Matlab Based Interactive Simulation Program for 2D Multisegment Mechanical Systems

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Matlab Based Interactive Simulation Program for 2D Multisegment Mechanical Systems"

Transcription

1 Matlab Based Interactive Simulation Program for D Multisegment Mechanical Systems Henryk Josiński,, Adam Świtoński,, Karol Jędrasiak, Andrzej Polański,, and Konrad Wojciechowski, Polish-Japanese Institute of Information Technology Aleja Legionów 4-90 Bytom, Poland Silesian University of Technology Akademicka Gliwice, Poland {Henryk.Josinski;Adam.Switonski;Andrzej.Polanski; Abstract. This paper presents principles of designing multisegment mechanical system. Represented is a model of a single segment, its extension in form of a couple of segments and the final construction a fragmentary and simplified silhouette of a human form named the biped. This paper describes procedure of construction of the biped s digital model using Matlab package. It also discusses test run of a single experiment and algorithm of the calculations realized in the single step of integration. Introduction Scientists create physical and mathematical models of movement of a whole human form or its specified parts. Mathematical models enable creation of digital models to conduct computer simulation. Model testing makes it possible to analyse decomposition of forces and torques in a non-invasive way. The purpose of this research was to build a simple multisegment movement model in order to determine the principles of adding the successive segments and how to avoid their break-up. This is how the silhouette named biped was created. Its digital model created using Matlab package should enable to carry out simulation of the biped s movement. Literature related to this subject is extensive. Analysis of contents of a movement model was included in [9]. The dynamics of planar human body motion, solved with a non-iterative matrix formulation was presented in []. Worth mentioning is also item [3] of the bibliography where Brubaker et al proposed a model based on the Anthropomorphic Walker [5, 6], a physics-based planar model with two straight legs, a single torsional spring and an impulsive collision model. The Anthropomorphic Walker is simple, as it only exhibits human-like gaits on level ground. Brubaker et al [] introduced also the Kneed Walker a complex model of bipedal locomotion based on biomechanical characterizations of human walking [7]. It has a torso and two legs with knees and ankles. It is capable of exhibiting a wide range of plausible gait styles. A mathematical model of the swing phase of walking was presented in [8].

2 H. Josiński et al. Fig.. Decomposition of forces for a single segment Single Segment Movement Model Let s consider single segment with the mass m and length l, where centre of the mass is positioned in the point (X,Y ), its ends are at the points (x,y ),(x,y ) and the angle of vertical inclination is ϕ (Fig. ). Let s presume action of external forces: F with components F x and F y, F with components F x and F y and external control torque M. The following equations describe the segment s state: Ẍ = F x + F x m Ÿ = F y + F y m () g () ϕ = l [(F x F x ) cos ϕ + (F y F y )sin ϕ] I + M I where g represents acceleration of gravity and I is segment s moment of inertia relative to its axis of rotation crossing centre of the mass I = ml /. Equations allow to determine acceleration s vertical and horizontal component and also angular acceleration. State variables are represented by the centre of the mass coordinates ) (X,Y ), vertical and horizontal components of centre of mass velocity (Ẋ, Ẏ, angle ϕ and angular velocity ϕ. (3)

3 Matlab Based Interactive Simulation Program 3 Up to date segment s ends components are calculated using simple trigonometric equations: x = X + l sinϕ x = X l sinϕ y = Y l cos ϕ y = Y + l cos ϕ (4) (5) Differentiation allows to calculate vertical and horizontal components of segment s ends velocity: ẋ = ẋ = cos ϕ Ẋ + ϕl cos ϕ Ẋ ϕl ẏ = ẏ = sin ϕ Ẏ + ϕl sin ϕ Ẏ ϕl (6) (7) Successive differentiation leads to formulae describing segment s ends acceleration: ẍ = ẍ = cos ϕ Ẍ + ϕl cos ϕ Ẍ ϕl ϕ l sin ϕ + ϕ l sin ϕ ÿ = ÿ = sin ϕ Ÿ + ϕl sin ϕ Ÿ ϕl + ϕ l cos ϕ ϕ l cos ϕ (8) (9) Equations describing state of the segment allow to formulate general relationship between accelerations of the segment s ends and external influences forces and a control torque M: ẍ ÿ ẍ = M coef ÿ F x F y F x F y M (0) Symbol M coef represents coefficients matrix determined by the formulas (8), (9) allowing for equations (), (), (3). 3 Model of Couple of Segments Movement The case of joined segments requires doubling of the state variables set applied for the case of a single segment. Decomposition of forces and torques is shown on Fig. (index U denotes the upper segment whereas L the lower one).

4 4 H. Josiński et al. Fig.. Decomposition of forces for a couple of segments For the point of osculation of both segments (a joint) the following dependencies are fulfilled: Fx U = Fx L = Fx UL () Fy U = Fy L = Fy UL () M U = M L = M UL (3) where symbols Fx UL, Fy UL were introduced as notation for reaction forces. In the setup of two segments it is very important to prevent any break-up of the segments. For joint ends of both segments ( ) ( ) x U,y U, x L,y L the following conditions should hold: x U (t + t) = x L (t + t) y U (t + t) = y L (t + t) (4)

5 Matlab Based Interactive Simulation Program 5 Expansion of the functions x U (t), y U (t), x L (t), y L (t) into Taylor series leads to following dependencies (with sufficiently small t): F UL Mcoef L x U (t + t) = x U (t) + ẋ U (t) t + ẍ U (t) t x L (t + t) = x L (t) + ẋ L (t) t + ẍ L (t) t y U (t + t) = y U (t) + ẏ U (t) t + ÿ U (t) t y L (t + t) = y L (t) + ẏ L (t) t + ÿ L (t) t Conditions (4) enable to calculate unknown values of reaction forces F UL (5) (6) (7) (8) y. With this end in view appropriate parts of the coefficient matrices Mcoef U, should be substituted to the general formula (0) bearing in mind the dependencies (), (), (3). Next stage of the extension of multisegment system is setting of couples of segments into a fragmentary and simplified silhouette of a human form named the biped (Fig. 3). x, Fig. 3. Biped example of the multisegment mechanical system In the biped system there are following reaction forces:. From interaction upper leg lower leg (separately for left and right leg).. From interaction upper right leg upper left leg in the joint root. 3. Between the ground and a leg (separately for left and right leg). The biped s digital model was created by means of the Matlab package and used in simulation experiments. The goal of the discussed experiment was to simulate a biped s jump down on the ground. The following values of the model parameters were applied: mass of each segment m =, length of each segment l = 0.5, vertical coordinate of the root yl U (0) = yu R (0) =, angles of vertical inclination of individual segments: ϕ U L (0) = π/5, ϕl L (0) = π π/5, ϕu R (0) = π/6, ϕl R (0) = π π/6.

6 6 H. Josiński et al. 4 Test Run of a Single Experiment Experiment begins with setting of state variables initial values. Variables new values are calculated in consecutive moments spaced by the actual value of the integration step. This digital model applied ode45 integration method which is one of many Matlab methods for solving ordinary differential equations. It uses 4th and 5th order Runge-Kutta formulas and is based on the Dormand-Prince method [4]. Single integration step determines values of the right sides of the state equations. The calculations are carried out in following stages:. Kinetics of individual ends of the segments calculation of location and velocity.. Dynamics of individual ends of the segments calculation of coefficients matrices. 3. Forces of reaction with the ground at the current stage of the research they are set to Reaction forces in the joints joining segments usage of the Gauss elimination method with the application of coefficients matrices calculated in the point. 5. Dynamics of the centres of the mass of individual segments calculation of accelerations. 6. Drawing of the actual location of the segments. 7. Placing of calculated values of the right sides of the state equations (velocities as values of the appropriate state variables calculated in the previous integration step and accelerations calculated in the point 5) to the appropriate state variables derivatives. 8. Integration by means of the method ode45 gives new values to the state variables. Attainment of the limiting value of simulation time ends the experiment. The aim of this investigation was to find a graph depicting distance between joint ends of adjacent segments. Such distance was calculated as Euclidean distance between two points. For a couple of segments from the Fig. the applied formula is as follows: (x d = U ) ( ) xl + y U y L (9) Graphs acquired by using this formula for left and right knee joints are shown on Fig. 4A and 4B, respectively. For the joint root the formula (9) was modified as follows: d = (x U L xu R) + ( y U L y U R) (0) (indexes L and R denote upper ends of the upper segments of the left leg and the right one, respectively). Graph acquired for the root is shown on Fig 5. The order of magnitude of the segments ends distance read out from the graphs documents the empirical observation that the adjacent segments don t break up.

7 Matlab Based Interactive Simulation Program 7 A 7 x 0 6 B 6 x Fig. 4. The distance between common segments ends: A) of the left knee B) of the right knee.4 x Fig. 5. The distance between common segments ends of the root 5 Conclusion This paper aimed to present the method of construction of a simulation program for D multisegment mechanical systems. A model of such a system was created and implemented using Matlab package. Further investigations will include extensions of the model first of all worth mentioning is the problem of biped s various types of gait. Next plans comprise transfer of the model to 3D space and its numerical stability analysis. 6 Acknowledgements This paper has been supported by the project System with a library of modules for advanced analysis and an interactive synthesis of human motion co-financed by the European Regional Development Fund under the Innovative Economy Operational Programme Priority Axis. Research and development of modern technologies, measure.3. Development projects.

8 8 H. Josiński et al. References. Alciatore D., Abraham L., Barr R.: Matrix Solution of Digitized Planar Human Body Dynamics for Biomechanics Laboratory Instruction. Proceedings of the 99 ASME International Computers in Engineering Conference (99). Brubaker M.A., Fleet D.J.: The Kneed Walker for human pose tracking. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage (008) 3. Brubaker M., Fleet D.J., Hertzmann A.: Physics-based person tracking using simplified lower-body dynamics. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis (007) 4. Dormand J.R., Prince P.J.: A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics 6 (), pp. 9-6 (980) 5. Kuo A.D.: Energetics of Actively Powered Locomotion Using the Simple Walking Model. Journal of Biomechanical Engineering (00) 6. Kuo A.D.: Dynamic Walking Tutorial. NACOB 008, Ann Arbor (008) 7. McGeer T.: Dynamics and Control of Bipedal Locomotion. Journal of Theoretical Biology (993) 8. Mochon S., McMahon T.A.: Ballistic Walking. Journal of Biomechanics, Vol. 3, pp , (980) 9. Pandy M.G.: Advanced Computer Modeling of Human Movement. Clinical Research Methods in Gait Analysis, Gait CCRE (006)

Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

More information

SIMULATION OF WALKING HUMANOID ROBOT BASED ON MATLAB/SIMMECHANICS. Sébastien Corner

SIMULATION OF WALKING HUMANOID ROBOT BASED ON MATLAB/SIMMECHANICS. Sébastien Corner SIMULATION OF WALKING HUMANOID ROBOT BASED ON MATLAB/SIMMECHANICS Sébastien Corner scorner@vt.edu The Robotics & Mechanisms Laboratory, RoMeLa Department of Mechanical Engineering of the University of

More information

Chapter 24 Physical Pendulum

Chapter 24 Physical Pendulum Chapter 4 Physical Pendulum 4.1 Introduction... 1 4.1.1 Simple Pendulum: Torque Approach... 1 4. Physical Pendulum... 4.3 Worked Examples... 4 Example 4.1 Oscillating Rod... 4 Example 4.3 Torsional Oscillator...

More information

Single and Double plane pendulum

Single and Double plane pendulum Single and Double plane pendulum Gabriela González 1 Introduction We will write down equations of motion for a single and a double plane pendulum, following Newton s equations, and using Lagrange s equations.

More information

Example (1): Motion of a block on a frictionless incline plane

Example (1): Motion of a block on a frictionless incline plane Firm knowledge of vector analysis and kinematics is essential to describe the dynamics of physical systems chosen for analysis through ewton s second law. Following problem solving strategy will allow

More information

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS Today s Objectives: Students will be able to: 1. Analyze the planar kinetics of a rigid body undergoing rotational motion. In-Class Activities: Applications

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

People s Physics book 3e Ch 25-1

People s Physics book 3e Ch 25-1 The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate

More information

Human Identification Based on Gait Paths

Human Identification Based on Gait Paths Human Identification Based on Gait Paths Adam Świtoński 1,2, Andrzej Polański 1,2, Konrad Wojciechowski 1,2 1 Polish-Japanese Institute of Information Technology, Aleja Legionów 2, 41-902 Bytom, Poland

More information

An Introduction to Using Simulink. Exercises

An Introduction to Using Simulink. Exercises An Introduction to Using Simulink Exercises Eric Peasley, Department of Engineering Science, University of Oxford version 4.1, 2013 PART 1 Exercise 1 (Cannon Ball) This exercise is designed to introduce

More information

Forces. -using a consistent system of units, such as the metric system, we can define force as:

Forces. -using a consistent system of units, such as the metric system, we can define force as: Forces Force: -physical property which causes masses to accelerate (change of speed or direction) -a push or pull -vector possessing both a magnitude and a direction and adds according to the Parallelogram

More information

Anyone who has studied calculus has probably solved the classic falling ladder

Anyone who has studied calculus has probably solved the classic falling ladder The Falling Ladder Paradox Paul Scholten, Miami University, Oxford, OH 45056 Andrew Simoson, King College, Bristol, TN 3760 The College Mathematics Journal, January 996, Volume 7, Number, pp. 49 54 Anyone

More information

A Simple Algorithm for Generating Stable Biped Walking Patterns

A Simple Algorithm for Generating Stable Biped Walking Patterns International Journal of Computer Applications (975 8887) A Simple Algorithm for Generating Stable Biped Walking Patterns Hayder F. N. Al- Shuka Baghdad University,Mech. Eng. Dep., Iraq Burkhard J. Corves

More information

Control System Design for a Prosthetic Leg Using Series Damping Actuator

Control System Design for a Prosthetic Leg Using Series Damping Actuator NUST Journal of Engineering Sciences, Vol. 5, No.,, pp.-5 Control System Design for a Prosthetic Leg Using Series Damping Actuator Muhammad Jawad Khan, Muhammad Raheel Afzal, Noman Naseer, Zafar-Ullah

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6. Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

More information

DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE. F. R. Soha, I. A. Szabó, M. Budai. Abstract

DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE. F. R. Soha, I. A. Szabó, M. Budai. Abstract ACTA PHYSICA DEBRECINA XLVI, 143 (2012) DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE F. R. Soha, I. A. Szabó, M. Budai University of Debrecen, Department of Solid State Physics Abstract

More information

EDUH 1017 - SPORTS MECHANICS

EDUH 1017 - SPORTS MECHANICS 4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

More information

Physics in the Laundromat

Physics in the Laundromat Physics in the Laundromat Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (Aug. 5, 1997) Abstract The spin cycle of a washing machine involves motion that is stabilized

More information

Aim : To study how the time period of a simple pendulum changes when its amplitude is changed.

Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Teacher s Signature Name: Suvrat Raju Class: XIID Board Roll No.: Table of Contents Aim..................................................1

More information

T elbow = - (F * R) =- ( 100 N * 0.3 meters) = - 30 Nm

T elbow = - (F * R) =- ( 100 N * 0.3 meters) = - 30 Nm Biomechanics IPHY 4540 Problem Set #10 For all quantitative problems, please list all known variables, the variables that you need to find, and put a box around your final answers. Answers must include

More information

Adequate Theory of Oscillator: A Prelude to Verification of Classical Mechanics Part 2

Adequate Theory of Oscillator: A Prelude to Verification of Classical Mechanics Part 2 International Letters of Chemistry, Physics and Astronomy Online: 213-9-19 ISSN: 2299-3843, Vol. 3, pp 1-1 doi:1.1852/www.scipress.com/ilcpa.3.1 212 SciPress Ltd., Switzerland Adequate Theory of Oscillator:

More information

Measurement of the Horizontal Component (H) of Earth's Magnetic Field Dr. Tim Niiler, WCU based on lab by Dr. Harold Skelton

Measurement of the Horizontal Component (H) of Earth's Magnetic Field Dr. Tim Niiler, WCU based on lab by Dr. Harold Skelton Measurement of the Horizontal Component (H) of Earth's Magnetic Field Dr. Tim Niiler, WCU based on lab by Dr. Harold Skelton Background The Earth's magnetic field is of interest to scientists due to its

More information

Chapter 18 Static Equilibrium

Chapter 18 Static Equilibrium Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

More information

Kinematics is the study of motion. Generally, this involves describing the position, velocity, and acceleration of an object.

Kinematics is the study of motion. Generally, this involves describing the position, velocity, and acceleration of an object. Kinematics Kinematics is the study of motion. Generally, this involves describing the position, velocity, and acceleration of an object. Reference frame In order to describe movement, we need to set a

More information

A Simple Model for Ski Jump Flight Mechanics Used as a Tool for Teaching Aircraft Gliding Flight

A Simple Model for Ski Jump Flight Mechanics Used as a Tool for Teaching Aircraft Gliding Flight e-περιοδικό Επιστήμης & Τεχνολογίας 33 A Simple Model for Ski Jump Flight Mechanics Used as a Tool for Teaching Aircraft Gliding Flight Vassilios McInnes Spathopoulos Department of Aircraft Technology

More information

Equilibrium. To determine the mass of unknown objects by utilizing the known force requirements of an equilibrium

Equilibrium. To determine the mass of unknown objects by utilizing the known force requirements of an equilibrium Equilibrium Object To determine the mass of unknown objects by utilizing the known force requirements of an equilibrium situation. 2 Apparatus orce table, masses, mass pans, metal loop, pulleys, strings,

More information

Lab # 3 - Angular Kinematics

Lab # 3 - Angular Kinematics Purpose: Lab # 3 - Angular Kinematics The objective of this lab is to understand the relationship between segment angles and joint angles. Upon completion of this lab you will: Understand and know how

More information

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces. Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

More information

Classification of poses and movement phases

Classification of poses and movement phases Classification of poses and movement phases Adam Świtoński12,, Henryk Josiński 12, Karol Jedrasiak 1, Andrzej Polański 12, and Konrad Wojciechowski 12 1 Polish-Japanese Institute of Information Technology,

More information

Problem of the gyroscopic stabilizer damping

Problem of the gyroscopic stabilizer damping Applied and Computational Mechanics 3 (2009) 205 212 Problem of the gyroscopic stabilizer damping J. Šklíba a, a Faculty of Mechanical Engineering, Technical University in Liberec, Studentská 2, 461 17,

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Lecture L19 - Vibration, Normal Modes, Natural Frequencies, Instability

Lecture L19 - Vibration, Normal Modes, Natural Frequencies, Instability S. Widnall 16.07 Dynamics Fall 2009 Version 1.0 Lecture L19 - Vibration, Normal Modes, Natural Frequencies, Instability Vibration, Instability An important class of problems in dynamics concerns the free

More information

1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. t + ") # x (t) = A! n. t + ") # v(0) = A!

1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. t + ) # x (t) = A! n. t + ) # v(0) = A! 1.1 Using Figure 1.6, verify that equation (1.1) satisfies the initial velocity condition. Solution: Following the lead given in Example 1.1., write down the general expression of the velocity by differentiating

More information

Angular Momentum Problems Challenge Problems

Angular Momentum Problems Challenge Problems Angular Momentum Problems Challenge Problems Problem 1: Toy Locomotive A toy locomotive of mass m L runs on a horizontal circular track of radius R and total mass m T. The track forms the rim of an otherwise

More information

PHYS 251 HONOURS CLASSICAL MECHANICS 2014 Homework Set 6 Solutions

PHYS 251 HONOURS CLASSICAL MECHANICS 2014 Homework Set 6 Solutions PHYS 51 HONOURS CLASSICAL MECHANICS 014 Homework Set 6 Solutions 6.5. Spring on a T Let the l-rod be horizontal (parallel to the x axis at t = 0. Then, as it rotates with constant angular frequency ω,

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

ACTUATOR DESIGN FOR ARC WELDING ROBOT

ACTUATOR DESIGN FOR ARC WELDING ROBOT ACTUATOR DESIGN FOR ARC WELDING ROBOT 1 Anurag Verma, 2 M. M. Gor* 1 G.H Patel College of Engineering & Technology, V.V.Nagar-388120, Gujarat, India 2 Parul Institute of Engineering & Technology, Limda-391760,

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

Landing gear analysis. Kinematics and Dynamics

Landing gear analysis. Kinematics and Dynamics Bugatti p Reve Bleu Landing gear analysis Kinematics and Dynamics vr2 (preliminary version) João Paulo Pinto Email: joao_icaro@yahoo.com Skype: pintovski LinkedIN: https://www.linkedin.com/pub/jo%c3%a3o-pinto/9/98/a77

More information

Section 8.1. If x is a function of a real variable t and f is a function of both x and t, then the equation

Section 8.1. If x is a function of a real variable t and f is a function of both x and t, then the equation Section 8.1 Numerical Solutions of Differential Equations If x is a function of a real variable t and f is a function of both x and t, then the equation ẋ(t) = f(x(t), t) (8.1.1) is called a first order

More information

Chapter 13, example problems: x (cm) 10.0

Chapter 13, example problems: x (cm) 10.0 Chapter 13, example problems: (13.04) Reading Fig. 13-30 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.

More information

A B = AB sin(θ) = A B = AB (2) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product

A B = AB sin(θ) = A B = AB (2) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product 1 Dot Product and Cross Products For two vectors, the dot product is a number A B = AB cos(θ) = A B = AB (1) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

04-1. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2.

04-1. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2. Force and Motion Sections Covered in the Text: Chapters 4 and 8 Thus far we have studied some attributes of motion. But the cause of the motion, namely force, we have essentially ignored. It is true that

More information

Physics 160 Biomechanics. Newton s Laws

Physics 160 Biomechanics. Newton s Laws Physics 160 Biomechanics Newton s Laws Questions to Think About Why does it take more force to cause an object to start sliding than it does to keep it sliding? Why is a ligament more likely to tear during

More information

Matrices in Statics and Mechanics

Matrices in Statics and Mechanics Matrices in Statics and Mechanics Casey Pearson 3/19/2012 Abstract The goal of this project is to show how linear algebra can be used to solve complex, multi-variable statics problems as well as illustrate

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w

The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w Chapter 4 Vehicle Dynamics 4.. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

Bead moving along a thin, rigid, wire.

Bead moving along a thin, rigid, wire. Bead moving along a thin, rigid, wire. odolfo. osales, Department of Mathematics, Massachusetts Inst. of Technology, Cambridge, Massachusetts, MA 02139 October 17, 2004 Abstract An equation describing

More information

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist MHER GRIGORIAN, TAREK SOBH Department of Computer Science and Engineering, U. of Bridgeport, USA ABSTRACT Robot

More information

Average Angular Velocity

Average Angular Velocity Average Angular Velocity Hanno Essén Department of Mechanics Royal Institute of Technology S-100 44 Stockholm, Sweden 199, December Abstract This paper addresses the problem of the separation of rotational

More information

Vectors VECTOR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the vector product of two vectors. Table of contents Begin Tutorial

Vectors VECTOR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the vector product of two vectors. Table of contents Begin Tutorial Vectors VECTOR PRODUCT Graham S McDonald A Tutorial Module for learning about the vector product of two vectors Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk 1. Theory 2. Exercises

More information

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS Today s Objectives: Students will be able to: 1. Analyze the planar kinetics In-Class Activities: of a rigid body undergoing rotational motion. Check Homework

More information

Physics 211 Week 12. Simple Harmonic Motion: Equation of Motion

Physics 211 Week 12. Simple Harmonic Motion: Equation of Motion Physics 11 Week 1 Simple Harmonic Motion: Equation of Motion A mass M rests on a frictionless table and is connected to a spring of spring constant k. The other end of the spring is fixed to a vertical

More information

First Semester Learning Targets

First Semester Learning Targets First Semester Learning Targets 1.1.Can define major components of the scientific method 1.2.Can accurately carry out conversions using dimensional analysis 1.3.Can utilize and convert metric prefixes

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Recapitulation: Forces and Torques for static manipulators

Recapitulation: Forces and Torques for static manipulators Recapitulation: Forces and Torques for static manipulators For propagation of forces and torques in a non-moving manipulator, the following equations hold: i f i = i i+r i+ f i+ i n i = i i+r i+ n i+ +

More information

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu) 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

Chapter 10: Terminology and Measurement in Biomechanics

Chapter 10: Terminology and Measurement in Biomechanics Chapter 10: Terminology and Measurement in Biomechanics KINESIOLOGY Scientific Basis of Human Motion, 11th edition Hamilton, Weimar & Luttgens Presentation Created by TK Koesterer, Ph.D., ATC Humboldt

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Mechanical Principles

Mechanical Principles Unit 4: Mechanical Principles Unit code: F/601/1450 QCF level: 5 Credit value: 15 OUTCOME 4 POWER TRANSMISSION TUTORIAL 2 BALANCING 4. Dynamics of rotating systems Single and multi-link mechanisms: slider

More information

KIN Biomechanics

KIN Biomechanics KIN 335 - Biomechanics LAB: Center of Mass (Center of Gravity) of the Human Body Reading Assignment: Bishop, R.D. & Hay, J.G. (1979). Basketball: the mechanics of hanging in the air. Medicine and Science

More information

HOW TO SOLVE KINEMATICS PROBLEMS

HOW TO SOLVE KINEMATICS PROBLEMS HOW TO SOLVE KINEMATICS PROBLEMS To solve problems involving straight line motion with constant acceleration it is important to clearly identify what is known and what we are looking for and choose which

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2001 APPLIED MATHEMATICS HIGHER LEVEL

AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2001 APPLIED MATHEMATICS HIGHER LEVEL M3 AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 00 APPLIED MATHEMATICS HIGHER LEVEL FRIDAY, JUNE AFTERNOON,.00 to 4.30 Six questions to be answered. All questions carry equal marks.

More information

Lecture L20 - Energy Methods: Lagrange s Equations

Lecture L20 - Energy Methods: Lagrange s Equations S. Widnall 6.07 Dynamics Fall 009 Version 3.0 Lecture L0 - Energy Methods: Lagrange s Equations The motion of particles and rigid bodies is governed by ewton s law. In this section, we will derive an alternate

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

s r or equivalently sr linear velocity vr Rotation its description and what causes it? Consider a disk rotating at constant angular velocity.

s r or equivalently sr linear velocity vr Rotation its description and what causes it? Consider a disk rotating at constant angular velocity. Rotation its description and what causes it? Consider a disk rotating at constant angular velocity. Rotation involves turning. Turning implies change of angle. Turning is about an axis of rotation. All

More information

Dynamics. Figure 1: Dynamics used to generate an exemplar of the letter A. To generate

Dynamics. Figure 1: Dynamics used to generate an exemplar of the letter A. To generate Dynamics Any physical system, such as neurons or muscles, will not respond instantaneously in time but will have a time-varying response termed the dynamics. The dynamics of neurons are an inevitable constraint

More information

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture

More information

Chapter 8- Rotational Motion

Chapter 8- Rotational Motion Chapter 8- Rotational Motion Textbook (Giancoli, 6 th edition): Assignment 9 Due on Thursday, November 26. 1. On page 131 of Giancoli, problem 18. 2. On page 220 of Giancoli, problem 24. 3. On page 221

More information

DTW-based Gait Recognition from Recovered 3-D Joint Angles and Inter-ankle Distance

DTW-based Gait Recognition from Recovered 3-D Joint Angles and Inter-ankle Distance DTW-based Gait Recognition from Recovered 3-D Joint Angles and Inter-ankle Distance Tomasz Krzeszowski 3, Adam Switonski 2, 4, Bogdan Kwolek 1, Henryk Josinski 4, and Konrad Wojciechowski 2 1 AGH University

More information

13.4. Curvature. Introduction. Prerequisites. Learning Outcomes. Learning Style

13.4. Curvature. Introduction. Prerequisites. Learning Outcomes. Learning Style Curvature 13.4 Introduction Curvature is a measure of how sharply a curve is turning as it is traversed. At a particular point along the curve a tangent line can be drawn; this line making an angle ψ with

More information

Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION 1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

More information

Imagine a car is traveling along the highway and you look down at the situation from high above: highway

Imagine a car is traveling along the highway and you look down at the situation from high above: highway Chapter 22 Parametric Equations Imagine a car is traveling along the highway you look down at the situation from high above highway curve (static) place car moving point (dynamic) Figure 22.1 The dynamic

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

Hooke s Law. Spring. Simple Harmonic Motion. Energy. 12/9/09 Physics 201, UW-Madison 1

Hooke s Law. Spring. Simple Harmonic Motion. Energy. 12/9/09 Physics 201, UW-Madison 1 Hooke s Law Spring Simple Harmonic Motion Energy 12/9/09 Physics 201, UW-Madison 1 relaxed position F X = -kx > 0 F X = 0 x apple 0 x=0 x > 0 x=0 F X = - kx < 0 x 12/9/09 Physics 201, UW-Madison 2 We know

More information

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information

More information

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A.

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. MECHANICS: STATICS AND DYNAMICS Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. Keywords: mechanics, statics, dynamics, equilibrium, kinematics,

More information

THE SECRET OF FREE ENERGY FROM THE PENDULUM

THE SECRET OF FREE ENERGY FROM THE PENDULUM THE SECRET OF FREE ENERGY FROM THE PENDULUM Jovan Marjanovic M.Sc. in Electrical Engineering e-mail: jmarjanovic@hotmail.com Veljko Milkovic Research & Development Center VEMIRC May 05, 2011, Novi Sad,

More information

Physics-1 Recitation-7

Physics-1 Recitation-7 Physics-1 Recitation-7 Rotation of a Rigid Object About a Fixed Axis 1. The angular position of a point on a wheel is described by. a) Determine angular position, angular speed, and angular acceleration

More information

Rotation, Angular Momentum

Rotation, Angular Momentum This test covers rotational motion, rotational kinematics, rotational energy, moments of inertia, torque, cross-products, angular momentum and conservation of angular momentum, with some problems requiring

More information

EXSC 408l Fall Midterm Exam #2 Circle the BEST answer for each of the following questions. Assume static conditions unless otherwise noted.

EXSC 408l Fall Midterm Exam #2 Circle the BEST answer for each of the following questions. Assume static conditions unless otherwise noted. Circle the BEST answer for each of the following questions. Assume static conditions unless otherwise noted. 1) Which of the following FBD of the shank during the foot contact phase of a vertical jump

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Estimating Dynamics for (DC-motor)+(1st Link) of the Furuta Pendulum

Estimating Dynamics for (DC-motor)+(1st Link) of the Furuta Pendulum Estimating Dynamics for (DC-motor)+(1st Link) of the Furuta Pendulum 1 Anton and Pedro Abstract Here the steps done for identification of dynamics for (DC-motor)+(1st Link) of the Furuta Pendulum are described.

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

Awell-known lecture demonstration1

Awell-known lecture demonstration1 Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40-506; mungan@usna.edu Awell-known lecture demonstration consists of pulling a spool by the free end

More information

Version PREVIEW Practice 8 carroll (11108) 1

Version PREVIEW Practice 8 carroll (11108) 1 Version PREVIEW Practice 8 carroll 11108 1 This print-out should have 12 questions. Multiple-choice questions may continue on the net column or page find all choices before answering. Inertia of Solids

More information

Lab 7: Rotational Motion

Lab 7: Rotational Motion Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

More information

Angular velocity. Angular velocity measures how quickly the object is rotating. Average angular velocity. Instantaneous angular velocity

Angular velocity. Angular velocity measures how quickly the object is rotating. Average angular velocity. Instantaneous angular velocity Angular velocity Angular velocity measures how quickly the object is rotating. Average angular velocity Instantaneous angular velocity Two coins rotate on a turntable. Coin B is twice as far from the axis

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

0.1 Linear Transformations

0.1 Linear Transformations .1 Linear Transformations A function is a rule that assigns a value from a set B for each element in a set A. Notation: f : A B If the value b B is assigned to value a A, then write f(a) = b, b is called

More information