desks and musculo skeletal health. Katharine Metters Sit stand desks and musculo skeletal health Katharine Metters Topics Sitting Standing Movement and activity Work and human change Sitting uses less energy Sitting provides support for the body to reduce

More information

John F. Schulte CPO FAAOP Has no financial interest or relationships to disclose

John F. Schulte CPO FAAOP Has no financial interest or relationships to disclose John F. Schulte CPO FAAOP Has no financial interest or relationships to disclose CME Staff Disclosures Professional Education Services Group staff have no financial interest or relationships to disclose.

More information

Research Report. Key Words: Cerebral palsy, Dynamic systems, Locomotion, Oscillatory models.

Research Report. Key Words: Cerebral palsy, Dynamic systems, Locomotion, Oscillatory models. Research Report Dynamic Resources Used in Ambulation by Children With Spastic Hemiplegic Cerebral Palsy: Relationship to Kinematics, Energetics, and Asymmetries Background and Purpose. The atypical walking

More information

Biomechanics of Running and Walking

Biomechanics of Running and Walking Biomechanics of Running and Walking Anthony Tongen and Roshna E. Wunderlich Abstract Running and walking are integral to most sports and there is a considerable amount of mathematics involved in examining

More information

F f v 1 = c100(10 3 ) m h da 1h 3600 s b =

F f v 1 = c100(10 3 ) m h da 1h 3600 s b = 14 11. The 2-Mg car has a velocity of v 1 = 100km>h when the v 1 100 km/h driver sees an obstacle in front of the car. It takes 0.75 s for him to react and lock the brakes, causing the car to skid. If

More information

ON DISCHARGE FROM rehabilitation, 60% to 80% of

ON DISCHARGE FROM rehabilitation, 60% to 80% of 1486 A Treadmill and Overground Walking Program Improves Walking in Persons Residing in the Community After Stroke: A Placebo-trolled, Randomized Trial Louise Ada, PhD, Catherine M. Dean, PhD, Jillian

More information

The Royal Military College - Duntroon Army Officer Selection Board Bridging Period Conditioning Program

The Royal Military College - Duntroon Army Officer Selection Board Bridging Period Conditioning Program The Royal Military College - Duntroon Army Officer Selection Board Bridging Period Conditioning Program CONTENTS Page Contents i INTRODUCTION 1 FAQS 2 CYCLE 1: NEUROMUSCULAR CONDITIONING FOCUS (WEEKS 1

More information

Movement Pa+ern Analysis and Training in Athletes 02/13/2016

Movement Pa+ern Analysis and Training in Athletes 02/13/2016 Objec:ves Movement Pa+ern Analysis and Training in Athletes Department of Physical Therapy and Human Movement Sciences Appreciate the importance of movement pa+ern analysis and training in treahng athletes

More information

Biomechanics of cycling - Improving performance and reducing injury through biomechanics

Biomechanics of cycling - Improving performance and reducing injury through biomechanics Biomechanics of cycling - Improving performance and reducing injury through biomechanics Biomechanics is the science concerned with the forces that act on the human body and the effects these forces produce.

More information

Chapter 18 Static Equilibrium

Chapter 18 Static Equilibrium Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

More information

NICE Pathways bring together all NICE guidance, quality standards and other NICE information on a specific topic.

NICE Pathways bring together all NICE guidance, quality standards and other NICE information on a specific topic. Rehabilitation for movement difficulties after stroke bring together all NICE guidance, quality standards and other NICE information on a specific topic. are interactive and designed to be used online.

More information

Performance Enhancement Training for the Post Rehabilitated Knee

Performance Enhancement Training for the Post Rehabilitated Knee Performance Enhancement Training for the Post Rehabilitated Knee NSCA National Conference July 11, 2013 Robert A. Panariello MS, PT, ATC, CSCS Professional Orthopedic and Sports Physical Therapy Professional

More information

Exercises for older people

Exercises for older people Exercise for older people Exercises for older people Sitting Getting started If you ve not done much physical activity for a while, you may want to get the all-clear from a GP before starting. For the

More information

Dynamics of Vertical Jumps

Dynamics of Vertical Jumps Dr Stelios G. Psycharakis Dynamics of Vertical Jumps School of Life, Sport & Social Sciences, Edinburgh Napier University, Edinburgh, UK Introduction A vertical jump is a movement that is used in a plethora

More information

Gait recovery pattern of unilateral lower limb amputees during rehabilitation

Gait recovery pattern of unilateral lower limb amputees during rehabilitation Prosthetics and Orthotics International, 1990, 14, 80-84 Gait recovery pattern of unilateral lower limb amputees during rehabilitation P. A. BAKER and S. R. HEWISON Physiotherapy Department, Caulfield

More information

BIOLOGICAL FRAMEWORKS FOR ENGINEERS

BIOLOGICAL FRAMEWORKS FOR ENGINEERS BIOLOGICAL FRAMEWORKS FOR ENGINEERS Laboratory Experience #3 [Skeletal Muscle Biomechanics] General Objectives: Examine the maximum voluntary contraction of the biceps throughout its physiologic range

More information

IMGPT: Exercise After a Heart Attack 610 944 8140 805 N. RICHMOND ST (Located next to Fleetwood HS) Why is exercise important following a heart

IMGPT: Exercise After a Heart Attack 610 944 8140 805 N. RICHMOND ST (Located next to Fleetwood HS) Why is exercise important following a heart Why is exercise important following a heart attack? Slow progression back into daily activity is important to strengthen the heart muscle and return blood flow to normal. By adding aerobic exercises, your

More information

2002 Functional Design Systems

2002 Functional Design Systems 1. Proprioceptive sensitivity has to do with not being too sensitive but being sensitive enough. 2. The hammies have a lot to do with all three planes of function. 3. In upright function, knee flexion

More information

Timed Up and Go (TUG) Test

Timed Up and Go (TUG) Test 053 McKinly Laboratory Timed Up and Go (TUG) Test Description: Measure of function with correlates to balance and fall risk Equipment: Stopwatch, Standard Chair, Measured distance of 3 meters (10 feet)

More information

are you reaching your full potential...

are you reaching your full potential... T h e r e s n o s u c h t h i n g a s b a d e x e r c i s e - j u s t e x e r c i s e d o n e b a d l y FIT for sport are you reaching your full potential... These tests are a series of exercises designed

More information

Knee Biomechanics of Alternate Stair Ambulation Patterns

Knee Biomechanics of Alternate Stair Ambulation Patterns Biodynamics Knee Biomechanics of Alternate Stair Ambulation Patterns SAMANTHA M. REID 1, SCOTT K. LYNN 1, REILLY P. MUSSELMAN 1, and PATRICK A. COSTIGAN 1,2 1 School of Kinesiology and Health Studies and

More information

Metabolic cost of generating horizontal forces during human running

Metabolic cost of generating horizontal forces during human running Metabolic cost of generating horizontal forces during human running YOUNG-HUI CHANG AND RODGER KRAM Locomotion Laboratory, Department of Integrative Biology, University of California, Berkeley, California

More information

Perry Issue: Gait Rehab

Perry Issue: Gait Rehab Perry Issue: Gait Rehab Gait Parameters Associated With Responsiveness to Treadmill Training With Body-Weight Support After Stroke: An Exploratory Study Sara J. Mulroy, Tara Klassen, JoAnne K. Gronley,

More information

A proper warm-up is important before any athletic performance with the goal of preparing the athlete both mentally and physically for exercise and

A proper warm-up is important before any athletic performance with the goal of preparing the athlete both mentally and physically for exercise and A proper warm-up is important before any athletic performance with the goal of preparing the athlete both mentally and physically for exercise and competition. A warm-up is designed to prepare an athlete

More information

The Five Most Common Pathomechanical Foot Types (Rearfoot varus, forefoot varus, equinus, plantarflexed first ray, forefoot valgus)

The Five Most Common Pathomechanical Foot Types (Rearfoot varus, forefoot varus, equinus, plantarflexed first ray, forefoot valgus) The Five Most Common Pathomechanical Foot Types (Rearfoot varus, forefoot varus, equinus, plantarflexed first ray, forefoot valgus) Pathomechanical foot types usually refer to structural deformities that

More information

Flat foot and lower back pain

Flat foot and lower back pain Flat foot and lower back pain Dr James Tang, MBA, BDS, LDS RCS General Dental Practitioner, NASM Corrective Exercise Specialist with special interest in postural dysfunction & lower back problems, Level

More information

4 Energy transformations in the pole vault

4 Energy transformations in the pole vault 358 Chapter IV. Elasticity 4 Energy transformations in the pole vault Abstract by N.P. Linthorne Centre for Sports Medicine and Human Performance, School of Sport and Education, Brunel University, Uxbridge,

More information

Understanding the Pain Trajectory During Treadmill Testing in Peripheral Artery Disease

Understanding the Pain Trajectory During Treadmill Testing in Peripheral Artery Disease Understanding the Pain Trajectory During Treadmill Testing in Peripheral Artery Disease Diane Treat-Jacobson, PhD, RN, FAHA, FAAN Susan J. Henly, PhD, RN Ulf G. Bronas, PhD, ATC, ATR Arthur S. Leon, MD,

More information

Changes in muscle activity in children with hemiplegic cerebral palsy while walking with and without ankle foot orthoses

Changes in muscle activity in children with hemiplegic cerebral palsy while walking with and without ankle foot orthoses Gait & Posture xxx (2006) xxx xxx www.elsevier.com/locate/gaitpost Changes in muscle activity in children with hemiplegic cerebral palsy while walking with and without ankle foot orthoses J. Romkes *,

More information

Stretching the Low Back THERAPIST ASSISTED AND CLIENT SELF-CARE STRETCHES FOR THE LUMBOSACRAL SPINE

Stretching the Low Back THERAPIST ASSISTED AND CLIENT SELF-CARE STRETCHES FOR THE LUMBOSACRAL SPINE EXPERT CONTENT by Joseph E. Muscolino photos by Yanik Chauvin body mechanics THE ESSENCE OF MOST MANUAL THERAPIES, and certainly clinical orthopedic massage therapy, is to loosen taut soft tissues, thereby

More information

Matlab Based Interactive Simulation Program for 2D Multisegment Mechanical Systems

Matlab Based Interactive Simulation Program for 2D Multisegment Mechanical Systems Matlab Based Interactive Simulation Program for D Multisegment Mechanical Systems Henryk Josiński,, Adam Świtoński,, Karol Jędrasiak, Andrzej Polański,, and Konrad Wojciechowski, Polish-Japanese Institute

More information

How to increase Bat Speed & Bat Quickness / Acceleration

How to increase Bat Speed & Bat Quickness / Acceleration How to increase Bat Speed & Bat Quickness / Acceleration What is Bat Speed? Bat Speed: Bat speed is measured in miles per hour (MPH) and considers only the highest speed of the bat head (peak velocity)

More information

ACL Reconstruction Rehabilitation

ACL Reconstruction Rehabilitation ACL Reconstruction Rehabilitation The following exercises are commonly used for rehabilitation following ACL reconstruction surgery. However, each knee surgery is unique and each person s condition is

More information

TORQUE AND FIRST-CLASS LEVERS

TORQUE AND FIRST-CLASS LEVERS TORQUE AND FIRST-CLASS LEVERS LAB MECH 28.COMP From Physics, Eugene Hecht and Physical Science with Computers, Vernier Software & Technology INTRODUCTION In Figure 1, note force F acting on a wrench along

More information

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces. Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

More information

Gait with Assistive Devices

Gait with Assistive Devices Gait with Assistive Devices Review Last Lecture Weak dorsiflexors? Vaulting? Hip hiking? Weak hip abductors? Hip circumduction? Ataxic gait? Antalgic gait? Explain the line of gravity Ambulation with Assistive

More information

Plantar Heel Pain: The very common and uncommon

Plantar Heel Pain: The very common and uncommon Plantar Heel Pain: The very common and uncommon Plantar Heel Pain Common clinical entity Common across age, activity, body type Treatment program varied, difficult to gage success of each So common, a

More information

The Future of Rehabilitation. Matt Wilks, PT Richmond Stroke Symposium 2011

The Future of Rehabilitation. Matt Wilks, PT Richmond Stroke Symposium 2011 The Future of Rehabilitation Matt Wilks, PT Richmond Stroke Symposium 2011 Disclosure Information Matt Wilks, PT, Director of Therapy Innovative Practices in Stroke Rehabilitation Financial Disclosure:

More information

The WalkOn Range. Dynamic Lower Leg Orthoses. NeW. Information for physicians, orthotists and physiotherapists

The WalkOn Range. Dynamic Lower Leg Orthoses. NeW. Information for physicians, orthotists and physiotherapists The WalkOn Range Dynamic Lower Leg Orthoses NeW Information for physicians, orthotists and physiotherapists One Range Many Different Applications The WalkOn product range allows you to address the specific

More information