# Data Mining Practical Machine Learning Tools and Techniques

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Counting the cost Data Mining Practical Machine Learning Tools and Techniques Slides for Section 5.7 In practice, different types of classification errors often incur different costs Examples: Loan decisions Oil-slick detection Fault diagnosis Promotional mailing 2 Counting the cost The confusion matrix: Aside: the kappa statistic Two confusion matrices for a 3-class problem: actual predictor (left) vs. random predictor (right) Actual class Predicted class True positive False negative False positive True negative There are many other types of cost! E.g.: cost of collecting training data Number of successes: sum of entries in diagonal (D) Kappa statistic: D observed D random D perfect D random measures relative improvement over random predictor 3 4

2 Classification with costs Cost-sensitive classification Two cost matrices: Success rate is replaced by average cost per prediction Cost is given by appropriate entry in the cost matrix Can take costs into account when making predictions Basic idea: only predict high-cost class when very confident about prediction Given: predicted class probabilities rmally we just predict the most likely class Here, we should make the prediction that minimizes the expected cost Expected cost: dot product of vector of class probabilities and appropriate column in cost matrix Choose column (class) that minimizes expected cost 5 6 Cost-sensitive learning Lift charts So far we haven't taken costs into account at training time Most learning schemes do not perform costsensitive learning They generate the same classifier no matter what costs are assigned to the different classes Example: standard decision tree learner Simple methods for cost-sensitive learning: Resampling of instances according to costs Weighting of instances according to costs Some schemes can take costs into account by varying a parameter, e.g. naïve Bayes In practice, costs are rarely known Decisions are usually made by comparing possible scenarios Example: promotional mailout to 1,000,000 households Mail to all; 0.1% respond (1000) Data mining tool identifies subset of 100,000 most promising, 0.4% of these respond (400) 40% of responses for 10% of cost may pay off Identify subset of 400,000 most promising, 0.2% respond (800) A lift chart allows a visual comparison 7 8

3 Generating a lift chart A hypothetical lift chart Sort instances according to predicted probability of being positive: Predicted probability Actual class x axis is sample size y axis is number of true positives 40% of responses for 10% of cost 80% of responses for 40% of cost 9 10 ROC curves A sample ROC curve ROC curves are similar to lift charts Stands for receiver operating characteristic Used in signal detection to show tradeoff between hit rate and false alarm rate over noisy channel Differences to lift chart: y axis shows percentage of true positives in sample rather than absolute number x axis shows percentage of false positives in sample rather than sample size Jagged curve one set of test data Smooth curve use cross-validation 11 12

4 Cross-validation and ROC curves ROC curves for two schemes Simple method of getting a ROC curve using cross-validation: Collect probabilities for instances in test folds Sort instances according to probabilities This method is implemented in WEKA However, this is just one possibility Another possibility is to generate an ROC curve for each fold and average them For a small, focused sample, use method A For a larger one, use method B In between, choose between A and B with appropriate probabilities The convex hull More measures... Given two learning schemes we can achieve any point on the convex hull! TP and FP rates for scheme 1: t1 and f 1 TP and FP rates for scheme 2: t2 and f 2 If scheme 1 is used to predict 100 q % of the cases and scheme 2 for the rest, then TP rate for combined scheme: q t 1 + (1-q) t 2 FP rate for combined scheme: q f 1 +(1-q) f 2 Percentage of retrieved documents that are relevant: precision=tp/(tp+fp) Percentage of relevant documents that are returned: recall =TP/(TP+FN) Precision/recall curves have hyperbolic shape Summary measures: average precision at 20%, 50% and 80% recall (three-point average recall) F-measure=(2 recall precision)/(recall+precision) sensitivity specificity = (TP / (TP + FN)) (TN / (FP + TN)) Area under the ROC curve (AUC): probability that randomly chosen positive instance is ranked above randomly chosen negative one 15 16

5 Summary of some measures Domain Plot Explanation Cost curves Cost curves plot expected costs directly Example for case with uniform costs (i.e. error): Lift chart ROC curve Recallprecision curve Marketing Communications Information retrieval TP Subset size TP rate FP rate Recall Precision TP (TP+FP)/ (TP+FP+TN+FN) TP/(TP+FN) FP/(FP+TN) TP/(TP+FN) TP/(TP+FP) Cost curves: example with costs Probability cost functionp c [+]= p[+]c[+ -] p[+]c[+ -]p[-]c[- +] rmalized expected cost=fn p c [+]fp 1 p c [+] 19

### Evaluation & Validation: Credibility: Evaluating what has been learned

Evaluation & Validation: Credibility: Evaluating what has been learned How predictive is a learned model? How can we evaluate a model Test the model Statistical tests Considerations in evaluating a Model

### Evaluation and Credibility. How much should we believe in what was learned?

Evaluation and Credibility How much should we believe in what was learned? Outline Introduction Classification with Train, Test, and Validation sets Handling Unbalanced Data; Parameter Tuning Cross-validation

### Data Mining Practical Machine Learning Tools and Techniques

Credibility: Evaluating what s been learned Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 5 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Issues: training, testing,

### COMP9417: Machine Learning and Data Mining

COMP9417: Machine Learning and Data Mining A note on the two-class confusion matrix, lift charts and ROC curves Session 1, 2003 Acknowledgement The material in this supplementary note is based in part

### Evaluation in Machine Learning (1) Evaluation in machine learning. Aims. 14s1: COMP9417 Machine Learning and Data Mining.

Acknowledgements Evaluation in Machine Learning (1) 14s1: COMP9417 Machine Learning and Data Mining School of Computer Science and Engineering, University of New South Wales March 19, 2014 Material derived

### Performance Measures for Machine Learning

Performance Measures for Machine Learning 1 Performance Measures Accuracy Weighted (Cost-Sensitive) Accuracy Lift Precision/Recall F Break Even Point ROC ROC Area 2 Accuracy Target: 0/1, -1/+1, True/False,

### Machine Learning model evaluation. Luigi Cerulo Department of Science and Technology University of Sannio

Machine Learning model evaluation Luigi Cerulo Department of Science and Technology University of Sannio Accuracy To measure classification performance the most intuitive measure of accuracy divides the

### The many faces of ROC analysis in machine learning. Peter A. Flach University of Bristol, UK

The many faces of ROC analysis in machine learning Peter A. Flach University of Bristol, UK www.cs.bris.ac.uk/~flach/ Objectives After this tutorial, you will be able to [model evaluation] produce ROC

### Machine Learning (CS 567)

Machine Learning (CS 567) Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol Han (cheolhan@usc.edu)

### ROC Graphs: Notes and Practical Considerations for Data Mining Researchers

ROC Graphs: Notes and Practical Considerations for Data Mining Researchers Tom Fawcett 1 1 Intelligent Enterprise Technologies Laboratory, HP Laboratories Palo Alto Alexandre Savio (GIC) ROC Graphs GIC

### Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Lecture 15 - ROC, AUC & Lift Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-17-AUC

### COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection.

COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection. Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise

### Performance Measures in Data Mining

Performance Measures in Data Mining Common Performance Measures used in Data Mining and Machine Learning Approaches L. Richter J.M. Cejuela Department of Computer Science Technische Universität München

### Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 2. Tid Refund Marital Status

Data Mining Classification: Basic Concepts, Decision Trees, and Evaluation Lecture tes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Classification: Definition Given a collection of

### Data Mining - Evaluation of Classifiers

Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

### Evaluation and Cost-Sensitive Learning. Cost-Sensitive Learning

1 J. Fürnkranz Evaluation and Cost-Sensitive Learning Evaluation Hold-out Estimates Cross-validation Significance Testing Sign test ROC Analysis Cost-Sensitive Evaluation ROC space ROC convex hull Rankers

### Experiments in Web Page Classification for Semantic Web

Experiments in Web Page Classification for Semantic Web Asad Satti, Nick Cercone, Vlado Kešelj Faculty of Computer Science, Dalhousie University E-mail: {rashid,nick,vlado}@cs.dal.ca Abstract We address

### CLASSIFICATION JELENA JOVANOVIĆ. Web:

CLASSIFICATION JELENA JOVANOVIĆ Email: jeljov@gmail.com Web: http://jelenajovanovic.net OUTLINE What is classification? Binary and multiclass classification Classification algorithms Performance measures

### Overview. Evaluation Connectionist and Statistical Language Processing. Test and Validation Set. Training and Test Set

Overview Evaluation Connectionist and Statistical Language Processing Frank Keller keller@coli.uni-sb.de Computerlinguistik Universität des Saarlandes training set, validation set, test set holdout, stratification

### Introduction to Machine Learning

Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 5: Decision Theory & ROC Curves Gaussian ML Estimation Many figures courtesy Kevin Murphy s textbook,

### Evaluating Protein-protein Interaction Predictors with a Novel 3-Dimensional Metric

Evaluating Protein-protein Interaction Predictors with a Novel 3-Dimensional Metric Haohan Wang 1, Madhavi K. Ganapathiraju, PhD 2 1 Language Technologies Institute, School of Computer Science, Carnegie

### 1. Classification problems

Neural and Evolutionary Computing. Lab 1: Classification problems Machine Learning test data repository Weka data mining platform Introduction Scilab 1. Classification problems The main aim of a classification

### ROC Curve, Lift Chart and Calibration Plot

Metodološki zvezki, Vol. 3, No. 1, 26, 89-18 ROC Curve, Lift Chart and Calibration Plot Miha Vuk 1, Tomaž Curk 2 Abstract This paper presents ROC curve, lift chart and calibration plot, three well known

### Chapter 6. The stacking ensemble approach

82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described

### Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification

Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification Tina R. Patil, Mrs. S. S. Sherekar Sant Gadgebaba Amravati University, Amravati tnpatil2@gmail.com, ss_sherekar@rediffmail.com

### Introduction to Machine Learning NPFL 054

Introduction to Machine Learning NPFL 054 http://ufal.mff.cuni.cz/course/npfl054 Barbora Hladká hladka@ufal.mff.cuni.cz Martin Holub holub@ufal.mff.cuni.cz Charles University, Faculty of Mathematics and

### Data Mining Application in Direct Marketing: Identifying Hot Prospects for Banking Product

Data Mining Application in Direct Marketing: Identifying Hot Prospects for Banking Product Sagarika Prusty Web Data Mining (ECT 584),Spring 2013 DePaul University,Chicago sagarikaprusty@gmail.com Keywords:

### Searching for Gravitational Waves from the Coalescence of High Mass Black Hole Binaries

Searching for Gravitational Waves from the Coalescence of High Mass Black Hole Binaries 2015 SURE Presentation September 22 nd, 2015 Lau Ka Tung Department of Physics, The Chinese University of Hong Kong

### Introduction to Machine Learning

Introduction to Machine Learning Isabelle Guyon isabelle@clopinet.com What is Machine Learning? Learning algorithm Trained machine TRAINING DATA Answer Query What for? Classification Time series prediction

### Hani Tamim, PhD Associate Professor Department of Internal Medicine American University of Beirut

Hani Tamim, PhD Associate Professor Department of Internal Medicine American University of Beirut A graphical plot which illustrates the performance of a binary classifier system as its discrimination

### Business Case Development for Credit and Debit Card Fraud Re- Scoring Models

Business Case Development for Credit and Debit Card Fraud Re- Scoring Models Kurt Gutzmann Managing Director & Chief ScienAst GCX Advanced Analy.cs LLC www.gcxanalyacs.com October 20, 2011 www.gcxanalyacs.com

### Analysis on Weighted AUC for Imbalanced Data Learning Through Isometrics

Journal of Computational Information Systems 8: (22) 37 378 Available at http://www.jofcis.com Analysis on Weighted AUC for Imbalanced Data Learning Through Isometrics Yuanfang DONG, 2, Xiongfei LI,, Jun

### Choosing the Best Classification Performance Metric for Wrapper-based Software Metric Selection for Defect Prediction

Choosing the Best Classification Performance Metric for Wrapper-based Software Metric Selection for Defect Prediction Huanjing Wang Western Kentucky University huanjing.wang@wku.edu Taghi M. Khoshgoftaar

### Health Care and Life Sciences

Sensitivity, Specificity, Accuracy, Associated Confidence Interval and ROC Analysis with Practical SAS Implementations Wen Zhu 1, Nancy Zeng 2, Ning Wang 2 1 K&L consulting services, Inc, Fort Washington,

### Data Mining. Nonlinear Classification

Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15

### Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation. Lecture Notes for Chapter 4. Introduction to Data Mining

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data

### Artificial Neural Network, Decision Tree and Statistical Techniques Applied for Designing and Developing E-mail Classifier

International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-1, Issue-6, January 2013 Artificial Neural Network, Decision Tree and Statistical Techniques Applied for Designing

### Heart Disease Prediction System Using Data Mining Techniques

ORIENTAL JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY An International Open Free Access, Peer Reviewed Research Journal Published By: Oriental Scientific Publishing Co., India. www.computerscijournal.org ISSN:

### Evaluation in Machine Learning (2) Aims. Introduction

Acknowledgements Evaluation in Machine Learning (2) 15s1: COMP9417 Machine Learning and Data Mining School of Computer Science and Engineering, University of New South Wales Material derived from slides

### ROC Graphs: Notes and Practical Considerations for Data Mining Researchers

ROC Graphs: Notes and Practical Considerations for Data Mining Researchers Tom Fawcett Intelligent Enterprise Technologies Laboratory HP Laboratories Palo Alto HPL-23-4 January 7 th, 23* E-mail: tom_fawcett@hp.com

### Evaluating Machine Learning Algorithms. Machine DIT

Evaluating Machine Learning Algorithms Machine Learning @ DIT 2 Evaluating Classification Accuracy During development, and in testing before deploying a classifier in the wild, we need to be able to quantify

### T-61.3050 : Email Classification as Spam or Ham using Naive Bayes Classifier. Santosh Tirunagari : 245577

T-61.3050 : Email Classification as Spam or Ham using Naive Bayes Classifier Santosh Tirunagari : 245577 January 20, 2011 Abstract This term project gives a solution how to classify an email as spam or

### W6.B.1. FAQs CS535 BIG DATA W6.B.3. 4. If the distance of the point is additionally less than the tight distance T 2, remove it from the original set

http://wwwcscolostateedu/~cs535 W6B W6B2 CS535 BIG DAA FAQs Please prepare for the last minute rush Store your output files safely Partial score will be given for the output from less than 50GB input Computer

### Azure Machine Learning, SQL Data Mining and R

Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:

### CLASSIFICATION AND CLUSTERING. Anveshi Charuvaka

CLASSIFICATION AND CLUSTERING Anveshi Charuvaka Learning from Data Classification Regression Clustering Anomaly Detection Contrast Set Mining Classification: Definition Given a collection of records (training

### Machine Learning. Topic: Evaluating Hypotheses

Machine Learning Topic: Evaluating Hypotheses Bryan Pardo, Machine Learning: EECS 349 Fall 2011 How do you tell something is better? Assume we have an error measure. How do we tell if it measures something

### Classifiers & Classification

Classifiers & Classification Forsyth & Ponce Computer Vision A Modern Approach chapter 22 Pattern Classification Duda, Hart and Stork School of Computer Science & Statistics Trinity College Dublin Dublin

### A General Framework for Mining Concept-Drifting Data Streams with Skewed Distributions

A General Framework for Mining Concept-Drifting Data Streams with Skewed Distributions Jing Gao Wei Fan Jiawei Han Philip S. Yu University of Illinois at Urbana-Champaign IBM T. J. Watson Research Center

### Data Mining Algorithms Part 1. Dejan Sarka

Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses

### Data Mining Practical Machine Learning Tools and Techniques

Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

### Data Mining Analysis (breast-cancer data)

Data Mining Analysis (breast-cancer data) Jung-Ying Wang Register number: D9115007, May, 2003 Abstract In this AI term project, we compare some world renowned machine learning tools. Including WEKA data

### Performance Metrics for Graph Mining Tasks

Performance Metrics for Graph Mining Tasks 1 Outline Introduction to Performance Metrics Supervised Learning Performance Metrics Unsupervised Learning Performance Metrics Optimizing Metrics Statistical

### Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Unit # 10 Sajjad Haider Fall 2012 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right

### Binary and Ranked Retrieval

Binary and Ranked Retrieval Binary Retrieval RSV(d i,q j ) {0,1} Does not allow the user to control the magnitude of the output. In fact, for a given query, the system may return under-dimensioned output

### Feature Subset Selection in E-mail Spam Detection

Feature Subset Selection in E-mail Spam Detection Amir Rajabi Behjat, Universiti Technology MARA, Malaysia IT Security for the Next Generation Asia Pacific & MEA Cup, Hong Kong 14-16 March, 2012 Feature

### Mining the Software Change Repository of a Legacy Telephony System

Mining the Software Change Repository of a Legacy Telephony System Jelber Sayyad Shirabad, Timothy C. Lethbridge, Stan Matwin School of Information Technology and Engineering University of Ottawa, Ottawa,

### UNDERSTANDING THE EFFECTIVENESS OF BANK DIRECT MARKETING Tarun Gupta, Tong Xia and Diana Lee

UNDERSTANDING THE EFFECTIVENESS OF BANK DIRECT MARKETING Tarun Gupta, Tong Xia and Diana Lee 1. Introduction There are two main approaches for companies to promote their products / services: through mass

### Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Unit # 11 Sajjad Haider Fall 2013 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right

### More Data Mining with Weka

More Data Mining with Weka Class 5 Lesson 1 Simple neural networks Ian H. Witten Department of Computer Science University of Waikato New Zealand weka.waikato.ac.nz Lesson 5.1: Simple neural networks Class

### IMPACT OF COMPUTER ON ORGANIZATION

International Journal of Research in Engineering & Technology (IJRET) Vol. 1, Issue 1, June 2013, 1-6 Impact Journals IMPACT OF COMPUTER ON ORGANIZATION A. D. BHOSALE 1 & MARATHE DAGADU MITHARAM 2 1 Department

### Supervised Learning (Big Data Analytics)

Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used

### Practical Data Science with Azure Machine Learning, SQL Data Mining, and R

Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Overview This 4-day class is the first of the two data science courses taught by Rafal Lukawiecki. Some of the topics will be

### ROC analysis of classifiers in machine learning: A survey

Intelligent Data Analysis 17 (2013) 531 558 531 DOI 10.3233/IDA-130592 IOS Press ROC analysis of classifiers in machine learning: A survey Matjaž Majnik and Zoran Bosnić Faculty of Computer and Information

### Measuring the propensity to purchase Creating and interpreting the gain chart. Ricco RAKOTOMALALA

Measuring the propensity to purchase Creating and interpreting the gain chart Ricco RAKOTOMALALA Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ 1 Customer targeting process Promoting a new

### Maximum Profit Mining and Its Application in Software Development

Maximum Profit Mining and Its Application in Software Development Charles X. Ling 1, Victor S. Sheng 1, Tilmann Bruckhaus 2, Nazim H. Madhavji 1 1 Department of Computer Science, The University of Western

### 2 Decision tree + Cross-validation with R (package rpart)

1 Subject Using cross-validation for the performance evaluation of decision trees with R, KNIME and RAPIDMINER. This paper takes one of our old study on the implementation of cross-validation for assessing

### A Decision Tree for Weather Prediction

BULETINUL UniversităŃii Petrol Gaze din Ploieşti Vol. LXI No. 1/2009 77-82 Seria Matematică - Informatică - Fizică A Decision Tree for Weather Prediction Elia Georgiana Petre Universitatea Petrol-Gaze

### Lecture Notes for Chapter 4. Introduction to Data Mining

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data

### Classification of Titanic Passenger Data and Chances of Surviving the Disaster Data Mining with Weka and Kaggle Competition Data

Proceedings of Student-Faculty Research Day, CSIS, Pace University, May 2 nd, 2014 Classification of Titanic Passenger Data and Chances of Surviving the Disaster Data Mining with Weka and Kaggle Competition

### Classification and Regression Trees

Classification and Regression Trees Bob Stine Dept of Statistics, School University of Pennsylvania Trees Familiar metaphor Biology Decision tree Medical diagnosis Org chart Properties Recursive, partitioning

### Journal of Engineering Science and Technology Review 7 (4) (2014) 89-96

Jestr Journal of Engineering Science and Technology Review 7 (4) (2014) 89-96 JOURNAL OF Engineering Science and Technology Review www.jestr.org Applying Fuzzy Logic and Data Mining Techniques in Wireless

### Mining Life Insurance Data for Customer Attrition Analysis

Mining Life Insurance Data for Customer Attrition Analysis T. L. Oshini Goonetilleke Informatics Institute of Technology/Department of Computing, Colombo, Sri Lanka Email: oshini.g@iit.ac.lk H. A. Caldera

### Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

### Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News

Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News Sushilkumar Kalmegh Associate Professor, Department of Computer Science, Sant Gadge Baba Amravati

### ROC Analysis of Partitioning Method for Activity Recognition Using Two Microphones

ROC Analysis of Partitioning Method for Activity Recognition Using Two Microphones Jame A Ward, Paul Lukowicz and Gerhard Tröster Abstract. We present an analysis, using ROC curves, of a method for partitioning

### Data and Analysis. Informatics 1 School of Informatics, University of Edinburgh. Part III Unstructured Data. Ian Stark. Staff-Student Liaison Meeting

Inf1-DA 2010 2011 III: 1 / 89 Informatics 1 School of Informatics, University of Edinburgh Data and Analysis Part III Unstructured Data Ian Stark February 2011 Inf1-DA 2010 2011 III: 2 / 89 Part III Unstructured

### ROC Analysis of Partitioning Method for Activity Recognition Using Two Microphones

ROC Analysis of Partitioning Method for Activity Recognition Using Two Microphones JamieAWard, Paul Lukowicz and Gerhard Tröster Abstract. We present an analysis, using ROC curves, of a method for partitioning

### BIDM Project. Predicting the contract type for IT/ITES outsourcing contracts

BIDM Project Predicting the contract type for IT/ITES outsourcing contracts N a n d i n i G o v i n d a r a j a n ( 6 1 2 1 0 5 5 6 ) The authors believe that data modelling can be used to predict if an

### Maschinelles Lernen mit MATLAB

Maschinelles Lernen mit MATLAB Jérémy Huard Applikationsingenieur The MathWorks GmbH 2015 The MathWorks, Inc. 1 Machine Learning is Everywhere Image Recognition Speech Recognition Stock Prediction Medical

### Keywords Data mining, Classification Algorithm, Decision tree, J48, Random forest, Random tree, LMT, WEKA 3.7. Fig.1. Data mining techniques.

International Journal of Emerging Research in Management &Technology Research Article October 2015 Comparative Study of Various Decision Tree Classification Algorithm Using WEKA Purva Sewaiwar, Kamal Kant

### Quality and Complexity Measures for Data Linkage and Deduplication

Quality and Complexity Measures for Data Linkage and Deduplication Peter Christen and Karl Goiser Department of Computer Science, Australian National University, Canberra ACT 0200, Australia {peter.christen,karl.goiser}@anu.edu.au

### Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation. Lecture Notes for Chapter 4. Introduction to Data Mining

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data

### AUTOMATED PROVISIONING OF CAMPAIGNS USING DATA MINING TECHNIQUES

AUTOMATED PROVISIONING OF CAMPAIGNS USING DATA MINING TECHNIQUES Saravanan M Ericsson R&D Ericsson India Global Services Pvt. Ltd Chennai, Tamil Nadu, India m.saravanan@ericsson.com Deepika S M Department

### Performance Analysis of Various Data mining Classification Algorithms on Diabetes Heart dataset

ISSN:2320-0790 Performance Analysis of Various Data mining Classification Algorithms on Diabetes Heart dataset G.G.Gokilam 1, Dr K.Shanthi 2 1 Research scholar, 2 Research Guide Department of Computer

### Data Mining - The Next Mining Boom?

Howard Ong Principal Consultant Aurora Consulting Pty Ltd Abstract This paper introduces Data Mining to its audience by explaining Data Mining in the context of Corporate and Business Intelligence Reporting.

### Data Mining in Weka Bringing It All together

Data Mining in Weka Bringing It All together Predictive Analytics Center of Excellence (PACE) San Diego Super Computer Center, UCSD Data Mining Boot Camp 1 Introduction The project assignment demonstrates

### Using Random Forest to Learn Imbalanced Data

Using Random Forest to Learn Imbalanced Data Chao Chen, chenchao@stat.berkeley.edu Department of Statistics,UC Berkeley Andy Liaw, andy liaw@merck.com Biometrics Research,Merck Research Labs Leo Breiman,

### Evaluation of selected data mining algorithms implemented in Medical Decision Support Systems Kamila Aftarczuk

Master Thesis Software Engineering Thesis no: MSE-2007-21 September 2007 Evaluation of selected data mining algorithms implemented in Medical Decision Support Systems Kamila Aftarczuk This thesis is submitted

### Introduction to Data Mining

Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association

### ROC Analysis. Peter Flach, University of Bristol

ROC Analysis Peter Flach, University of Bristol An entry to appear in the forthcoming Encyclopedia of Machine Learning (Springer) Synonyms Receiver Operating Characteristic Analysis Definition ROC analysis

### Data Clustering. Dec 2nd, 2013 Kyrylo Bessonov

Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main

### WEKA Explorer User Guide for Version 3-4-3

WEKA Explorer User Guide for Version 3-4-3 Richard Kirkby Eibe Frank November 9, 2004 c 2002, 2004 University of Waikato Contents 1 Launching WEKA 2 2 The WEKA Explorer 2 Section Tabs................................

### Random Forest Based Imbalanced Data Cleaning and Classification

Random Forest Based Imbalanced Data Cleaning and Classification Jie Gu Software School of Tsinghua University, China Abstract. The given task of PAKDD 2007 data mining competition is a typical problem

### Identifying Potentially Useful Email Header Features for Email Spam Filtering

Identifying Potentially Useful Email Header Features for Email Spam Filtering Omar Al-Jarrah, Ismail Khater and Basheer Al-Duwairi Department of Computer Engineering Department of Network Engineering &

### A Systematic Review of Fault Prediction approaches used in Software Engineering

A Systematic Review of Fault Prediction approaches used in Software Engineering Sarah Beecham Lero The Irish Software Engineering Research Centre University of Limerick, Ireland Tracy Hall Brunel University

### An Approach to Detect Spam Emails by Using Majority Voting

An Approach to Detect Spam Emails by Using Majority Voting Roohi Hussain Department of Computer Engineering, National University of Science and Technology, H-12 Islamabad, Pakistan Usman Qamar Faculty,

### Getting Even More Out of Ensemble Selection

Getting Even More Out of Ensemble Selection Quan Sun Department of Computer Science The University of Waikato Hamilton, New Zealand qs12@cs.waikato.ac.nz ABSTRACT Ensemble Selection uses forward stepwise

### SVM Ensemble Model for Investment Prediction

19 SVM Ensemble Model for Investment Prediction Chandra J, Assistant Professor, Department of Computer Science, Christ University, Bangalore Siji T. Mathew, Research Scholar, Christ University, Dept of