Matlab Based Interactive Simulation Program for 2D Multisegment Mechanical Systems

Size: px
Start display at page:

Download "Matlab Based Interactive Simulation Program for 2D Multisegment Mechanical Systems"

Transcription

1 Matlab Based Interactive Simulation Program for D Multisegment Mechanical Systems Henryk Josiński,, Adam Świtoński,, Karol Jędrasiak, Andrzej Polański,, and Konrad Wojciechowski, Polish-Japanese Institute of Information Technology Aleja Legionów 4-90 Bytom, Poland {hjosinski,aswitonski,kjedrasiak,apolanski,kwojciechowski}@pjwstk.edu.pl Silesian University of Technology Akademicka Gliwice, Poland {Henryk.Josinski;Adam.Switonski;Andrzej.Polanski; Konrad.Wojciechowski}@polsl.pl Abstract. This paper presents principles of designing multisegment mechanical system. Represented is a model of a single segment, its extension in form of a couple of segments and the final construction a fragmentary and simplified silhouette of a human form named the biped. This paper describes procedure of construction of the biped s digital model using Matlab package. It also discusses test run of a single experiment and algorithm of the calculations realized in the single step of integration. Introduction Scientists create physical and mathematical models of movement of a whole human form or its specified parts. Mathematical models enable creation of digital models to conduct computer simulation. Model testing makes it possible to analyse decomposition of forces and torques in a non-invasive way. The purpose of this research was to build a simple multisegment movement model in order to determine the principles of adding the successive segments and how to avoid their break-up. This is how the silhouette named biped was created. Its digital model created using Matlab package should enable to carry out simulation of the biped s movement. Literature related to this subject is extensive. Analysis of contents of a movement model was included in [9]. The dynamics of planar human body motion, solved with a non-iterative matrix formulation was presented in []. Worth mentioning is also item [3] of the bibliography where Brubaker et al proposed a model based on the Anthropomorphic Walker [5, 6], a physics-based planar model with two straight legs, a single torsional spring and an impulsive collision model. The Anthropomorphic Walker is simple, as it only exhibits human-like gaits on level ground. Brubaker et al [] introduced also the Kneed Walker a complex model of bipedal locomotion based on biomechanical characterizations of human walking [7]. It has a torso and two legs with knees and ankles. It is capable of exhibiting a wide range of plausible gait styles. A mathematical model of the swing phase of walking was presented in [8].

2 H. Josiński et al. Fig.. Decomposition of forces for a single segment Single Segment Movement Model Let s consider single segment with the mass m and length l, where centre of the mass is positioned in the point (X,Y ), its ends are at the points (x,y ),(x,y ) and the angle of vertical inclination is ϕ (Fig. ). Let s presume action of external forces: F with components F x and F y, F with components F x and F y and external control torque M. The following equations describe the segment s state: Ẍ = F x + F x m Ÿ = F y + F y m () g () ϕ = l [(F x F x ) cos ϕ + (F y F y )sin ϕ] I + M I where g represents acceleration of gravity and I is segment s moment of inertia relative to its axis of rotation crossing centre of the mass I = ml /. Equations allow to determine acceleration s vertical and horizontal component and also angular acceleration. State variables are represented by the centre of the mass coordinates ) (X,Y ), vertical and horizontal components of centre of mass velocity (Ẋ, Ẏ, angle ϕ and angular velocity ϕ. (3)

3 Matlab Based Interactive Simulation Program 3 Up to date segment s ends components are calculated using simple trigonometric equations: x = X + l sinϕ x = X l sinϕ y = Y l cos ϕ y = Y + l cos ϕ (4) (5) Differentiation allows to calculate vertical and horizontal components of segment s ends velocity: ẋ = ẋ = cos ϕ Ẋ + ϕl cos ϕ Ẋ ϕl ẏ = ẏ = sin ϕ Ẏ + ϕl sin ϕ Ẏ ϕl (6) (7) Successive differentiation leads to formulae describing segment s ends acceleration: ẍ = ẍ = cos ϕ Ẍ + ϕl cos ϕ Ẍ ϕl ϕ l sin ϕ + ϕ l sin ϕ ÿ = ÿ = sin ϕ Ÿ + ϕl sin ϕ Ÿ ϕl + ϕ l cos ϕ ϕ l cos ϕ (8) (9) Equations describing state of the segment allow to formulate general relationship between accelerations of the segment s ends and external influences forces and a control torque M: ẍ ÿ ẍ = M coef ÿ F x F y F x F y M (0) Symbol M coef represents coefficients matrix determined by the formulas (8), (9) allowing for equations (), (), (3). 3 Model of Couple of Segments Movement The case of joined segments requires doubling of the state variables set applied for the case of a single segment. Decomposition of forces and torques is shown on Fig. (index U denotes the upper segment whereas L the lower one).

4 4 H. Josiński et al. Fig.. Decomposition of forces for a couple of segments For the point of osculation of both segments (a joint) the following dependencies are fulfilled: Fx U = Fx L = Fx UL () Fy U = Fy L = Fy UL () M U = M L = M UL (3) where symbols Fx UL, Fy UL were introduced as notation for reaction forces. In the setup of two segments it is very important to prevent any break-up of the segments. For joint ends of both segments ( ) ( ) x U,y U, x L,y L the following conditions should hold: x U (t + t) = x L (t + t) y U (t + t) = y L (t + t) (4)

5 Matlab Based Interactive Simulation Program 5 Expansion of the functions x U (t), y U (t), x L (t), y L (t) into Taylor series leads to following dependencies (with sufficiently small t): F UL Mcoef L x U (t + t) = x U (t) + ẋ U (t) t + ẍ U (t) t x L (t + t) = x L (t) + ẋ L (t) t + ẍ L (t) t y U (t + t) = y U (t) + ẏ U (t) t + ÿ U (t) t y L (t + t) = y L (t) + ẏ L (t) t + ÿ L (t) t Conditions (4) enable to calculate unknown values of reaction forces F UL (5) (6) (7) (8) y. With this end in view appropriate parts of the coefficient matrices Mcoef U, should be substituted to the general formula (0) bearing in mind the dependencies (), (), (3). Next stage of the extension of multisegment system is setting of couples of segments into a fragmentary and simplified silhouette of a human form named the biped (Fig. 3). x, Fig. 3. Biped example of the multisegment mechanical system In the biped system there are following reaction forces:. From interaction upper leg lower leg (separately for left and right leg).. From interaction upper right leg upper left leg in the joint root. 3. Between the ground and a leg (separately for left and right leg). The biped s digital model was created by means of the Matlab package and used in simulation experiments. The goal of the discussed experiment was to simulate a biped s jump down on the ground. The following values of the model parameters were applied: mass of each segment m =, length of each segment l = 0.5, vertical coordinate of the root yl U (0) = yu R (0) =, angles of vertical inclination of individual segments: ϕ U L (0) = π/5, ϕl L (0) = π π/5, ϕu R (0) = π/6, ϕl R (0) = π π/6.

6 6 H. Josiński et al. 4 Test Run of a Single Experiment Experiment begins with setting of state variables initial values. Variables new values are calculated in consecutive moments spaced by the actual value of the integration step. This digital model applied ode45 integration method which is one of many Matlab methods for solving ordinary differential equations. It uses 4th and 5th order Runge-Kutta formulas and is based on the Dormand-Prince method [4]. Single integration step determines values of the right sides of the state equations. The calculations are carried out in following stages:. Kinetics of individual ends of the segments calculation of location and velocity.. Dynamics of individual ends of the segments calculation of coefficients matrices. 3. Forces of reaction with the ground at the current stage of the research they are set to Reaction forces in the joints joining segments usage of the Gauss elimination method with the application of coefficients matrices calculated in the point. 5. Dynamics of the centres of the mass of individual segments calculation of accelerations. 6. Drawing of the actual location of the segments. 7. Placing of calculated values of the right sides of the state equations (velocities as values of the appropriate state variables calculated in the previous integration step and accelerations calculated in the point 5) to the appropriate state variables derivatives. 8. Integration by means of the method ode45 gives new values to the state variables. Attainment of the limiting value of simulation time ends the experiment. The aim of this investigation was to find a graph depicting distance between joint ends of adjacent segments. Such distance was calculated as Euclidean distance between two points. For a couple of segments from the Fig. the applied formula is as follows: (x d = U ) ( ) xl + y U y L (9) Graphs acquired by using this formula for left and right knee joints are shown on Fig. 4A and 4B, respectively. For the joint root the formula (9) was modified as follows: d = (x U L xu R) + ( y U L y U R) (0) (indexes L and R denote upper ends of the upper segments of the left leg and the right one, respectively). Graph acquired for the root is shown on Fig 5. The order of magnitude of the segments ends distance read out from the graphs documents the empirical observation that the adjacent segments don t break up.

7 Matlab Based Interactive Simulation Program 7 A 7 x 0 6 B 6 x Fig. 4. The distance between common segments ends: A) of the left knee B) of the right knee.4 x Fig. 5. The distance between common segments ends of the root 5 Conclusion This paper aimed to present the method of construction of a simulation program for D multisegment mechanical systems. A model of such a system was created and implemented using Matlab package. Further investigations will include extensions of the model first of all worth mentioning is the problem of biped s various types of gait. Next plans comprise transfer of the model to 3D space and its numerical stability analysis. 6 Acknowledgements This paper has been supported by the project System with a library of modules for advanced analysis and an interactive synthesis of human motion co-financed by the European Regional Development Fund under the Innovative Economy Operational Programme Priority Axis. Research and development of modern technologies, measure.3. Development projects.

8 8 H. Josiński et al. References. Alciatore D., Abraham L., Barr R.: Matrix Solution of Digitized Planar Human Body Dynamics for Biomechanics Laboratory Instruction. Proceedings of the 99 ASME International Computers in Engineering Conference (99). Brubaker M.A., Fleet D.J.: The Kneed Walker for human pose tracking. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage (008) 3. Brubaker M., Fleet D.J., Hertzmann A.: Physics-based person tracking using simplified lower-body dynamics. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis (007) 4. Dormand J.R., Prince P.J.: A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics 6 (), pp. 9-6 (980) 5. Kuo A.D.: Energetics of Actively Powered Locomotion Using the Simple Walking Model. Journal of Biomechanical Engineering (00) 6. Kuo A.D.: Dynamic Walking Tutorial. NACOB 008, Ann Arbor (008) 7. McGeer T.: Dynamics and Control of Bipedal Locomotion. Journal of Theoretical Biology (993) 8. Mochon S., McMahon T.A.: Ballistic Walking. Journal of Biomechanics, Vol. 3, pp , (980) 9. Pandy M.G.: Advanced Computer Modeling of Human Movement. Clinical Research Methods in Gait Analysis, Gait CCRE (006)

Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

Human Identification Based on Gait Paths

Human Identification Based on Gait Paths Human Identification Based on Gait Paths Adam Świtoński 1,2, Andrzej Polański 1,2, Konrad Wojciechowski 1,2 1 Polish-Japanese Institute of Information Technology, Aleja Legionów 2, 41-902 Bytom, Poland

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6. Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE. F. R. Soha, I. A. Szabó, M. Budai. Abstract

DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE. F. R. Soha, I. A. Szabó, M. Budai. Abstract ACTA PHYSICA DEBRECINA XLVI, 143 (2012) DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE F. R. Soha, I. A. Szabó, M. Budai University of Debrecen, Department of Solid State Physics Abstract

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

EDUH 1017 - SPORTS MECHANICS

EDUH 1017 - SPORTS MECHANICS 4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

More information

Vectors VECTOR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the vector product of two vectors. Table of contents Begin Tutorial

Vectors VECTOR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the vector product of two vectors. Table of contents Begin Tutorial Vectors VECTOR PRODUCT Graham S McDonald A Tutorial Module for learning about the vector product of two vectors Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk 1. Theory 2. Exercises

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

Adequate Theory of Oscillator: A Prelude to Verification of Classical Mechanics Part 2

Adequate Theory of Oscillator: A Prelude to Verification of Classical Mechanics Part 2 International Letters of Chemistry, Physics and Astronomy Online: 213-9-19 ISSN: 2299-3843, Vol. 3, pp 1-1 doi:1.1852/www.scipress.com/ilcpa.3.1 212 SciPress Ltd., Switzerland Adequate Theory of Oscillator:

More information

Aim : To study how the time period of a simple pendulum changes when its amplitude is changed.

Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Teacher s Signature Name: Suvrat Raju Class: XIID Board Roll No.: Table of Contents Aim..................................................1

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Chapter 18 Static Equilibrium

Chapter 18 Static Equilibrium Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Lab #4 - Linear Impulse and Momentum

Lab #4 - Linear Impulse and Momentum Purpose: Lab #4 - Linear Impulse and Momentum The objective of this lab is to understand the linear and angular impulse/momentum relationship. Upon completion of this lab you will: Understand and know

More information

THE SECRET OF FREE ENERGY FROM THE PENDULUM

THE SECRET OF FREE ENERGY FROM THE PENDULUM THE SECRET OF FREE ENERGY FROM THE PENDULUM Jovan Marjanovic M.Sc. in Electrical Engineering e-mail: jmarjanovic@hotmail.com Veljko Milkovic Research & Development Center VEMIRC May 05, 2011, Novi Sad,

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

Classification of poses and movement phases

Classification of poses and movement phases Classification of poses and movement phases Adam Świtoński12,, Henryk Josiński 12, Karol Jedrasiak 1, Andrzej Polański 12, and Konrad Wojciechowski 12 1 Polish-Japanese Institute of Information Technology,

More information

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces. Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

More information

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu) 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

ACTUATOR DESIGN FOR ARC WELDING ROBOT

ACTUATOR DESIGN FOR ARC WELDING ROBOT ACTUATOR DESIGN FOR ARC WELDING ROBOT 1 Anurag Verma, 2 M. M. Gor* 1 G.H Patel College of Engineering & Technology, V.V.Nagar-388120, Gujarat, India 2 Parul Institute of Engineering & Technology, Limda-391760,

More information

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist MHER GRIGORIAN, TAREK SOBH Department of Computer Science and Engineering, U. of Bridgeport, USA ABSTRACT Robot

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

Original research papers

Original research papers Pol. J. Sport Tourism, 9, 8-7 DOI:.78/v97---z 8 Original research papers THE IMPACT OF ANKLE JOINT STIFFENING BY SKI EQUIPMENT ON MAINTENANCE OF BODY BALANCE The impact of ski equipment on body balance

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Mechanical Principles

Mechanical Principles Unit 4: Mechanical Principles Unit code: F/601/1450 QCF level: 5 Credit value: 15 OUTCOME 4 POWER TRANSMISSION TUTORIAL 2 BALANCING 4. Dynamics of rotating systems Single and multi-link mechanisms: slider

More information

The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w

The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w Chapter 4 Vehicle Dynamics 4.. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration

More information

Awell-known lecture demonstration1

Awell-known lecture demonstration1 Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40-506; mungan@usna.edu Awell-known lecture demonstration consists of pulling a spool by the free end

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

3. KINEMATICS IN TWO DIMENSIONS; VECTORS.

3. KINEMATICS IN TWO DIMENSIONS; VECTORS. 3. KINEMATICS IN TWO DIMENSIONS; VECTORS. Key words: Motion in Two Dimensions, Scalars, Vectors, Addition of Vectors by Graphical Methods, Tail to Tip Method, Parallelogram Method, Negative Vector, Vector

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

More information

Lab 7: Rotational Motion

Lab 7: Rotational Motion Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

2013 MBA Jump Start Program

2013 MBA Jump Start Program 2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Rotational Motion: Moment of Inertia

Rotational Motion: Moment of Inertia Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

Vector Algebra II: Scalar and Vector Products

Vector Algebra II: Scalar and Vector Products Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

More information

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

EXPERIMENT: MOMENT OF INERTIA

EXPERIMENT: MOMENT OF INERTIA OBJECTIVES EXPERIMENT: MOMENT OF INERTIA to familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in

More information

2. Spin Chemistry and the Vector Model

2. Spin Chemistry and the Vector Model 2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A.

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. MECHANICS: STATICS AND DYNAMICS Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. Keywords: mechanics, statics, dynamics, equilibrium, kinematics,

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

Vision-based Walking Parameter Estimation for Biped Locomotion Imitation

Vision-based Walking Parameter Estimation for Biped Locomotion Imitation Vision-based Walking Parameter Estimation for Biped Locomotion Imitation Juan Pedro Bandera Rubio 1, Changjiu Zhou 2 and Francisco Sandoval Hernández 1 1 Dpto. Tecnología Electrónica, E.T.S.I. Telecomunicación

More information

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad. Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

KIN 335 - Biomechanics LAB: Ground Reaction Forces - Linear Kinetics

KIN 335 - Biomechanics LAB: Ground Reaction Forces - Linear Kinetics KIN 335 - Biomechanics LAB: Ground Reaction Forces - Linear Kinetics Reading Assignment: 1) Luhtanen, P. and Komi, P.V. (1978). Segmental contribution to forces in vertical jump. European Journal of Applied

More information

Terminology of Human Walking From North American Society for Gait and Human Movement 1993 and AAOP Gait Society 1994

Terminology of Human Walking From North American Society for Gait and Human Movement 1993 and AAOP Gait Society 1994 Gait Cycle: The period of time from one event (usually initial contact) of one foot to the following occurrence of the same event with the same foot. Abbreviated GC. Gait Stride: The distance from initial

More information

ACCELERATION OF HEAVY TRUCKS Woodrow M. Poplin, P.E.

ACCELERATION OF HEAVY TRUCKS Woodrow M. Poplin, P.E. ACCELERATION OF HEAVY TRUCKS Woodrow M. Poplin, P.E. Woodrow M. Poplin, P.E. is a consulting engineer specializing in the evaluation of vehicle and transportation accidents. Over the past 23 years he has

More information

Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER

Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER 1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.

More information

Practice Exam Three Solutions

Practice Exam Three Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

Slide 10.1. Basic system Models

Slide 10.1. Basic system Models Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal

More information

DTW-based Gait Recognition from Recovered 3-D Joint Angles and Inter-ankle Distance

DTW-based Gait Recognition from Recovered 3-D Joint Angles and Inter-ankle Distance DTW-based Gait Recognition from Recovered 3-D Joint Angles and Inter-ankle Distance Tomasz Krzeszowski 3, Adam Switonski 2, 4, Bogdan Kwolek 1, Henryk Josinski 4, and Konrad Wojciechowski 2 1 AGH University

More information

CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER

CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 93 CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 5.1 INTRODUCTION The development of an active trap based feeder for handling brakeliners was discussed

More information

Lecture L6 - Intrinsic Coordinates

Lecture L6 - Intrinsic Coordinates S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

More information

Lecture L5 - Other Coordinate Systems

Lecture L5 - Other Coordinate Systems S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates

More information

Lab 2: Vector Analysis

Lab 2: Vector Analysis Lab 2: Vector Analysis Objectives: to practice using graphical and analytical methods to add vectors in two dimensions Equipment: Meter stick Ruler Protractor Force table Ring Pulleys with attachments

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

Experiment 9. The Pendulum

Experiment 9. The Pendulum Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

More information

GAIT DEVELOPMENT FOR THE TYROL BIPED ROBOT

GAIT DEVELOPMENT FOR THE TYROL BIPED ROBOT Proceedings of ECTC 2007 2007 ASME Early Career Technical Conference October 5-6, 2007, Miami, Florida USA GAIT DEVELOPMENT FOR THE TYROL BIPED ROBOT Vishnu Madadi, Mehmet Ismet Can Dede, and Sabri Tosunoglu

More information

Slow Tree Climbing Robot Analysis of Performance

Slow Tree Climbing Robot Analysis of Performance Slow Tree Climbing Robot Analysis of Performance Prakash Karamari 1, Prajwal Subbhapurmath 2 1Student, Department of Industrial and Production engineering, B.V.Bhoomaraddi college of engineering and technology,

More information

Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility

Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility Renuka V. S. & Abraham T Mathew Electrical Engineering Department, NIT Calicut E-mail : renuka_mee@nitc.ac.in,

More information

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics D.G. Simpson, Ph.D. Department of Physical Sciences an Engineering Prince George s Community College December 5, 007 Introuction In this course we have been stuying

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

More information

Chapter 11 Equilibrium

Chapter 11 Equilibrium 11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite 4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The

More information

Symmetric planar non collinear relative equilibria for the Lennard Jones potential 3 body problem with two equal masses

Symmetric planar non collinear relative equilibria for the Lennard Jones potential 3 body problem with two equal masses Monografías de la Real Academia de Ciencias de Zaragoza. 25: 93 114, (2004). Symmetric planar non collinear relative equilibria for the Lennard Jones potential 3 body problem with two equal masses M. Corbera,

More information

The Kneed Walker for Human Pose Tracking

The Kneed Walker for Human Pose Tracking The Kneed Walker for Human Pose Tracking Marcus A. Brubaker David J. Fleet Department of Computer Science University of Toronto {mbrubake,fleet}@cs.toronto.edu Abstract The Kneed Walker is a physics-based

More information

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

Pre-requisites 2012-2013

Pre-requisites 2012-2013 Pre-requisites 2012-2013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.

More information

Virtual Disk Drive Design Game with Links to Math, Physics and Dissection Activities

Virtual Disk Drive Design Game with Links to Math, Physics and Dissection Activities Virtual Disk Drive Design Game with Links to Math, Physics and Dissection Activities Rebecca Richkus, Alice M. Agogino, David Yu, and David Tang Department of Mechanical Engineering University of California,

More information

4.2 Free Body Diagrams

4.2 Free Body Diagrams CE297-FA09-Ch4 Page 1 Friday, September 18, 2009 12:11 AM Chapter 4: Equilibrium of Rigid Bodies A (rigid) body is said to in equilibrium if the vector sum of ALL forces and all their moments taken about

More information

Unit 3 Work and Energy Suggested Time: 25 Hours

Unit 3 Work and Energy Suggested Time: 25 Hours Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense

More information

Universal Law of Gravitation

Universal Law of Gravitation Universal Law of Gravitation Law: Every body exerts a force of attraction on every other body. This force called, gravity, is relatively weak and decreases rapidly with the distance separating the bodies

More information

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES Simple machines: lifting devices e.g. lever systems, inclined plane, screw jack, pulley blocks, Weston differential

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES

SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 4. On completion of this tutorial

More information

Laws of Collision / demonstration track

Laws of Collision / demonstration track Related topics Conservation of momentum, conservation of energy, linear motion, velocity, elastic loss, elastic collision, inelastic collision. Principle The velocities of two carts, moving on a, are measured

More information

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa. Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

More information

CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras

CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras 1 CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation Prof. Dr. Hani Hagras Robot Locomotion Robots might want to move in water, in the air, on land, in space.. 2 Most of the

More information

Physics-Based Person Tracking Using Simplified Lower-Body Dynamics

Physics-Based Person Tracking Using Simplified Lower-Body Dynamics Physics-Based Person Tracking Using Simplified Lower-Body Dynamics Marcus A. Brubaker, David J. Fleet, Aaron Hertzmann Department of Computer Science University of Toronto {mbrubake,fleet,hertzman}@cs.toronto.edu

More information