Lecture 1. The Intelligent Agent Framework

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Lecture 1. The Intelligent Agent Framework"

Transcription

1 Lecture 1 The Intelligent Agent Framework Friday 22 August 2003 William H. Hsu, KSU Reading for Next Class: Chapter 2, Russell and Norvig

2 Lecture Outline Today s Reading: Chapter 2, Russell and Norvig Intelligent Agent (IA) Design Shared requirements, characteristics of IAs Methodologies Software agents Reactivity vs. state Knowledge, inference, and uncertainty Intelligent Agent Frameworks Reactive With state Goal-based Utility-based Thursday: Problem Solving and Search State space search handout (Winston) Search handout (Ginsberg)

3 Why Study Artificial Intelligence? New Computational Capabilities Advances in uncertain reasoning, knowledge representations Learning to act: robot planning, control optimization, decision support Database mining: converting (technical) records into knowledge Self-customizing programs: learning news filters, adaptive monitors Applications that are hard to program: automated driving, speech recognition Better Understanding of Human Cognition Cognitive science: theories of knowledge acquisition (e.g., through practice) Performance elements: reasoning (inference) and recommender systems Time is Right Recent progress in algorithms and theory Rapidly growing volume of online data from various sources Available computational power Growth and interest of AI-based industries (e.g., data mining/kdd, planning)

4 Relevant Disciplines Machine Learning Bayesian Methods Cognitive Science Computational Complexity Theory Control Theory Inference NLP / Learning Economics Neuroscience Bayes s Theorem Philosophy Missing Data Estimators Psychology Statistics Symbolic Representation Planning/Problem Solving Knowledge-Guided Learning PAC Formalism Mistake Bounds Planning, Design Optimization Meta-Learning Artificial Intelligence Game Theory Utility Theory Decision Models Bias/Variance Formalism Confidence Intervals Hypothesis Testing Power Law of Practice Heuristics Logical Foundations Consciousness ANN Models Learning

5 Application: Knowledge Discovery in Databases

6 Text Mining: Information Retrieval and Filtering 20 USENET Newsgroups comp.graphics misc.forsale soc.religion.christian sci.space comp.os.ms-windows.misc rec.autos talk.politics.guns sci.crypt comp.sys.ibm.pc.hardware rec.motorcycles talk.politics.mideast sci.electronics comp.sys.mac.hardware rec.sports.baseball talk.politics.misc sci.med comp.windows.x rec.sports.hockey talk.religion.misc alt.atheism Problem Definition [Joachims, 1996] Given: 1000 training documents (posts) from each group Return: classifier for new documents that identifies the group it belongs to Example: Recent Article from comp.graphics.algorithms Hi all I'm writing an adaptive marching cube algorithm, which must deal with cracks. I got the vertices of the cracks in a list (one list per crack). Does there exist an algorithm to triangulate a concave polygon? Or how can I bisect the polygon so, that I get a set of connected convex polygons. The cases of occuring polygons are these:... Performance of Newsweeder (Naïve Bayes): 89% Accuracy

7 Artificial Intelligence: Some Problems and Methodologies Problem Solving Classical search and planning Game-theoretic models Making Decisions under Uncertainty Uncertain reasoning, decision support, decision-theoretic planning Probabilistic and logical knowledge representations Pattern Classification and Analysis Pattern recognition and machine vision Connectionist models: artificial neural networks (ANNs), other graphical models Data Mining and Knowledge Discovery in Databases (KDD) Framework for optimization and machine learning Soft computing: evolutionary algorithms, ANNs, probabilistic reasoning Combining Symbolic and Numerical AI Role of knowledge and automated deduction Ramifications for cognitive science and computational sciences

8 A Generic Intelligent Agent Model Agent Sensors Internal Model (if any) Knowledge about World Knowledge about Actions Preferences Observations Predictions Expected Rewards Action Environment Effectors

9 Term Project Guidelines Due: 08 Dec 2004 Submit using new script (procedure to be announced on class web board) Writeup must be turned in on (for peer review) Team Projects Work in pairs (preferred) or individually Topic selection and proposal due 17 Sep 2004 Grading: 200 points (out of 1000) Proposal: 15 points Originality and significance: 25 points Completeness: 50 points Functionality (20 points) Quality of code (20 points) Documentation (10 points) Individual or team contribution: 50 points Writeup: 40 points Peer review: 20 points

10 Term Project Topics Intelligent Agents Game-playing: rogue-like (Nethack, Angband, etc.); reinforcement learning Multi-Agent Systems and simulations; robotic soccer (e.g., Teambots) Probabilistic Reasoning and Expert Systems Learning structure of graphical models (Bayesian networks) Application of Bayesian network inference Plan recognition, user modeling Medical diagnosis Decision networks or other utility models Probabilistic Reasoning and Expert Systems Constraint Satisfaction Problems (CSP) Soft Computing for Optimization Evolutionary computation, genetic programming, evolvable hardware Probabilistic and fuzzy approaches Game Theory

11 Homework 1: Machine Problem Due: 10 Sep 2004 Submit using new script (procedure to be announced on class web board) HW page: Machine Problem: Uninformed (Blind) vs. Informed (Heuristic) Search Problem specification (see HW page for MP document) Description: load, search graph Algorithms: depth-first, breadth-first, branch-and-bound, A* search Extra credit: hill-climbing, beam search Languages: options Imperative programming language of your choice (C/C++, Java preferred) Functional PL or style (Haskell, Scheme, LISP, Standard ML) Logic program (Prolog) MP guidelines Work individually Generate standard output files and test against partial standard solution See also: state space, constraint satisfaction problems

12 Agent: Definition Any entity that perceives its environment through sensors and acts upon that environment through effectors Examples (class discussion): human, robotic, software agents Perception Signal from environment May exceed sensory capacity Sensors Acquires percepts Possible limitations Action Attempts to affect environment Usually exceeds effector capacity Effectors Transmits actions Possible limitations Intelligent Agents: Overview

13 How Agents Should Act Rational Agent: Definition Informal: does the right thing, given what it believes from what it perceives What is the right thing? First approximation: action that maximizes success of agent Limitations to this definition? Issues to be addressed now How to evaluate success When to evaluate success Issues to be addressed later in this course Uncertainty (in environment, in actions) How to express beliefs, knowledge Why Study Rationality? Recall: aspects of intelligent behavior (last lecture) Engineering objectives: optimization, problem solving, decision support Scientific objectives: modeling correct inference, learning, planning Rational cognition: formulating plausible beliefs, conclusions Rational action: doing the right thing given beliefs

14 Rational Agents Doing the Right Thing Committing actions Limited to set of effectors In context of what agent knows Specification (cf. software specification) Preconditions, postconditions of operators Caveat: not always perfectly known (for given environment) Agent may also have limited knowledge of specification Agent Capabilities: Requirements Choice: select actions (and carry them out) Knowledge: represent knowledge about environment Perception: capability to sense environment Criterion: performance measure to define degree of success Possible Additional Capabilities Memory (internal model of state of the world) Knowledge about effectors, reasoning process (reflexive reasoning)

15 Measuring Performance Performance Measure: How to Determine Degree of Sucesss Definition: criteria that determine how successful agent is Clearly, varies over Agents Environments Possible measures? Subjective (agent may not have capability to give accurate answer!) Objective: outside observation Example: web crawling agent Number of hits Number of relevant hits Ratio of relevant hits to pages explored, resources expended Caveat: you get what you ask for (issues: redundancy, etc.) When to Evaluate Success Depends on objectives (short-term efficiency, consistency, etc.) Is task episodic? Are there milestones? Reinforcements? (e.g., games)

16 Knowledge in Agents Rationality versus Omniscience Nota Bene (NB): not the same Distinction Omniscience: knowing actual outcome of all actions Rationality: knowing plausible outcome of all actions Example: is crossing the street to greet a friend too risky? Key question in AI What is a plausible outcome? Especially important in knowledge-based expert systems Of practical important in planning, machine learning Related questions How can an agent make rational decisions given beliefs about outcomes of actions? Specifically, what does it mean (algorithmically) to choose the best? Limitations of Rationality Based only on what agent can perceive and do Based on what is likely to be right, not what turns out to be right

17 What Is Rational? Criteria Determines what is rational at any given time Varies with agent, environment, situation Performance Measure Specified by outside observer or evaluator Applied (consistently) to (one or more) IAs in given environment Percept Sequence Definition: entire history of percepts gathered by agent NB: may or may not be retained fully by agent (issue: state and memory) Agent Knowledge Of environment required Of self (reflexive reasoning) Feasible Action What can be performed What agent believes it can attempt?

18 Ideal Rationality Ideal Rational Agent Given: any possible percept sequence Do: ideal rational behavior Whatever action is expected to maximize performance measure NB: expectation informal sense (for now); mathematical foundation soon Basis for action Evidence provided by percept sequence Built-in knowledge possessed by the agent Ideal Mapping from Percepts to Actions Figure 2.2, R&N Mapping p: percept sequence action Representing p as list of pairs: infinite (unless explicitly bounded) Using p: specifies ideal mapping from percepts to actions (i.e., ideal agent) Finding explicit p: in principle, could use trial and error Other (implicit) representations may be easier to acquire!

19 Structure of Intelligent Agents Agent Behavior Given: sequence of percepts Return: IA s actions Simulator: description of results of actions Real-world system: committed action Agent Programs Functions that implement p Assumed to run in computing environment (architecture) Hardware architecture: computer organization Software architecture: programming languages, operating systems Agent = architecture + program This course (CIS730): primarily concerned with p CIS540, 740, 748: concerned with architecture See also: Chapter 24 (Vision), 25 (Robotics), R&N Discussion: Real versus Artificial Environments

20 Agent Programs Software Agents Also known as (aka) software robots, softbots Typically exist in very detailed, unlimited domains Example (Real-time) critiquing, automation of avionics, shipboard damage control Indexing (spider), information retrieval (IR; e.g., web crawlers) agents Plan recognition systems (computer security, fraud detection monitors) See: Bradshaw (Software Agents) Focus of This Course: Building IAs Generic skeleton agent: Figure 2.4, R&N function SkeletonAgent (percept) returns action static: memory, agent s memory of the world memory Update-Memory (memory, percept) action Choose-Best-Action (memory) memory Update-Memory (memory, action) return action

21 Example: Automated Taxi Driver Agent Type: Taxi Driver Percepts Visual: cameras Profilometer: speedometer, tachometer, odometer Other: GPS, sonar, interactive (microphone) Actions Steer, accelerate, brake Talk to passenger Goals Safe, legal, fast, comfortable Maximize profits Environment Roads Other traffic, pedestrians Customers Discussion: Performance Requirements for Open Ended Task

22 Review: Course Topics Overview: Intelligent Systems and Applications Artificial Intelligence (AI) Software Development Topics Knowledge representation Logical Probabilistic Search Problem solving by (heuristic) state space search Game tree search Planning: classical, universal Machine learning Models (decision trees, version spaces, ANNs, genetic programming) Applications: pattern recognition, planning, data mining and decision support Topics in applied AI Computer vision fundamentals Natural language processing (NLP) and language learning survey Implementation Practicum 1-2 Students per Team

23 Terminology Artificial Intelligence (AI) Operational definition: study / development of systems capable of thought processes (reasoning, learning, problem solving) Constructive definition: expressed in artifacts (design and implementation) Intelligent Agents Topics and Methodologies Knowledge representation Logical Uncertain (probabilistic) Other (rule-based, fuzzy, neural, genetic) Search Machine learning Planning Applications Problem solving, optimization, scheduling, design Decision support, data mining Natural language processing, conversational and information retrieval agents Pattern recognition and robot vision

24 Summary Points Artificial Intelligence: Conceptual Definitions and Dichotomies Human cognitive modelling vs. rational inference Cognition (thought processes) vs. behavior (performance) Intelligent agent framework Roles of Knowledge Representation, Search, Learning, Inference in AI Necessity of KR, problem solving capabilities in intelligent agents Ability to reason, learn Applications and Automation Case Studies Search: game-playing systems, problem solvers Planning, design, scheduling systems Control and optimization systems Machine learning: pattern recognition, data mining (business decision support) Course Group: More Resources Online Home page for AIMA (R&N) textbook: CMU AI repository Comp.ai newsgroup (now moderated):

Lecture 2 of 41. Agents and Problem Solving

Lecture 2 of 41. Agents and Problem Solving Lecture 2 of 41 Agents and Problem Solving Monday, 23 August 2004 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Reading for Next Class: Chapter 3, Appendix A, Russell and

More information

Course Outline Department of Computing Science Faculty of Science. COMP 3710-3 Applied Artificial Intelligence (3,1,0) Fall 2015

Course Outline Department of Computing Science Faculty of Science. COMP 3710-3 Applied Artificial Intelligence (3,1,0) Fall 2015 Course Outline Department of Computing Science Faculty of Science COMP 710 - Applied Artificial Intelligence (,1,0) Fall 2015 Instructor: Office: Phone/Voice Mail: E-Mail: Course Description : Students

More information

CSL452 Artificial Intelligence Spring 2016 NARAYANAN C KRISHNAN

CSL452 Artificial Intelligence Spring 2016 NARAYANAN C KRISHNAN CSL452 Artificial Intelligence Spring 2016 NARAYANAN C KRISHNAN CKN@IITRPR.AC.IN General Information q Course Structure o 3-0-2 (4 credits) q Class Timings o Monday -9.00-9.50am o Tuesday 9.55-10.45am

More information

Outline. Agent function and agent program Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types

Outline. Agent function and agent program Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Rational Agents (Chapter 2) Outline Agent function and agent program Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Agents An agent is anything that

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence ICS461 Fall 2010 Nancy E. Reed nreed@hawaii.edu 1 Lecture #2- Intelligent Agents What is an intelligent? Agents and s Rationality PEAS (Performance measure, Environment, Actuators,

More information

Chapter 2: Intelligent Agents

Chapter 2: Intelligent Agents Chapter 2: Intelligent Agents Outline Last class, introduced AI and rational agent Today s class, focus on intelligent agents Agent and environments Nature of environments influences agent design Basic

More information

Rational Agents. E.g., vacuum-cleaner world. Rational agents. Agents. Intelligent agent-view provides framework to integrate the many subareas of AI.

Rational Agents. E.g., vacuum-cleaner world. Rational agents. Agents. Intelligent agent-view provides framework to integrate the many subareas of AI. Rational Agents Characterization of agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Definition: An agent perceives its environment via sensors and acts upon

More information

Intelligent Agents. Chapter 2 ICS 171, Fall 2009 ICS-171: 1

Intelligent Agents. Chapter 2 ICS 171, Fall 2009 ICS-171: 1 Intelligent Agents Chapter 2 ICS 171, Fall 2009 ICS-171: 1 Discussion Why is the Chinese room argument impractical and how would we would we have to change the Turing test so that it is not subject to

More information

Active Learning for Multi-Class Logistic Regression

Active Learning for Multi-Class Logistic Regression Active Learning for Multi-Class Logistic Regression Andrew I. Schein and Lyle H. Ungar The University of Pennsylvania Department of Computer and Information Science 3330 Walnut Street Philadelphia, PA

More information

Artificial Intelligence: Introduction. Definition of AI: Definitions of AI. Dictionary: Intelligence. What is Intelligence then?

Artificial Intelligence: Introduction. Definition of AI: Definitions of AI. Dictionary: Intelligence. What is Intelligence then? Artificial Intelligence: Introduction Where is AI in Computer Science? What IS artificial intelligence? Where is AI in Computer Science? Computer Science: Problem solving using computers. Computer Architecture

More information

Test-1 Solution. Date: Marks: 50. Subject & Code: Artificial Intelligence and Agent technology (14SCS24)

Test-1 Solution. Date: Marks: 50. Subject & Code: Artificial Intelligence and Agent technology (14SCS24) Test-1 Solution Date: 25-02-2015 Marks: 50 Subject & Code: Artificial Intelligence and Agent technology (14SCS24) Name of faculty: Dr.Srikanta Murthy. K Sec: II Sem M.Tech Time: 8.30 to 10.00AM Q1). What

More information

What are intelligent agents? What are the features of an intelligent agent? How to design an intelligent agent? An example Demo systems

What are intelligent agents? What are the features of an intelligent agent? How to design an intelligent agent? An example Demo systems What are intelligent agents? What are the features of an intelligent agent? How to design an intelligent agent? An example Demo systems 1 What is an agent? An agent is anything that can viewed as perceiving

More information

Intelligent Agent. AI Slides c Lin Zuoquan,

Intelligent Agent. AI Slides c Lin Zuoquan, Intelligent Agent AI Slides c Lin Zuoquan, 2003 1 2 INTELLIGENT AGENT: Outline Agent PAGE (Percepts, Actions, Goals, Environment) Environment types Agent functions and programs Agent types AI Slides c

More information

CS 331: Artificial Intelligence Intelligent Agents

CS 331: Artificial Intelligence Intelligent Agents CS 331: Artificial Intelligence Intelligent Agents 1 General Properties of AI Systems Sensors Reasoning Actuators Percepts Actions Env vironment This part is called an agent. Agent: anything that perceives

More information

Introduction to Artificial Intelligence. Intelligent Agents

Introduction to Artificial Intelligence. Intelligent Agents Introduction to Artificial Intelligence Intelligent Agents Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2004/2005 B. Beckert: KI für IM p.1 Outline Agents and environments PEAS (Performance,

More information

Learning is a very general term denoting the way in which agents:

Learning is a very general term denoting the way in which agents: What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);

More information

CSC384 Intro to Artificial Intelligence

CSC384 Intro to Artificial Intelligence CSC384 Intro to Artificial Intelligence Artificial Intelligence A branch of Computer Science. Examines how we can achieve intelligent behaviour through computation. What is intelligence? Are these Intelligent?

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Exercises & Solutions Chapters 1-2: Introduction and Intelligent Agents 1. Turing test What is a Turing test? What kind of capabilities the computer needs to possess in order to

More information

Foundations and Prospects

Foundations and Prospects INF5390 Kunstig intelligens Foundations and Prospects Roar Fjellheim INF5390-AI-13 Foundations and Prospects 1 Outline The big questions Weak AI Strong AI Status of AI Prospects Summary AIMA Chapter 26:

More information

ARTIFICIAL INTELLIGENCE CIS 430 / 530

ARTIFICIAL INTELLIGENCE CIS 430 / 530 ARTIFICIAL INTELLIGENCE CIS 430 / 530 INTRODUCTION A definition of Artificial Intelligence: 1. The study of the computations that make it possible to perceive, reason and act. 2. The study of how to make

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Question Are reflex actions rational?

More information

Measuring the Performance of an Agent

Measuring the Performance of an Agent 25 Measuring the Performance of an Agent The rational agent that we are aiming at should be successful in the task it is performing To assess the success we need to have a performance measure What is rational

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Syllabus Webpage: http://www.cse.unr.edu/~sushil/class/ai/

More information

Fall 2012 Q530. Programming for Cognitive Science

Fall 2012 Q530. Programming for Cognitive Science Fall 2012 Q530 Programming for Cognitive Science Aimed at little or no programming experience. Improve your confidence and skills at: Writing code. Reading code. Understand the abilities and limitations

More information

CSC384 Intro to Artificial Intelligence

CSC384 Intro to Artificial Intelligence CSC384 Intro to Artificial Intelligence What is Artificial Intelligence? What is Intelligence? Are these Intelligent? CSC384, University of Toronto 3 What is Intelligence? Webster says: The capacity to

More information

Lecture 2: Problem Solving using State Space Representations. David Pinto

Lecture 2: Problem Solving using State Space Representations. David Pinto Lecture 2: Problem Solving using State Space Representations David Pinto Overview Characteristics of agents and environments Problem-solving agents where search consists of state space operators start

More information

WHAT IS AN ARTIFICIAL INTELLIGENCE?

WHAT IS AN ARTIFICIAL INTELLIGENCE? ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS WHAT IS AN ARTIFICIAL INTELLIGENCE? It is the science and engineering of making intelligent machines, especially intelligent computer programs. It is related

More information

Agents: Rationality (2)

Agents: Rationality (2) Agents: Intro Agent is entity that perceives and acts Perception occurs via sensors Percept is one unit of sensory input Percept sequence is complete history of agent s percepts In general, agent s actions

More information

A Client-Server Interactive Tool for Integrated Artificial Intelligence Curriculum

A Client-Server Interactive Tool for Integrated Artificial Intelligence Curriculum A Client-Server Interactive Tool for Integrated Artificial Intelligence Curriculum Diane J. Cook and Lawrence B. Holder Department of Computer Science and Engineering Box 19015 University of Texas at Arlington

More information

COMP 590: Artificial Intelligence

COMP 590: Artificial Intelligence COMP 590: Artificial Intelligence Today Course overview What is AI? Examples of AI today Who is this course for? An introductory survey of AI techniques for students who have not previously had an exposure

More information

Artificial Intelligence. Dr. Onn Shehory Site:

Artificial Intelligence. Dr. Onn Shehory   Site: Artificial Intelligence Dr. Onn Shehory email: onn@il.ibm.com Site: www.cs.biu.ac.il/~shechory/ai Outline Administrativa Course overview What is AI? Historical background The state of the art Administrativa

More information

Module 1. Introduction. Version 2 CSE IIT, Kharagpur

Module 1. Introduction. Version 2 CSE IIT, Kharagpur Module 1 Introduction Lesson 2 Introduction to Agent 1.3.1 Introduction to Agents An agent acts in an environment. Percepts Agent Environment Actions An agent perceives its environment through sensors.

More information

What is Artificial Intelligence?

What is Artificial Intelligence? CSE 3401: Intro to Artificial Intelligence & Logic Programming Introduction Required Readings: Russell & Norvig Chapters 1 & 2. Lecture slides adapted from those of Fahiem Bacchus. 1 What is AI? What is

More information

Machine Learning. Chapter 18, 21. Some material adopted from notes by Chuck Dyer

Machine Learning. Chapter 18, 21. Some material adopted from notes by Chuck Dyer Machine Learning Chapter 18, 21 Some material adopted from notes by Chuck Dyer What is learning? Learning denotes changes in a system that... enable a system to do the same task more efficiently the next

More information

Intelligent Agents. Chapter 2. Chapter 2 1

Intelligent Agents. Chapter 2. Chapter 2 1 Intelligent Agents Chapter 2 Chapter 2 1 Reminders Assignment 0 (lisp refresher) due 1/28 Lisp/emacs/AIMA tutorial: 11-1 today and Monday, 271 Soda Chapter 2 2 Outline Agents and environments Rationality

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Instructor: Prof. Selman selman@cs.cornell.edu Introduction (Reading R&N: Chapter 1) Course Administration (separate slides) ü What is Artificial Intelligence?

More information

foundations of artificial intelligence acting humanly: Searle s Chinese Room acting humanly: Turing Test

foundations of artificial intelligence acting humanly: Searle s Chinese Room acting humanly: Turing Test cis20.2 design and implementation of software applications 2 spring 2010 lecture # IV.1 introduction to intelligent systems AI is the science of making machines do things that would require intelligence

More information

CS324-Artificial Intelligence

CS324-Artificial Intelligence CS324-Artificial Intelligence Lecture 1: Introduction Waheed Noor Computer Science and Information Technology, University of Balochistan, Quetta, Pakistan Waheed Noor (CS&IT, UoB, Quetta) CS324-Artificial

More information

IAI : Biological Intelligence and Neural Networks

IAI : Biological Intelligence and Neural Networks IAI : Biological Intelligence and Neural Networks John A. Bullinaria, 2005 1. How do Humans do Intelligent Things? 2. What are Neural Networks? 3. What are Artificial Neural Networks used for? 4. Introduction

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence " Artificial Intelligence" Lecturer: Phạm Bảo Sơn Email: sonpb@vnu.edu.vn Consultations: via email or after lecture. Course website: www.uet.vnu.edu.vn/~sonpb/ai AI 2016 2 Readings"

More information

Artificial Intelligence

Artificial Intelligence Introduction to Artificial Intelligence Lecture 1 Introduction CS/CNS/EE 154 Andreas Krause 2 What is AI? The science and engineering of making intelligent machines (McCarthy, 56) What does intelligence

More information

15-381: Artificial Intelligence. Introduction and Overview

15-381: Artificial Intelligence. Introduction and Overview 15-381: Artificial Intelligence Introduction and Overview Course data All up-to-date info is on the course web page: - http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15381-s07/www/ Instructors: -

More information

01219211 Software Development Training Camp 1 (0-3) Prerequisite : 01204214 Program development skill enhancement camp, at least 48 person-hours.

01219211 Software Development Training Camp 1 (0-3) Prerequisite : 01204214 Program development skill enhancement camp, at least 48 person-hours. (International Program) 01219141 Object-Oriented Modeling and Programming 3 (3-0) Object concepts, object-oriented design and analysis, object-oriented analysis relating to developing conceptual models

More information

Graduate Co-op Students Information Manual. Department of Computer Science. Faculty of Science. University of Regina

Graduate Co-op Students Information Manual. Department of Computer Science. Faculty of Science. University of Regina Graduate Co-op Students Information Manual Department of Computer Science Faculty of Science University of Regina 2014 1 Table of Contents 1. Department Description..3 2. Program Requirements and Procedures

More information

The scenario: Initial state Target (Goal) states A set of intermediate states A set of operations that move the agent from one state to another.

The scenario: Initial state Target (Goal) states A set of intermediate states A set of operations that move the agent from one state to another. CmSc310 Artificial Intelligence Solving Problems by Searching - Uninformed Search 1. Introduction All AI tasks involve searching. General idea: You know where you are (initial state) and where you want

More information

Games & Agents Games & Agents. Lecture 2 Agents and Intelligence. Jan Broersen. Tuesday, May 28, 13

Games & Agents Games & Agents. Lecture 2 Agents and Intelligence. Jan Broersen. Tuesday, May 28, 13 Games & Agents Lecture 2 Agents and Intelligence Jan Broersen The subject of today I will give a very broad overview of different ideas from AI about endowing agents with intelligence. First: a movie about

More information

Introduction to Artificial Intelligence. ITK 340, Spring 2012

Introduction to Artificial Intelligence. ITK 340, Spring 2012 Introduction to Artificial Intelligence ITK 340, Spring 2012 For Thursday Read Russell and Norvig, chapter 1 Do chapter 1, exs 1 and 9 There s no single right answer for these. I m looking for thoughtful

More information

Appendices master s degree programme Artificial Intelligence 2014-2015

Appendices master s degree programme Artificial Intelligence 2014-2015 Appendices master s degree programme Artificial Intelligence 2014-2015 Appendix I Teaching outcomes of the degree programme (art. 1.3) 1. The master demonstrates knowledge, understanding and the ability

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence ICS461 Fall 2010 Nancy E. Reed 1 Outline Homepage Course overview What is AI? A brief history The state of the art 2 nreed@hawaii.edu Syllabus/Homepage 3 Course overview 4 http://www2.hawaii.edu/~nreed/ics461/

More information

Introduction to Knowledge Fusion and Representation

Introduction to Knowledge Fusion and Representation Introduction to Knowledge Fusion and Representation Introduction 1. A.I. 2. Knowledge Representation 3. Reasoning 4. Logic 5. Information Integration 6. Semantic Web Knowledge Fusion Fall 2004 1 What is

More information

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate

More information

Intelligent Agents and their Environments

Intelligent Agents and their Environments Intelligent Agents and their Environments Michael Rovatsos University of Edinburgh 12 January 2016 Structure of Intelligent Agents An agent: Perceives its environment, Through its sensors, Then achieves

More information

Introduction. What is AI? The foundations of AI. A brief history of AI. The state of the art. Introductory problems

Introduction. What is AI? The foundations of AI. A brief history of AI. The state of the art. Introductory problems Introduction What is AI? The foundations of AI A brief history of AI The state of the art Introductory problems What is AI? What is AI? Intelligence: ability to learn, understand and think (Oxford dictionary)

More information

Downloaded from ioenotes.edu.np

Downloaded from ioenotes.edu.np Chapter -1: Introduction to Artificial Intelligence Intelligent behaviors Everyday tasks: recognize a friend, recognize who is calling, translate from one language to another, interpret a photograph, talk,

More information

Problem Solving: Agent Architectures

Problem Solving: Agent Architectures 2 extremes of agent architecture: 1. Purely reactive Problem Solving: Agent Architectures Stimulus-response No thought given to resulting action Such approaches can be implemented via (a) Rules (b) Look-up

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 2. Introduction: AI Past and Present Malte Helmert Universität Basel February 26, 2016 Introduction: Overview Chapter overview: introduction 1. What is Artificial

More information

IAI : Expert Systems

IAI : Expert Systems IAI : Expert Systems John A. Bullinaria, 2005 1. What is an Expert System? 2. The Architecture of Expert Systems 3. Knowledge Acquisition 4. Representing the Knowledge 5. The Inference Engine 6. The Rete-Algorithm

More information

Reusable Knowledge-based Components for Building Software. Applications: A Knowledge Modelling Approach

Reusable Knowledge-based Components for Building Software. Applications: A Knowledge Modelling Approach Reusable Knowledge-based Components for Building Software Applications: A Knowledge Modelling Approach Martin Molina, Jose L. Sierra, Jose Cuena Department of Artificial Intelligence, Technical University

More information

Introduction to Machine Learning. Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011

Introduction to Machine Learning. Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011 Introduction to Machine Learning Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011 1 Outline 1. What is machine learning? 2. The basic of machine learning 3. Principles and effects of machine learning

More information

Classification of Documents using Text Mining Package tm

Classification of Documents using Text Mining Package tm Classification of Documents using Text Mining Package tm Pavel Brazdil LIAAD - INESC Porto LA FEP, Univ. of Porto http://www.liaad.up.pt Escola de verão Aspectos de processamento da LN F. Letras, UP, 4th

More information

Introduction to Artificial Intelligence

Introduction to Artificial Intelligence Introduction to Artificial Intelligence Kalev Kask ICS 271 Fall 2014 http://www.ics.uci.edu/~kkask/fall-2014 CS271/ Course requirements Assignments: There will be weekly homework assignments, a project,

More information

Chapter 2 Intelligent Agents

Chapter 2 Intelligent Agents 1 Chapter 2 Intelligent Agents CS 461 Artificial Intelligence Pinar Duygulu Bilkent University, Spring 2008 Slides are mostly adapted from AIMA Outline 2 Agents and environments Rationality PEAS (Performance

More information

Course 395: Machine Learning

Course 395: Machine Learning Course 395: Machine Learning Lecturers: Maja Pantic (maja@doc.ic.ac.uk) Stavros Petridis (sp104@doc.ic.ac.uk) Goal (Lectures): To present basic theoretical concepts and key algorithms that form the core

More information

Levels of Analysis and ACT-R

Levels of Analysis and ACT-R 1 Levels of Analysis and ACT-R LaLoCo, Fall 2013 Adrian Brasoveanu, Karl DeVries [based on slides by Sharon Goldwater & Frank Keller] 2 David Marr: levels of analysis Background Levels of Analysis John

More information

131-1. Adding New Level in KDD to Make the Web Usage Mining More Efficient. Abstract. 1. Introduction [1]. 1/10

131-1. Adding New Level in KDD to Make the Web Usage Mining More Efficient. Abstract. 1. Introduction [1]. 1/10 1/10 131-1 Adding New Level in KDD to Make the Web Usage Mining More Efficient Mohammad Ala a AL_Hamami PHD Student, Lecturer m_ah_1@yahoocom Soukaena Hassan Hashem PHD Student, Lecturer soukaena_hassan@yahoocom

More information

School of Computer Science

School of Computer Science School of Computer Science Computer Science - Honours Level - 2014/15 October 2014 General degree students wishing to enter 3000- level modules and non- graduating students wishing to enter 3000- level

More information

Artificial Intelligence and Robotics @ Politecnico di Milano. Presented by Matteo Matteucci

Artificial Intelligence and Robotics @ Politecnico di Milano. Presented by Matteo Matteucci 1 Artificial Intelligence and Robotics @ Politecnico di Milano Presented by Matteo Matteucci What is Artificial Intelligence «The field of theory & development of computer systems able to perform tasks

More information

Lecture 1: Introduction to Neural Networks Kevin Swingler / Bruce Graham

Lecture 1: Introduction to Neural Networks Kevin Swingler / Bruce Graham Lecture 1: Introduction to Neural Networks Kevin Swingler / Bruce Graham kms@cs.stir.ac.uk 1 What are Neural Networks? Neural Networks are networks of neurons, for example, as found in real (i.e. biological)

More information

Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016

Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016 Network Machine Learning Research Group S. Jiang Internet-Draft Huawei Technologies Co., Ltd Intended status: Informational October 19, 2015 Expires: April 21, 2016 Abstract Network Machine Learning draft-jiang-nmlrg-network-machine-learning-00

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association

More information

Introduction. Artificial Intelligence Santa Clara University 2016

Introduction. Artificial Intelligence Santa Clara University 2016 Introduction Artificial Intelligence Santa Clara University 2016 What is AI Definitions of AI Thinking humanly Thinking rationally Acting humanely Acting rationally Acting Humanly Turing Test (1950) Criterion:

More information

CpSc810 Goddard Notes Chapter 7. Expert Systems

CpSc810 Goddard Notes Chapter 7. Expert Systems CpSc810 Goddard Notes Chapter 7 Expert Systems Expert systems are designed to provide expert quality performance on domainspecific problems. In this chapter we look at the structure of expert systems focusing

More information

Master of Science in Computer Science

Master of Science in Computer Science Master of Science in Computer Science Background/Rationale The MSCS program aims to provide both breadth and depth of knowledge in the concepts and techniques related to the theory, design, implementation,

More information

573 Intelligent Systems

573 Intelligent Systems Sri Lanka Institute of Information Technology 3ed July, 2005 Course Outline Course Information Course Outline Reading Material Course Setup Intelligent agents. Agent types, agent environments and characteristics.

More information

Real Time Traffic Monitoring With Bayesian Belief Networks

Real Time Traffic Monitoring With Bayesian Belief Networks Real Time Traffic Monitoring With Bayesian Belief Networks Sicco Pier van Gosliga TNO Defence, Security and Safety, P.O.Box 96864, 2509 JG The Hague, The Netherlands +31 70 374 02 30, sicco_pier.vangosliga@tno.nl

More information

Doctor of Philosophy in Computer Science

Doctor of Philosophy in Computer Science Doctor of Philosophy in Computer Science Background/Rationale The program aims to develop computer scientists who are armed with methods, tools and techniques from both theoretical and systems aspects

More information

cs171 HW 1 - Solutions

cs171 HW 1 - Solutions 1. (Exercise 2.3 from RN) For each of the following assertions, say whether it is true or false and support your answer with examples or counterexamples where appropriate. (a) An agent that senses only

More information

Draft dpt for MEng Electronics and Computer Science

Draft dpt for MEng Electronics and Computer Science Draft dpt for MEng Electronics and Computer Science Year 1 INFR08012 Informatics 1 - Computation and Logic INFR08013 Informatics 1 - Functional Programming INFR08014 Informatics 1 - Object- Oriented Programming

More information

Knowledge Management

Knowledge Management Knowledge Management Management Information Code: 164292-02 Course: Management Information Period: Autumn 2013 Professor: Sync Sangwon Lee, Ph. D D. of Information & Electronic Commerce 1 00. Contents

More information

LECTURE 4-1. Common Sensing Techniques for Reactive Robots. Introduction to AI Robotics (Sec )

LECTURE 4-1. Common Sensing Techniques for Reactive Robots. Introduction to AI Robotics (Sec ) LECTURE 4-1 Common Sensing Techniques for Reactive Robots Introduction to AI Robotics (Sec. 6.1 6.5) 1 Quote of the Week Just as some newborn race of superintelligent robots are about to consume all humanity,

More information

More on Expert Systems

More on Expert Systems More on Expert Systems Knowledge Engineering The process of building an expert system: 1. The knowledge engineer establishes a dialog with the human expert to elicit knowledge. 2. The knowledge engineer

More information

Recommender Systems: Content-based, Knowledge-based, Hybrid. Radek Pelánek

Recommender Systems: Content-based, Knowledge-based, Hybrid. Radek Pelánek Recommender Systems: Content-based, Knowledge-based, Hybrid Radek Pelánek 2015 Today lecture, basic principles: content-based knowledge-based hybrid, choice of approach,... critiquing, explanations,...

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Javier Béjar cbea LSI - FIB Term 2012/2013 Javier Béjar cbea (LSI - FIB) Introduction to Machine Learning Term 2012/2013 1 / 13 Outline 1 Introduction 2 Origins 3 Goals

More information

Artificial Intelligence Search I

Artificial Intelligence Search I Content: Search I Artificial Intelligence Search I Lecture 3 Introduction Knowledge, Problem Types and Problem Formulation Search Strategies General Search Problem 4 Criteria for Evaluating Search Strategies

More information

Bowdoin Computer Science

Bowdoin Computer Science Bowdoin Science What is computer science, what are its applications in other disciplines, and its impact in society? 101: Introduction to CS Pre-requisites: none Assumes no prior knowledge of programming

More information

The Methodology of Expert Systems

The Methodology of Expert Systems 62 The Methodology of Expert Systems Kantureeva Mansiya Zakirova Alma Mannapova Torgyn Mussaif Marzhan Nigmetov Kanat L.N.Gumilyov L.N. Gumilyov Zhangir-han West- Kazakhstan agrariantechnical university

More information

Reflection Report International Semester

Reflection Report International Semester Reflection Report International Semester Studying abroad at KTH Royal Institute of Technology Stockholm 18-01-2011 Chapter 1: Personal Information Name and surname: Arts, Rick G. B. E-mail address: Department:

More information

Masters in Information Technology

Masters in Information Technology Computer - Information Technology MSc & MPhil - 2015/6 - July 2015 Masters in Information Technology Programme Requirements Taught Element, and PG Diploma in Information Technology: 120 credits: IS5101

More information

Artificial Intelligence (LISP)

Artificial Intelligence (LISP) Artificial Intelligence (LISP) Introduction Artificial Intelligence (AI) is a broad field, and means different things to different people. It is concerned with getting computers to do tasks that require

More information

ECSE 526 Artificial Intelligence (AI)

ECSE 526 Artificial Intelligence (AI) ECSE 526 Artificial Intelligence (AI) www.cim.mcgill.ca/~jer/courses/ai Readings for this class Chapter 1-1.3 Littman, 'Rise of the Machines' is Not a Likely Future Learning Objectives gain a high-level

More information

Master of Artificial Intelligence

Master of Artificial Intelligence Faculty of Engineering Faculty of Science Master of Artificial Intelligence Options: Engineering and Computer Science (ECS) Speech and Language Technology (SLT) Cognitive Science (CS) K.U.Leuven Masters.

More information

Business Intelligence and Decision Support Systems

Business Intelligence and Decision Support Systems Chapter 12 Business Intelligence and Decision Support Systems Information Technology For Management 7 th Edition Turban & Volonino Based on lecture slides by L. Beaubien, Providence College John Wiley

More information

Master s Program in Information Systems

Master s Program in Information Systems The University of Jordan King Abdullah II School for Information Technology Department of Information Systems Master s Program in Information Systems 2006/2007 Study Plan Master Degree in Information Systems

More information

CS 40 Computing for the Web

CS 40 Computing for the Web CS 40 Computing for the Web Art Lee January 20, 2015 Announcements Course web on Sakai Homework assignments submit them on Sakai Email me the survey: See the Announcements page on the course web for instructions

More information

Data mining knowledge representation

Data mining knowledge representation Data mining knowledge representation 1 What Defines a Data Mining Task? Task relevant data: where and how to retrieve the data to be used for mining Background knowledge: Concept hierarchies Interestingness

More information

Artificial Intelligence. A Historical Perspective

Artificial Intelligence. A Historical Perspective Artificial Intelligence A Historical Perspective Michael Eisenberg and Gerhard Fischer TA: Ann Eisenberg AI Course, Fall 1997 Artificial Intelligence Questions in 1963 and Before What is a computer? Is

More information

Knowledge-based systems and the need for learning

Knowledge-based systems and the need for learning Knowledge-based systems and the need for learning The implementation of a knowledge-based system can be quite difficult. Furthermore, the process of reasoning with that knowledge can be quite slow. This

More information

Lecture 13 of 41. More Propositional and Predicate Logic

Lecture 13 of 41. More Propositional and Predicate Logic Lecture 13 of 41 More Propositional and Predicate Logic Monday, 20 September 2004 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Reading: Sections 8.1-8.3, Russell and Norvig

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Chapter 1, Sections 1 3 Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 1, Sections 1 3 1 The dream of

More information

Detection. Perspective. Network Anomaly. Bhattacharyya. Jugal. A Machine Learning »C) Dhruba Kumar. Kumar KaKta. CRC Press J Taylor & Francis Croup

Detection. Perspective. Network Anomaly. Bhattacharyya. Jugal. A Machine Learning »C) Dhruba Kumar. Kumar KaKta. CRC Press J Taylor & Francis Croup Network Anomaly Detection A Machine Learning Perspective Dhruba Kumar Bhattacharyya Jugal Kumar KaKta»C) CRC Press J Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor

More information