Cloud Oxygen Pressure Algorithm for POLDER-2

Size: px
Start display at page:

Download "Cloud Oxygen Pressure Algorithm for POLDER-2"

Transcription

1 Cloud Oxygen ressure Algorithm for OLDER-2 1/7 Cloud Oxygen ressure Algorithm for OLDER-2 Aim of the : Determination of cloud gen pressure from arent pressure by removing the contribution. Date of the document: April 2003 (revised) Author: C. Vanbauce Laboratoire d Optique Atmosphérique UMR CNRS Université des Sciences et Technologies de Lille, Villeneuve d Ascq Cedex (France) Content: 1. INTRODUCTION 2. ALGORITHM DESCRITION 3. OUTUT ARAMETERS 4. EXECTED RESULTS 5. REFERENCES Development of the OLDER Earth radiation budget, water vapor, and clouds s results from a joint effort of Laboratoire d Optique Atmosphérique (LOA), Laboratoire des Sciences du Climat et de l Environnement (LSCE) and Laboratoire de Météorologie dynamique (LMD). It has been supported by CNES (Centre National d Etudes Spatiales), CNRS (Centre National de la Recherche Scientifique) and Région Nord-as de Calais.

2 Cloud Oxygen ressure Algorithm for OLDER-2 2/7 1. INTRODUCTION The aim of this is to determine the cloud gen pressure from the arent pressure by removing the contribution. In a first step, the ground reflectivity effect is neglected. An arent pressure is inferred by assuming that the atmosphere behaves as a pure absorbing medium overlying a perfect cloud reflector located at pressure (Vanbauce et al., 1998). is determined from differential absorption between the radiances measured in the channels centered at 763 and 765 nm respectively (Buriez et al., 1997). More details can be found in the Apparent Oxygen ressure Algorithm for OLDER-2. Because of the effects of reflection and multiple scattering inside the cloud, the arent pressure is almost always higher than the cloud top pressure. It is even higher than the cloud base pressure when a lot of photons reach the before being reflected back to space, that is in the case of a thin cloud layer above a bright. Cloud Oxygen pressure is determined from arent pressure by removing the contribution when necessary. This correction is made using the cloud spherical albedo inferred from the Spectral Albedo and Cloud Optical Thickness Algorithm. 2. ALGORITHM DESCRITION The Cloud Oxygen ressure Algorithm is lied to each cloudy super-pixel. When the cloud spherical albedo S is not determined (over sea ice or snow covered land s for example) the cloud gen pressure is not calculated. A schematic description of the is reported in Fig.1. In the following, all operations are made viewing direction by viewing direction. In a first step, the arent pressures ( ), the absorption-corrected reflectances at 765 nm (R 765 ) and the cloud spherical albedoes (S) are averaged over the cloudy pixels for which the cloud spherical albedo is greater than a threshold value S o = Thick clouds In the case of thick clouds, is generally situated between the cloud top level and the cloud base one. For superpixels over ice-free ocean we consider that a correction is not necessary because the sea- albedo is weak and only cloudy pixels for which the cloud spherical albedo is larger than 0.3 have been selected. It is also the case for superpixels over snow-free continental s with great enough cloud spherical albedo (S> 0.75). In these two cases, the cloud gen pressure is simply equal to the arent pressure. For all other cases, further calculations are needed to obtain. The different cases are resumed in Table 1. ocean land S 0.3 < S < 0.75 S a b a Table 1: Description of the different cases treated in the Cloud Oxygen ressure Algorithm. a: =, b: = f(, r, )

3 Cloud Oxygen ressure Algorithm for OLDER-2 3/ Thin clouds In the case of a thin cloud layer, a lot of photons can reach the before being reflected back to space. In this case, the arent pressure can be outside the cloud layer limits (arent pressure larger than cloud base pressure). To remove this contribution a method has already been proposed by Buriez et al. (1997). Let the corrected cloud pressure be defined as the arent pressure that would be observed if the reflectivity was equal to zero. Because the gen A-band correspond to strong absorption lines, the gen transmission T O2 can be treated in first roximation by means of a random band model (Goody, 1964): T O exp( C m ) (1) 2 where m is the air-mass factor and C a constant depending on spectroscopic data. Schematically, this transmission can be decomposed in a term corresponding to the light directly reflected by the cloud and a term corresponding to the light reflected after reaching the (Fig. 2): exp ( C m ) r.exp ( C m ) (1 r).exp ( C m M [ ] ) (2) where r is the fraction of photons directly reflected by the cloud, M is the effective air-mass factor corresponding to the mean photon path between the cloud and the and the pressure. 0 Figure 2: Schematic representation of radiation transfer through a cloudy atmosphere (Buriez et al., 1997). Because is not directly deducible from Eq. (2), we use a simplified method. Assuming that the effective air-mass factor M is equal to m, Eq. (2) can be rewrite in exp ( C m ) exp ( C m ). 1 r. exp ( C m( )) 1 (3)

4 Cloud Oxygen ressure Algorithm for OLDER-2 4/7 Considering that the transmission between the cloud and the is a small corrective term Eq. (3) can be roximated as: exp ( C m ) exp ( C m ). 1 r C m ( ) (4) using again this roximation, we find which is equal to exp ( C m ) exp ( C m ). exp ( r C m( ) ) (5) exp ( C m ) exp ( C m r ( ) ) (6) which can finally be rewritten as (7) [ ( r 1) ]/ r. The fraction of photons directly reflected by the cloud, r, is calculated using r = R o 765 / R 765 where R 765 is the reflectance measured by OLDER at 765 nm after correction for gaseous absorption and R o 765 is the reflectance that would be measured if in addition the was black. is obtained from the ECMWF (European Center for Medium range Weather Forecasts) analysis. In practice, R o 765 is computed by using the cloud spherical albedo determined from OLDER measurements at 670 nm and look-up tables (LUTs) of calculated reflectances at 765 nm Look up tables The LUTs used to compute R o 765 are similar to those used in the Spectral Albedo and Cloud Optical Thickness Algorithm: The top-of-atmosphere bidirectional reflectances are calculated by using the plane-parallel radiative transfer model developed by de Haan et al. (1987). These tables are built at 765 nm, with an atmosphere model overlaying a black and for: - 2 cloud types (ice and liquid water) - 20 values of cloud spherical albedo (which is a one-to-one function of the cloud optical thickness) - 33 values of cosine of solar zenith angle - 28 values of viewing zenith angle - 37 values of relative azimuth angle The atmosphere model and the cloud types are those used over land s in the Spectral Albedo and Cloud Optical Thickness Algorithm : the atmosphere is only composed of molecules (no aerosol) ; liquid water clouds are composed of droplets with effective radius of 9 m and ice clouds are composed of inhomogeneous hexagonal monocrystals (IHM) as described in C.-Labonnote et al. (2000) Averaging over the directions The last step of the is the averaging over the viewing directions i. The averaging of all the calculated values (i) is weighted by the percentage of photons directly reflected by the cloud r(i) and by the cloud cover CC(i). The associated angular standard deviation is also calculated.

5 Cloud Oxygen ressure Algorithm for OLDER-2 5/7 Cloud detection CC 0 Cloud optical thickness S Apparent gen pressure For every viewing direction i CC(i) 0 Averaging over the cloudy pixels with S > S o R 765 Gaseous absorption correction Surface conditions Further calculations needed? no yes Geometry conditions = LUTs R o 765 hase Cloud thermodynamic phase fraction of photons directly reflected : R r R o ( r 1) r Averaging over the viewing directions Figure 1: Scheme of the Cloud Oxygen ressure Algorithm 3. OUTUT ARAMETERS Concerning the gen pressure, only non-directional parameters are delivered in the ERB, WV & clouds products: - the mean cloud gen pressure - the Angular standard Deviation AD( )

6 Cloud Oxygen ressure Algorithm for OLDER-2 6/7 4. EXECTED RESULTS From comparisons between OLDER-1 cloud gen pressure and ARM/MMCR (Clothiaux et al., 2000) cloud boundaries pressures, ears to indicate the cloud middle pressure rather than the cloud top pressure as shown in Fig. 3 (Vanbauce et al., 2003). Figure 3: Location of ADEOS1-OLDER corrected gen pressure in relation with ARM/MMCR cloud boundaries pressures, as a function of cloud geometric thickness for the 37 selected cases. In this figure, the y-axis pressures have been linearly rescaled as follows: cloud tops are fixed to 0 and cloud bases are fixed to 1. Circles represent mono-layered clouds and triangles multi-layered clouds. White symbols are for ice clouds while liquid clouds ear in black. OLDER data are means and standard deviations over 3*3 pixels around the SG Central Facility and over all viewing directions. 5. REFERENCES Buriez, J. C., Vanbauce, C., arol, F., Goloub,., Herman, M., Bonnel, B., Fouquart, Y., Couvert,. and Sèze, G., 1997: Cloud detection and derivation of cloud properties from OLDER, Int. J. Remote Sensing, 18, C.-Labonnote, L., Brogniez, G., Gayet, J. F., Doutriaux-Boucher, M. and Buriez, J. C., 2000: Modeling of light scattering in cirrus clouds with inhomogeneous hexagonal monocrystals. Comparison with in-situ and ADEOS-OLDER measurements, Geophys. Res. Lett., 27, Clothiaux, E. E., Ackerman, T.., Mace, G. G., Moran, K.., Marchand, R. T., Miller, M. A. and Martner, B. E., 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites, J. Appl. Meteor., 39, Goody, R. M., 1964: Atmospheric Radiation I. Theoretical Basis, Oxford: Clarendon ress.

7 Cloud Oxygen ressure Algorithm for OLDER-2 7/7 de Haan, J. F., Bosma. B. and Hovenier J. W., 1987: The adding method for multiple scattering computations of polarized light, Astron. Astrophys., 183, Vanbauce, C., Buriez, J. C., arol, F., Bonnel, B., Sèze, G. and Couvert,., 1998: Apparent pressure derived from ADEOS-OLDER observations in the gen A-band over ocean, Geophys. Res. Lett., 25, Vanbauce, C., Cadet, B. and Marchand, R.T., Comparison of OLDER arent and corrected gen pressure to ARM/MMCR cloud boundary pressures, Geophys. Res. Lett., 30(5), 1212, doi: /2002GL016449, 2003.

Remote Sensing of Clouds from Polarization

Remote Sensing of Clouds from Polarization Remote Sensing of Clouds from Polarization What polarization can tell us about clouds... and what not? J. Riedi Laboratoire d'optique Atmosphérique University of Science and Technology Lille / CNRS FRANCE

More information

Multiangle cloud remote sensing from

Multiangle cloud remote sensing from Multiangle cloud remote sensing from POLDER3/PARASOL Cloud phase, optical thickness and albedo F. Parol, J. Riedi, S. Zeng, C. Vanbauce, N. Ferlay, F. Thieuleux, L.C. Labonnote and C. Cornet Laboratoire

More information

Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius

Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University

More information

Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer

Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France

More information

Let s consider a homogeneous medium characterized by the extinction coefficient β ext, single scattering albedo ω 0 and phase function P(µ, µ').

Let s consider a homogeneous medium characterized by the extinction coefficient β ext, single scattering albedo ω 0 and phase function P(µ, µ'). Lecture 22. Methods for solving the radiative transfer equation with multiple scattering. Part 4: Monte Carlo method. Radiative transfer methods for inhomogeneous ouds. Objectives: 1. Monte Carlo method.

More information

A climatology of cirrus clouds from ground-based lidar measurements over Lille

A climatology of cirrus clouds from ground-based lidar measurements over Lille A climatology of cirrus clouds from ground-based lidar measurements over Lille Rita Nohra, Frédéric Parol, Philippe Dubuisson Laboratoire d Optique Atmosphérique université de Lille, CNRS UMR 8518 Objectives

More information

Retrieval of cloud spherical albedo from top-of-atmosphere reflectance measurements performed at a single observation angle

Retrieval of cloud spherical albedo from top-of-atmosphere reflectance measurements performed at a single observation angle Atmos. Chem. Phys., 7, 3633 3637, 2007 Author(s) 2007. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Retrieval of cloud from top-of-atmosphere reflectance measurements

More information

Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon

Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational

More information

Passive Remote Sensing of Clouds from Airborne Platforms

Passive Remote Sensing of Clouds from Airborne Platforms Passive Remote Sensing of Clouds from Airborne Platforms Why airborne measurements? My instrument: the Solar Spectral Flux Radiometer (SSFR) Some spectrometry/radiometry basics How can we infer cloud properties

More information

Total radiative heating/cooling rates.

Total radiative heating/cooling rates. Lecture. Total radiative heating/cooling rates. Objectives:. Solar heating rates.. Total radiative heating/cooling rates in a cloudy atmosphere.. Total radiative heating/cooling rates in different aerosol-laden

More information

Use of ARM/NSA Data to Validate and Improve the Remote Sensing Retrieval of Cloud and Surface Properties in the Arctic from AVHRR Data

Use of ARM/NSA Data to Validate and Improve the Remote Sensing Retrieval of Cloud and Surface Properties in the Arctic from AVHRR Data Use of ARM/NSA Data to Validate and Improve the Remote Sensing Retrieval of Cloud and Surface Properties in the Arctic from AVHRR Data X. Xiong QSS Group, Inc. National Oceanic and Atmospheric Administration

More information

An Introduction to Twomey Effect

An Introduction to Twomey Effect An Introduction to Twomey Effect Guillaume Mauger Aihua Zhu Mauna Loa, Hawaii on a clear day Mauna Loa, Hawaii on a dusty day Rayleigh scattering Mie scattering Non-selective scattering. The impact of

More information

Evaluation of ECMWF cloud type simulations at the ARM Southern Great Plains site using a new cloud type climatology

Evaluation of ECMWF cloud type simulations at the ARM Southern Great Plains site using a new cloud type climatology Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L03803, doi:10.1029/2006gl027314, 2007 Evaluation of ECMWF cloud type simulations at the ARM Southern Great Plains site using a new cloud

More information

Aerosol Remote Sensing over Clouds Using A-Train Observations

Aerosol Remote Sensing over Clouds Using A-Train Observations 2468 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 66 Aerosol Remote Sensing over Clouds Using A-Train Observations F. WAQUET, J.RIEDI, L.C.LABONNOTE, AND P. GOLOUB Laboratoire d

More information

Overview of the IR channels and their applications

Overview of the IR channels and their applications Ján Kaňák Slovak Hydrometeorological Institute Jan.kanak@shmu.sk Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation

More information

REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL

REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL D. Santos (1), M. J. Costa (1,2), D. Bortoli (1,3) and A. M. Silva (1,2) (1) Évora Geophysics

More information

The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates

The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates C. N. Long Pacific Northwest National Laboratory Richland, Washington

More information

Convec,on, cloud and radia,on

Convec,on, cloud and radia,on Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature

More information

Radiative effects of clouds, ice sheet and sea ice in the Antarctic

Radiative effects of clouds, ice sheet and sea ice in the Antarctic Snow and fee Covers: Interactions with the Atmosphere and Ecosystems (Proceedings of Yokohama Symposia J2 and J5, July 1993). IAHS Publ. no. 223, 1994. 29 Radiative effects of clouds, ice sheet and sea

More information

Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product

Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product 1. Intend of this document and POC 1.a) General purpose The MISR CTH-OD product contains 2D histograms (joint distributions)

More information

Cloud detection and clearing for the MOPITT instrument

Cloud detection and clearing for the MOPITT instrument Cloud detection and clearing for the MOPITT instrument Juying Warner, John Gille, David P. Edwards and Paul Bailey National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The Measurement Of

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

Data processing (3) Cloud and Aerosol Imager (CAI)

Data processing (3) Cloud and Aerosol Imager (CAI) Data processing (3) Cloud and Aerosol Imager (CAI) 1) Nobuyuki Kikuchi, 2) Haruma Ishida, 2) Takashi Nakajima, 3) Satoru Fukuda, 3) Nick Schutgens, 3) Teruyuki Nakajima 1) National Institute for Environmental

More information

IMPACT OF DRIZZLE AND 3D CLOUD STRUCTURE ON REMOTE SENSING OF CLOUD EFFECTIVE RADIUS

IMPACT OF DRIZZLE AND 3D CLOUD STRUCTURE ON REMOTE SENSING OF CLOUD EFFECTIVE RADIUS IMPACT OF DRIZZLE AND 3D CLOUD STRUCTURE ON REMOTE SENSING OF CLOUD EFFECTIVE RADIUS Tobias Zinner 1, Gala Wind 2, Steven Platnick 2, Andy Ackerman 3 1 Deutsches Zentrum für Luft- und Raumfahrt (DLR) Oberpfaffenhofen,

More information

Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D

Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications

More information

Radiation models for the evaluation of the UV radiation at the ground

Radiation models for the evaluation of the UV radiation at the ground Radiation models for the evaluation of the UV radiation at the ground Peter Koepke UV-Group Meteorological Institute Munich Ludwig-Maximilians-University Peter.Koepke@lmu.de www. jostjahn. de Natural UV

More information

The ARM-GCSS Intercomparison Study of Single-Column Models and Cloud System Models

The ARM-GCSS Intercomparison Study of Single-Column Models and Cloud System Models The ARM-GCSS Intercomparison Study of Single-Column Models and Cloud System Models R. T. Cederwall and D. J. Rodriguez Atmospheric Science Division Lawrence Livermore National Laboratory Livermore, California

More information

Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract

Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating

More information

CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA. Satellite Meteorological Center Beijing 100081, China ABSTRACT

CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA. Satellite Meteorological Center Beijing 100081, China ABSTRACT CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA Xu Jianmin Zhang Qisong Satellite Meteorological Center Beijing 100081, China ABSTRACT With GMS-5 images, cloud motion wind was calculated. For

More information

REMOTE SENSING OF CLOUD ALBEDO FROM BACKSCATTERED SUNLIGHT IN CLOUDY ATMOSPHERE

REMOTE SENSING OF CLOUD ALBEDO FROM BACKSCATTERED SUNLIGHT IN CLOUDY ATMOSPHERE REMOTE SENSING OF CLOUD ALBEDO FROM BACKSCATTERED SUNLIGHT IN CLOUDY ATMOSPHERE A. Hünerbein, R. Preusker and J. Fischer Freie Universität Berlin, Institut für Weltraumwissenschaften Carl-Heinrich-Becker-Weg

More information

CALIPSO, CloudSat, CERES, and MODIS Merged Data Product

CALIPSO, CloudSat, CERES, and MODIS Merged Data Product CALIPSO, CloudSat, CERES, and MODIS Merged Data Product Seiji Kato 1, Sunny Sun-Mack 2, Walter F. Miller 2, Fred G. Rose 2, and Victor E. Sothcott 2 1 NASA Langley Research Center 2 Science and Systems

More information

CLOUD CLASSIFICATION EXTRACTED FROM AVHRR AND GOES IMAGERY. M.Derrien, H.Le Gléau

CLOUD CLASSIFICATION EXTRACTED FROM AVHRR AND GOES IMAGERY. M.Derrien, H.Le Gléau CLOUD CLASSIFICATION EXTRACTED FROM AVHRR AND GOES IMAGERY M.Derrien, H.Le Gléau Météo-France / SCEM / Centre de Météorologie Spatiale BP 147 22302 Lannion. France ABSTRACT We developed an automated pixel-scale

More information

The Effect of Droplet Size Distribution on the Determination of Cloud Droplet Effective Radius

The Effect of Droplet Size Distribution on the Determination of Cloud Droplet Effective Radius Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia, March 9-, The Effect of Droplet Size Distribution on the Determination of Cloud Droplet Effective Radius F.-L. Chang and Z. Li ESSIC/Department

More information

VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping

VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping NWP SAF AAPP VIIRS-CrIS Mapping This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement

More information

ECMWF Aerosol and Cloud Detection Software. User Guide. version 1.2 20/01/2015. Reima Eresmaa ECMWF

ECMWF Aerosol and Cloud Detection Software. User Guide. version 1.2 20/01/2015. Reima Eresmaa ECMWF ECMWF Aerosol and Cloud User Guide version 1.2 20/01/2015 Reima Eresmaa ECMWF This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction

More information

P1.24 USE OF ACTIVE REMOTE SENSORS TO IMPROVE THE ACCURACY OF CLOUD TOP HEIGHTS DERIVED FROM THERMAL SATELLITE OBSERVATIONS

P1.24 USE OF ACTIVE REMOTE SENSORS TO IMPROVE THE ACCURACY OF CLOUD TOP HEIGHTS DERIVED FROM THERMAL SATELLITE OBSERVATIONS P1.24 USE OF ACTIVE REMOTE SENSORS TO IMPROVE THE ACCURACY OF CLOUD TOP HEIGHTS DERIVED FROM THERMAL SATELLITE OBSERVATIONS Chris R. Yost* Patrick Minnis NASA Langley Research Center, Hampton, Virginia

More information

VALIDATION OF SAFNWC / MSG CLOUD PRODUCTS WITH ONE YEAR OF SEVIRI DATA

VALIDATION OF SAFNWC / MSG CLOUD PRODUCTS WITH ONE YEAR OF SEVIRI DATA VALIDATION OF SAFNWC / MSG CLOUD PRODUCTS WITH ONE YEAR OF SEVIRI DATA M.Derrien 1, H.Le Gléau 1, Jean-François Daloze 2, Martial Haeffelin 2 1 Météo-France / DP / Centre de Météorologie Spatiale. BP 50747.

More information

Greenhouse Effect Mechanism and Radiative Forcing

Greenhouse Effect Mechanism and Radiative Forcing Greenhouse Effect Mechanism and Radiative Forcing How does radiative energy balance help determine Earth s climate? How does the greenhouse effect work? What is radiative forcing? References AR4 Ch. 2

More information

ARM SWS to study cloud drop size within the clear-cloud transition zone

ARM SWS to study cloud drop size within the clear-cloud transition zone ARM SWS to study cloud drop size within the clear-cloud transition zone (GSFC) Yuri Knyazikhin Boston University Christine Chiu University of Reading Warren Wiscombe GSFC Thanks to Peter Pilewskie (UC)

More information

An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties

An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties Michael Pitts, Chris Hostetler, Lamont Poole, Carl Holden, and Didier Rault NASA Langley Research Center, MS 435,

More information

Parameterizing the Difference in Cloud Fraction Defined by Area and by Volume as Observed with Radar and Lidar

Parameterizing the Difference in Cloud Fraction Defined by Area and by Volume as Observed with Radar and Lidar 2248 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 62 Parameterizing the Difference in Cloud Fraction Defined by Area and by Volume as Observed with Radar and Lidar MALCOLM E. BROOKS,*

More information

Digital all-sky polarization imaging of partly cloudy skies

Digital all-sky polarization imaging of partly cloudy skies Digital all-sky polarization imaging of partly cloudy skies Nathan J. Pust and Joseph A. Shaw* Department of Electrical and Computer Engineering, 610 Cobleigh Hall, Montana State University, Bozeman, Montana

More information

P3.8 DETECTING VOLCANIC ASH AND BLOWING DUST USING GOES, MODIS, AND AIRS IMAGERY

P3.8 DETECTING VOLCANIC ASH AND BLOWING DUST USING GOES, MODIS, AND AIRS IMAGERY P3.8 DETECTING VOLCANIC ASH AND BLOWING DUST USING GOES, MODIS, AND AIRS IMAGERY Bernadette H. Connell Cooperative Institute for Research in the Atmosphere (CIRA) Colorado State University, Fort Collins,

More information

Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains

Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains G. Feingold and W. L. Eberhard National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder,

More information

Profiles of Low-Level Stratus Cloud Microphysics Deduced from Ground-Based Measurements

Profiles of Low-Level Stratus Cloud Microphysics Deduced from Ground-Based Measurements 42 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 20 Profiles of Low-Level Stratus Cloud Microphysics Deduced from Ground-Based Measurements XIQUAN DONG* AND GERALD G. MACE Meteorology Department,

More information

Climatology of aerosol and cloud properties at the ARM sites:

Climatology of aerosol and cloud properties at the ARM sites: Climatology of aerosol and cloud properties at the ARM sites: MFRSR combined with other measurements Qilong Min ASRC, SUNY at Albany MFRSR: Spectral irradiances at 6 six wavelength passbands: 415, 500,

More information

FRESCO. Product Specification Document FRESCO. Authors : P. Wang, R.J. van der A (KNMI) REF : TEM/PSD2/003 ISSUE : 3.0 DATE : 30.05.

FRESCO. Product Specification Document FRESCO. Authors : P. Wang, R.J. van der A (KNMI) REF : TEM/PSD2/003 ISSUE : 3.0 DATE : 30.05. PAGE : 1/11 TITLE: Product Specification Authors : P. Wang, R.J. van der A (KNMI) PAGE : 2/11 DOCUMENT STATUS SHEET Issue Date Modified Items / Reason for Change 0.9 19.01.06 First Version 1.0 22.01.06

More information

Cloud retrieval algorithm for GOME-2: FRESCO+

Cloud retrieval algorithm for GOME-2: FRESCO+ PAGE : 1/23 Cloud retrieval algorithm for GOME-2: FRESCO+ P. Wang, O. Tuinder, P. Stammes (KNMI) (12 February 21, version 1.3) Eumetsat contract EUM/CO/9/46655/RM PAGE : 2/23 TABLE OF CONTENTS 1. INTRODUCTION...3

More information

REMOTE SENSING OF INHOMOGENEOUS CLOUDS WITH MSG/SEVIRI

REMOTE SENSING OF INHOMOGENEOUS CLOUDS WITH MSG/SEVIRI 1 REMOTE SENSING OF INHOMOGENEOUS CLOUDS WITH MSG/SEVIRI Tobias Zinner, Luca Bugliaro, and Bernhard Mayer Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, 82234 Weßling, Germany ABSTRACT

More information

T.A. Tarasova, and C.A.Nobre

T.A. Tarasova, and C.A.Nobre SEASONAL VARIATIONS OF SURFACE SOLAR IRRADIANCES UNDER CLEAR-SKIES AND CLOUD COVER OBTAINED FROM LONG-TERM SOLAR RADIATION MEASUREMENTS IN THE RONDONIA REGION OF BRAZIL T.A. Tarasova, and C.A.Nobre Centro

More information

Parameterizing the difference in cloud fraction defined by area and. by volume as observed with radar and lidar

Parameterizing the difference in cloud fraction defined by area and. by volume as observed with radar and lidar Parameterizing the difference in cloud fraction defined by area and by volume as observed with radar and lidar MALCOLM E. BROOKS 1 2, ROBIN J. HOGAN, AND ANTHONY J. ILLINGWORTH Department of Meteorology,

More information

A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS

A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jd013422, 2010 A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS Roger Marchand, 1 Thomas Ackerman, 1 Mike

More information

Today s Lecture: Radiation Hartmann, Global Physical Climatology (1994), Ch. 2, 3, 6 Peixoto and Oort, Ch. 4, 6, 7

Today s Lecture: Radiation Hartmann, Global Physical Climatology (1994), Ch. 2, 3, 6 Peixoto and Oort, Ch. 4, 6, 7 Today s Lecture: Radiation Hartmann, Global Physical Climatology (1994), Ch. 2, 3, 6 Peixoto and Oort, Ch. 4, 6, 7 5 The climate system 1. Introduction 2. Atmosphere 3. Ocean 4. Land, biosphere, cryosphere

More information

Remote Sensing of Cloud Properties from the Communication, Ocean and Meteorological Satellite (COMS) Imagery

Remote Sensing of Cloud Properties from the Communication, Ocean and Meteorological Satellite (COMS) Imagery Remote Sensing of Cloud Properties from the Communication, Ocean and Meteorological Satellite (COMS) Imagery Choi, Yong-Sang, 1 Chang-Hoi Ho, 1 Myoung-Hwan Ahn, and Young-Mi Kim 1 1 School of Earth and

More information

Corso di Fisica Te T cnica Ambientale Solar Radiation

Corso di Fisica Te T cnica Ambientale Solar Radiation Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He

More information

Emission Temperature of Planets

Emission Temperature of Planets Emission Temperature of Planets The emission temperature of a planet, T e, is the temperature with which it needs to emit in order to achieve energy balance (assuming the average temperature is not decreasing

More information

P1.70 NIGHTTIME RETRIEVAL OF CLOUD MICROPHYSICAL PROPERTIES FOR GOES-R

P1.70 NIGHTTIME RETRIEVAL OF CLOUD MICROPHYSICAL PROPERTIES FOR GOES-R P1.70 NIGHTTIME RETRIEVAL OF CLOUD MICROPHYSICAL PROPERTIES FOR GOES-R Patrick W. Heck * Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison Madison, Wisconsin P.

More information

We know the shape of the solar spectrum. Let s consider that the earth atmosphere is 8000 km thick.

We know the shape of the solar spectrum. Let s consider that the earth atmosphere is 8000 km thick. We know the shape of the solar spectrum. How is this spectral shape and irradiance of the solar light affected by the earth s atmosphere? Let s consider that the earth atmosphere is 8000 km thick. The

More information

Aerosol radiative forcing over land: effect of surface and cloud reflection

Aerosol radiative forcing over land: effect of surface and cloud reflection Annales Geophysicae (2002) 20: 2105 2109 c European Geosciences Union 2002 Annales Geophysicae Letter to the Editor Aerosol radiative forcing over land: effect of surface and cloud reflection S. K. Satheesh

More information

Cloud Detection over Snow and Ice Using MISR Data

Cloud Detection over Snow and Ice Using MISR Data Cloud Detection over Snow and Ice Using MISR Data Tao Shi, Bin Yu, Eugene E. Clothiaux, and Amy J. Braverman Abstract Clouds play a major role in Earth s climate and cloud detection is a crucial step in

More information

Advances in Cloud Imager Remote Sensing

Advances in Cloud Imager Remote Sensing Advances in Cloud Imager Remote Sensing Andrew Heidinger NOAA/NESDIS/ORA Madison, Wisconsin With material from Mike Pavolonis, Robert Holz, Amato Evan and Fred Nagle STAR Science Symposium November 9,

More information

Cloud Thickness Estimation from GOES-8 Satellite Data Over the ARM-SGP Site

Cloud Thickness Estimation from GOES-8 Satellite Data Over the ARM-SGP Site Cloud Thickness Estimation from GOES-8 Satellite Data Over the ARM-SGP Site V. Chakrapani, D. R. Doelling, and A. D. Rapp Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics

More information

Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase

Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase MICHAEL D. KING 1 AND SI-CHEE TSAY 2 NASA Goddard Space Flight Center Greenbelt, Maryland 20771

More information

Microwave observations in the presence of cloud and precipitation

Microwave observations in the presence of cloud and precipitation Microwave observations in the presence of cloud and precipitation Alan Geer Thanks to: Bill Bell, Peter Bauer, Fabrizio Baordo, Niels Bormann Slide 1 ECMWF/EUMETSAT satellite course 2015: Microwave 2 Slide

More information

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. J.D. McAlpine ATMS 611 HMWK #8 a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. These sides of the slopes will tend to have less average solar

More information

E ect of remote clouds on surface UV irradiance

E ect of remote clouds on surface UV irradiance Ann. Geophysicae 18, 679±686 (2000) Ó EGS ± Springer-Verlag 2000 E ect of remote clouds on surface UV irradiance M. DeguÈ nther, R. MeerkoÈ tter Deutsches Zentrum fuè r Luft- und Raumfahrt (DLR), Institut

More information

Lectures Remote Sensing

Lectures Remote Sensing Lectures Remote Sensing ATMOSPHERIC CORRECTION dr.ir. Jan Clevers Centre of Geo-Information Environmental Sciences Wageningen UR Atmospheric Correction of Optical RS Data Background When needed? Model

More information

The Surface Energy Budget

The Surface Energy Budget The Surface Energy Budget The radiation (R) budget Shortwave (solar) Radiation Longwave Radiation R SW R SW α α = surface albedo R LW εσt 4 ε = emissivity σ = Stefan-Boltzman constant T = temperature Subsurface

More information

Cloud vegetation interaction: use of Normalized Difference Cloud Index for estimation of cloud optical thickness

Cloud vegetation interaction: use of Normalized Difference Cloud Index for estimation of cloud optical thickness Cloud vegetation interaction: use of Normalized Difference Cloud Index for estimation of cloud optical thickness A. Marshak, Y. Knyazikhin, A. Davis, W. Wiscombe, and P. Pilewskie NASA GSFC, Code 913,

More information

Cloud Climatology for New Zealand and Implications for Radiation Fields

Cloud Climatology for New Zealand and Implications for Radiation Fields Cloud Climatology for New Zealand and Implications for Radiation Fields G. Pfister, R.L. McKenzie, J.B. Liley, A. Thomas National Institute of Water and Atmospheric Research, Lauder, New Zealand M.J. Uddstrom

More information

RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR

RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,

More information

Chapter 2. The global energy balance. 2.1 Planetary emission temperature

Chapter 2. The global energy balance. 2.1 Planetary emission temperature Chapter 2 The global energy balance We consider now the general problem of the radiative equilibrium temperature of the Earth. The Earth is bathed in solar radiation and absorbs much of that incident upon

More information

Sensitivity of Surface Cloud Radiative Forcing to Arctic Cloud Properties

Sensitivity of Surface Cloud Radiative Forcing to Arctic Cloud Properties Sensitivity of Surface Cloud Radiative Forcing to Arctic Cloud Properties J. M. Intrieri National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado M. D. Shupe

More information

Chapter 04: Atmosphere and Surface Energy Balance. Energy Essentials Energy Balance in the Troposphere Energy Balance at Earth s Surface

Chapter 04: Atmosphere and Surface Energy Balance. Energy Essentials Energy Balance in the Troposphere Energy Balance at Earth s Surface Chapter 04: Atmosphere and Surface Energy Balance Energy Essentials Energy Balance in the Troposphere Energy Balance at Earth s Surface Energy Essentials Energy Pathways and Principles Energy Pathways

More information

Propagation Effects & their Impact

Propagation Effects & their Impact Propagation Effects & their Impact Many phenomena causes lead signal loss on through the earths atmosphere: Atmospheric Absorption (gaseous effects) Cloud Attenuation (aerosolic and ice particles Tropospheric

More information

GOES-R AWG Cloud Team: ABI Cloud Height

GOES-R AWG Cloud Team: ABI Cloud Height GOES-R AWG Cloud Team: ABI Cloud Height June 8, 2010 Presented By: Andrew Heidinger 1 1 NOAA/NESDIS/STAR 1 Outline Executive Summary Algorithm Description ADEB and IV&V Response Summary Requirements Specification

More information

Cloud/Radiation parameterization issues in high resolution NWP

Cloud/Radiation parameterization issues in high resolution NWP Cloud/Radiation parameterization issues in high resolution NWP Bent H Sass Danish Meteorological Institute 10 June 2009 As the horizontal grid size in atmospheric models is reduced the assumptions made

More information

Evaluation of VIIRS cloud top property climate data records and their potential improvement with CrIS

Evaluation of VIIRS cloud top property climate data records and their potential improvement with CrIS Evaluation of VIIRS cloud top property climate data records and their potential improvement with CrIS Dr. Bryan A. Baum (PI) Space Science and Engineering Center University of Wisconsin-Madison Madison,

More information

Labs in Bologna & Potenza Menzel. Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture

Labs in Bologna & Potenza Menzel. Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture Labs in Bologna & Potenza Menzel Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture Figure 1: High resolution atmospheric absorption spectrum and comparative blackbody

More information

CLOUD TOP PROPERTIES AND CLOUD PHASE ALGORITHM THEORETICAL BASIS DOCUMENT

CLOUD TOP PROPERTIES AND CLOUD PHASE ALGORITHM THEORETICAL BASIS DOCUMENT CLOUD TOP PROPERTIES AND CLOUD PHASE ALGORITHM THEORETICAL BASIS DOCUMENT W. Paul Menzel Cooperative Institute for Meteorological Satellite Studies University of Wisconsin Madison Richard A. Frey Cooperative

More information

SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations

SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations 22 September 2011 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Fog or low level clouds?

More information

Eruption of Mt. Kilauea Impacted Cloud Droplet and Radiation Budget over North Pacific

Eruption of Mt. Kilauea Impacted Cloud Droplet and Radiation Budget over North Pacific Western Pacific Air-Sea Interaction Study, Eds. M. Uematsu, Y. Yokouchi, Y. W. Watanabe, S. Takeda, and Y. Yamanaka, pp. 83 87. by TERRAPUB 2014. doi:10.5047/w-pass.a01.009 Eruption of Mt. Kilauea Impacted

More information

Cloud Remote Sensing during VOCALS- REx: Selected U.S. Efforts

Cloud Remote Sensing during VOCALS- REx: Selected U.S. Efforts Cloud Remote Sensing during VOCALS- REx: Selected U.S. Efforts Paquita Zuidema, U of Miami Qabs ~ 4xI{(m 2-1)/(m 2 +2)} Qscat ~ 8/3 x 4 (m 2-1)/(m 2 +2) 2 x=2 r/ VOCALS Educational Talk 10/31/08 1. Satellite

More information

Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography

Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu

More information

Remote sensing of precipitable water vapour and cloud cover for site selection of the European Extremely Large Telescope (E-ELT) using MERIS

Remote sensing of precipitable water vapour and cloud cover for site selection of the European Extremely Large Telescope (E-ELT) using MERIS Remote sensing of precipitable water vapour and cloud cover for site selection of the European Extremely Large Telescope (E-ELT) using MERIS H. Kurlandczyk 1 M.Sarazin 1 1 European Organisation for Astronomical

More information

Saharan Dust Aerosols Detection Over the Region of Puerto Rico

Saharan Dust Aerosols Detection Over the Region of Puerto Rico 1 Saharan Dust Aerosols Detection Over the Region of Puerto Rico ARLENYS RAMÍREZ University of Puerto Rico at Mayagüez, P.R., 00683. Email:arlenys.ramirez@upr.edu ABSTRACT. Every year during the months

More information

Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems

Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR INSTRUMENT AND METHODS OF OBSERVATION OPAG-UPPER AIR EXPERT TEAM ON REMOTE SENSING UPPER-AIR TECHNOLOGY AND TECHNIQUES First Session Geneva, Switzerland,

More information

Inter-comparison of ground-based radar and satellite cloud-top height retrievals for. overcast single-layered cloud fields.

Inter-comparison of ground-based radar and satellite cloud-top height retrievals for. overcast single-layered cloud fields. 1 Inter-comparison of ground-based radar and satellite cloud-top height retrievals for overcast single-layered cloud fields A. A. Kokhanovsky 1 2 3, C. M. Naud, A. Devasthale 1 Institute of Environmental

More information

Best practices for RGB compositing of multi-spectral imagery

Best practices for RGB compositing of multi-spectral imagery Best practices for RGB compositing of multi-spectral imagery User Service Division, EUMETSAT Introduction Until recently imagers on geostationary satellites were limited to 2-3 spectral channels, i.e.

More information

On the use of Synthetic Satellite Imagery to Evaluate Numerically Simulated Clouds

On the use of Synthetic Satellite Imagery to Evaluate Numerically Simulated Clouds On the use of Synthetic Satellite Imagery to Evaluate Numerically Simulated Clouds Lewis D. Grasso (1) Cooperative Institute for Research in the Atmosphere, Fort Collins, Colorado Don Hillger NOAA/NESDIS/STAR/RAMMB,

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields

A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D13, 4376, doi:10.1029/2002jd003322, 2003 A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields Robert Pincus

More information

Volcanic Ash Monitoring: Product Guide

Volcanic Ash Monitoring: Product Guide Doc.No. Issue : : EUM/TSS/MAN/15/802120 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 2 June 2015 http://www.eumetsat.int WBS/DBS : EUMETSAT

More information

ABI Algorithm Theoretical Basis Document For Daytime Cloud Optical and Microphysical Properties (DCOMP)

ABI Algorithm Theoretical Basis Document For Daytime Cloud Optical and Microphysical Properties (DCOMP) NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH ABI Algorithm Theoretical Basis Document For Daytime Cloud Optical and Microphysical Properties (DCOMP) Andi Walther UW/CIMSS William Straka,

More information

MSG-SEVIRI cloud physical properties for model evaluations

MSG-SEVIRI cloud physical properties for model evaluations Rob Roebeling Weather Research Thanks to: Hartwig Deneke, Bastiaan Jonkheid, Wouter Greuell, Jan Fokke Meirink and Erwin Wolters (KNMI) MSG-SEVIRI cloud physical properties for model evaluations Cloud

More information

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2

More information

Properties of Radiation

Properties of Radiation Properties of Radiation Lecture outline Flux and intensity Solid angle and the steradian Inverse square law Global insolation Interaction of radiation with matter Flux or Flux density Flux (or flux density),

More information

P1.21 GOES CLOUD DETECTION AT THE GLOBAL HYDROLOGY AND CLIMATE CENTER

P1.21 GOES CLOUD DETECTION AT THE GLOBAL HYDROLOGY AND CLIMATE CENTER P1.21 GOES CLOUD DETECTION AT THE GLOBAL HYDROLOGY AND CLIMATE CENTER Gary J. Jedlovec* NASA/MSFC/Global Hydrology and Climate Center National Space Science and Technology Center Huntsville, Alabama and

More information

The study of cloud and aerosol properties during CalNex using newly developed spectral methods

The study of cloud and aerosol properties during CalNex using newly developed spectral methods The study of cloud and aerosol properties during CalNex using newly developed spectral methods Patrick J. McBride, Samuel LeBlanc, K. Sebastian Schmidt, Peter Pilewskie University of Colorado, ATOC/LASP

More information

Model predicted low-level cloud parameters Part II: Comparison with satellite remote sensing observations during the BALTEX Bridge Campaigns

Model predicted low-level cloud parameters Part II: Comparison with satellite remote sensing observations during the BALTEX Bridge Campaigns Atmospheric Research 82 (2006) 83 101 www.elsevier.com/locate/atmos Model predicted low-level cloud parameters Part II: Comparison with satellite remote sensing observations during the BALTEX Bridge Campaigns

More information