# Lecture 7. Norms and Condition Numbers

Save this PDF as:

Size: px
Start display at page:

Download "Lecture 7. Norms and Condition Numbers"

## Transcription

1 Lecture 7 Norms ad Codto Numbers To dscuss the errors umerca probems vovg vectors, t s usefu to empo orms. Vector Norm O a vector space V, a orm s a fucto from V to the set of o-egatve reas that obes three postuates: > 0 0, C λ = λ λ R, V + +, V ( Traguar Iequat) we ca thk of as the egth or magtude of the vector. The most famar orm o R s the Eucdea -orm defed b -orm defed b = ma = / -orm defed b = I geera p-orm, defed b p -orm defed b p = p / p for p >0ad-vector Eampe : Usg the orm, compare the egths of the foowg three vectors R. Repeat t for other orms =(,,-,) T, v = (0, 5, 5, 5) T, w = (6, 0, 0, 0) T Souto: X 6 8 v w 6 6 6

2 To uderstad these orms better, t s structve to cosder R. For the three orms gve above, we sketches Fgure of the set : R, { } Ths set s caed the ut ce or the ut ba two-dmesoa vector space. (0,) (,) (0,) (,0) (,0) (-,-) Fgure : Ut ces R for three orms I geera, for a vector R, Matr Norm Matr orm correspodg to gve vector orm defed b = ma 0 Norm of matr measures mamum stretchg matr does to a vector gve vector orm. Matr orm correspodg to vector -orm s mamum absoute coum sum = ma a j j Matr orm correspodg to vector - orm s mamum absoute row sum, Propertes of Matr Norm matr orm satsfes:. > O O. γ = γ for a scaar vaue γ = ma j= a j

3 3. + B + B Matr orm aso satsfes. B B 5. for a vector Matr Codto Number Codto umber of square osguar matr defed b cod( ) = B coveto, cod () = sguar Eampe: = 0 = 6 = = =.5 = cod ()=6.5=7 cod ()=83.5=8 The umerca vaue of the codto umber of a matr depeds o the partcuar orm used (dcated b the correspodg subscrpt), but because of the equvaece of the uderg vector orms, these vaues ca dfer b at most a fed costat (whch depeds o ), ad hece the are equa usefu as quattatve measure of codtog. Sce = ma 0 m 0 The codto umber of the matr measures the rato of the mamum reatve stretchg to the mamum reatve shrkg that matr does to a o ero vectors. other wa to sa that the codto umber of a matr measures the amout of dstorto of the ut sphere ( the correspodg vector orm) uder the trasformato b the matr. The arger the codto umber, the more dstorted (reatve og ad th) the ut sphere becomes whe trasformed b the matr.

4 I two dmesos, for eampe, the ut crce the -orm becomes ad creasg cgar shaped epse, ad wth the -orm or - orm, the ut sphere s trasformed from a square to creasg skewed paraeogram as the codto umber creases. The codto umber a measure of how cose a matr s to beg sguar: a matr wth arge codto umber s ear sguar, whereas a matr wth codto umber cose to s far from beg sguar. It s obvous from the defto that a osguar matr ad ts verse have the same codto umber. Note: Large codto umber of mea s ear sguar. Propertes of the codto umber. For a matr, cod (). For dett matr, cod (I) = 3. For a matr ad scaar γ, cod (γ ) = cod (). For a dagoa matr D = Dag(d ), cod (D) = (ma d )/(m d ) Computg Codto umber Defto of codto umber voves matr verse, so otrva to compute Computg codto umber from the defto woud requre much more work tha computg souto whose accurac to be assessed. I practce, codto umber estmated epesve as bproduct of souto process Matr orm ca be eas computed as mamum absoute coum sum (or row sum, depedg o orm used) But, estmatg at ow cost more chaegg Computg Codto Number We w ow see the usefuess of the codto umber assessg the accurac of the souto to ear sstem. I fact, to compute the codto umber drect from defto woud requre substata more work tha sovg the ear sstem whose accurac s to be assessed. I practce, therefore the codto umber s mere estmated, to perhaps wth a order of magtude, as a reatve epesve bproduct of the souto procedure. From the propertes of orm, we kow that s the souto of = the

5 = So that ad ths boud s assocate for some optma chose vector. Thus, we ca choose a vector such that the rato w have reasoabe estmate for. s as arge as possbe, the we Eampe: 0.93 = If we choose = [ 0,.5] T, the = [-7780, 0780] T So that ad hece cod.38 0 ( ) = = whch turs out to be eact to the umber of dgts show. The vector ths eampe was chose to produce the mamum possbe rato,ad hece the correct vaue for. Fdg such a optmum vaue woud be prohbtve epesve. I geera, but a usefu appromato ca be obtaed much more cheap. Oe heurstc s to choose as the souto to the sstem T =c. c s a vector whose compoets are ± wth sg chose successve to make as arge as possbe.

### The simple linear Regression Model

The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg

### APPENDIX III THE ENVELOPE PROPERTY

Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful

### STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

### T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :

Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of

### ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there

### Chapter 11 Systematic Sampling

Chapter Sstematc Samplg The sstematc samplg techue s operatoall more coveet tha the smple radom samplg. It also esures at the same tme that each ut has eual probablt of cluso the sample. I ths method of

### 6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis

6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces

### Finite Difference Method

Fte Dfferece Method MEL 87 Computatoa Heat rasfer --4) Dr. Praba audar Assstat Professor Departmet of Mechaca Egeerg II Deh Dscretzato Methods Requred to covert the geera trasport equato to set of agebrac

### Curve Fitting and Solution of Equation

UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed

### Recurrence Relations

CMPS Aalyss of Algorthms Summer 5 Recurrece Relatos Whe aalyzg the ru tme of recursve algorthms we are ofte led to cosder fuctos T ( whch are defed by recurrece relatos of a certa form A typcal example

### = 1 lim sup{ sn : n > N} )

ATH 104, SUER 2006, HOEWORK 4 SOLUTION BENJAIN JOHNSON Due July 12 Assgmet: Secto 11: 11.4(b)(c), 11.8 Secto 12: 12.6(c), 12.12, 12.13 Secto 13: 13.1 Secto 11 11.4 Cosder the sequeces s = cos ( ) π 3,

### MEASURES OF CENTRAL TENDENCY

MODULE - 6 Statstcs Measures of Cetral Tedecy 25 MEASURES OF CENTRAL TENDENCY I the prevous lesso, we have leart that the data could be summarsed to some extet by presetg t the form of a frequecy table.

### Application of GA with SVM for Stock Price Prediction in Financial Market

Iteratoa Joura of Scece ad Research (IJSR) ISSN (Oe): 39-7064 Impact Factor (0): 3.358 Appcato of GA wth SVM for Stock Prce Predcto Faca Market Om Prakash Jea, Dr. Sudarsa Padhy Departmet of Computer Scece

### An SVR-Based Data Farming Technique for Web Application

A SVR-Based Data Farmg Techque for Web Appcato Ja L 1 ad Mjg Peg 2 1 Schoo of Ecoomcs ad Maagemet, Behag Uversty 100083 Bejg, P.R. Cha Ja@wyu.c 2 Isttute of Systems Scece ad Techoogy, Wuy Uversty, Jagme

### Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected

### Load and Resistance Factor Design (LRFD)

53:134 Structural Desg II Load ad Resstace Factor Desg (LRFD) Specfcatos ad Buldg Codes: Structural steel desg of buldgs the US s prcpally based o the specfcatos of the Amerca Isttute of Steel Costructo

### Online Appendix: Measured Aggregate Gains from International Trade

Ole Appedx: Measured Aggregate Gas from Iteratoal Trade Arel Burste UCLA ad NBER Javer Cravo Uversty of Mchga March 3, 2014 I ths ole appedx we derve addtoal results dscussed the paper. I the frst secto,

### Randomized Load Balancing by Joining and Splitting Bins

Radomzed Load Baacg by Jog ad Spttg Bs James Aspes Ytog Y 1 Itoducto Cosde the foowg oad baacg sceao: a ceta amout of wo oad s dstbuted amog a set of maches that may chage ove tme as maches o ad eave the

### CSSE463: Image Recognition Day 27

CSSE463: Image Recogto Da 27 Ths week Toda: Alcatos of PCA Suda ght: roject las ad relm work due Questos? Prcal Comoets Aalss weght grth c ( )( ) ( )( ( )( ) ) heght sze Gve a set of samles, fd the drecto(s)

### Statistical Recognition Method of Binary BCH Code

Commucatos ad etwork, 20, 3, 7-22 do:0.4236/c.20.3003 Pubshed Oe February 20 (http://www.scrp.org/joura/c) Statstca Recogto Method of Bary BCH Code Abstract Jafeg Wag, Yag Yue, Ju Yao Isttute of Eectroc

### IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira sedgh@eetd.ktu.ac.r,

### Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.

Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E

### Innovation and Production in the Global Economy Online Appendix

Iovato ad Producto te Goba Ecoomy Oe Appedx Costas Aroas Prceto, Yae ad NBER Nataa Ramodo Arzoa State Adrés Rodríguez-Care UC Bereey ad NBER Stepe Yeape Pe State ad NBER December 204 Abstract I ts oe Appedx

### Using Phase Swapping to Solve Load Phase Balancing by ADSCHNN in LV Distribution Network

Iteratoal Joural of Cotrol ad Automato Vol.7, No.7 (204), pp.-4 http://dx.do.org/0.4257/jca.204.7.7.0 Usg Phase Swappg to Solve Load Phase Balacg by ADSCHNN LV Dstrbuto Network Chu-guo Fe ad Ru Wag College

### Lecture 4. Materials Covered: Chapter 7 Suggested Exercises: 7.1, 7.5, 7.7, 7.10, 7.11, 7.19, 7.20, 7.23, 7.44, 7.45, 7.47.

TT 430, ummer 006 Lecture 4 Materals Covered: Chapter 7 uggested Exercses: 7., 7.5, 7.7, 7.0, 7., 7.9, 7.0, 7.3, 7.44, 7.45, 7.47.. Deftos. () Parameter: A umercal summary about the populato. For example:

### Sequences and Series

Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.

### Simple Linear Regression

Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8

### 1. The Time Value of Money

Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg

### SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,

### CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID

CH. ME56 STTICS Ceter of Gravt, Cetrod, ad Momet of Ierta CENTE OF GITY ND CENTOID 5. CENTE OF GITY ND CENTE OF MSS FO SYSTEM OF PTICES Ceter of Gravt. The ceter of gravt G s a pot whch locates the resultat

### Credibility Premium Calculation in Motor Third-Party Liability Insurance

Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53

### Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity

Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute

### International Journal of Mathematical Archive-6(1), 2015, Available online through ISSN

Iteratoal Joural of Mathematcal Archve-6(), 5, 39-45 Avalable ole through www.jma.fo ISSN 9 546 ORDER STATISTICS, LORENZ TRANSFORM AND THE CVAR RISK MEASURE Werer Hürlma* Swss Mathematcal Socety, Feldstrasse

### Measures of Dispersion, Skew, & Kurtosis (based on Kirk, Ch. 4) {to be used in conjunction with Measures of Dispersion Chart }

Percetles Psych 54, 9/8/05 p. /6 Measures of Dsperso, kew, & Kurtoss (based o Krk, Ch. 4) {to be used cojucto wth Measures of Dsperso Chart } percetle (P % ): a score below whch a specfed percetage of

### Average Price Ratios

Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or

### Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are

### Large Contests - Online Appendix

Large Cotests - Oe Appedx Wojcech Oszewsk ad Ro Sege August 2015 We choose a equbrum for each cotest, ad refer to the sequece whch the -th eemet s the equbrum of the -th cotest as the sequece of equbra.

### U t + u U x µ 2 U = 0. (101)

Chapter 3 Fte Dfferece Methods I the prevous chapter we developed fte dfferece appromatos for partal dervatves. I ths chapter we wll use these fte dfferece appromatos to solve partal dfferetal equatos

### Classic Problems at a Glance using the TVM Solver

C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the

### Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases

Locally Adaptve Dmesoalty educto for Idexg Large Tme Seres Databases Kaushk Chakrabart Eamo Keogh Sharad Mehrotra Mchael Pazza Mcrosoft esearch Uv. of Calfora Uv. of Calfora Uv. of Calfora edmod, WA 985

### Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization

Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve

### OPTIMAL KNOWLEDGE FLOW ON THE INTERNET

İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 5 Sayı:0 Güz 006/ s. - OPTIMAL KNOWLEDGE FLOW ON THE INTERNET Bura ORDİN *, Urfat NURİYEV ** ABSTRACT The flow roblem ad the mmum sag tree roblem are both fudametal

### ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. yayli@science.ankara.edu.tr. evrenziplar@yahoo.

ON SLANT HELICES AND ENERAL HELICES IN EUCLIDEAN -SPACE Yusuf YAYLI Evre ZIPLAR Departmet of Mathematcs Faculty of Scece Uversty of Akara Tadoğa Akara Turkey yayl@sceceakaraedutr Departmet of Mathematcs

### CHAPTER 2. Time Value of Money 6-1

CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show

### Questions? Ask Prof. Herz, herz@ucsd.edu. General Classification of adsorption

Questos? Ask rof. Herz, herz@ucsd.edu Geeral Classfcato of adsorpto hyscal adsorpto - physsorpto - dsperso forces - Va der Waals forces - weak - oly get hgh fractoal coerage of surface at low temperatures

### Reinsurance and the distribution of term insurance claims

Resurace ad the dstrbuto of term surace clams By Rchard Bruyel FIAA, FNZSA Preseted to the NZ Socety of Actuares Coferece Queestow - November 006 1 1 Itroducto Ths paper vestgates the effect of resurace

### The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev

The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has

### Chapter Eight. f : R R

Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,

### Compressive Sensing over Strongly Connected Digraph and Its Application in Traffic Monitoring

Compressve Sesg over Strogly Coected Dgraph ad Its Applcato Traffc Motorg Xao Q, Yogca Wag, Yuexua Wag, Lwe Xu Isttute for Iterdscplary Iformato Sceces, Tsghua Uversty, Bejg, Cha {qxao3, kyo.c}@gmal.com,

### Relaxation Methods for Iterative Solution to Linear Systems of Equations

Relaxato Methods for Iteratve Soluto to Lear Systems of Equatos Gerald Recktewald Portlad State Uversty Mechacal Egeerg Departmet gerry@me.pdx.edu Prmary Topcs Basc Cocepts Statoary Methods a.k.a. Relaxato

### On Cheeger-type inequalities for weighted graphs

O Cheeger-type equaltes for weghted graphs Shmuel Fredlad Uversty of Illos at Chcago Departmet of Mathematcs 851 S. Morga St., Chcago, Illos 60607-7045 USA Rehard Nabbe Fakultät für Mathematk Uverstät

### Aggregation Functions and Personal Utility Functions in General Insurance

Acta Polytechca Huarca Vol. 7, No. 4, 00 Areato Fuctos ad Persoal Utlty Fuctos Geeral Isurace Jaa Šprková Departmet of Quattatve Methods ad Iformato Systems, Faculty of Ecoomcs, Matej Bel Uversty Tajovského

### Measuring the Quality of Credit Scoring Models

Measur the Qualty of Credt cor Models Mart Řezáč Dept. of Matheatcs ad tatstcs, Faculty of cece, Masaryk Uversty CCC XI, Edurh Auust 009 Cotet. Itroducto 3. Good/ad clet defto 4 3. Measur the qualty 6

### Principle of Mathematical Induction

Secto. Prcple of Mthemtcl Iducto.. Defto Mthemtcl ducto s techque of proof used to check ssertos or clms bout processes tht occur repettvely ccordg to set ptter. It s oe of the stdrd techques of proof

### Load Balancing Control for Parallel Systems

Proc IEEE Med Symposum o New drectos Cotrol ad Automato, Chaa (Grèce),994, pp66-73 Load Balacg Cotrol for Parallel Systems Jea-Claude Heet LAAS-CNRS, 7 aveue du Coloel Roche, 3077 Toulouse, Frace E-mal

### Settlement Prediction by Spatial-temporal Random Process

Safety, Relablty ad Rs of Structures, Ifrastructures ad Egeerg Systems Furuta, Fragopol & Shozua (eds Taylor & Fracs Group, Lodo, ISBN 978---77- Settlemet Predcto by Spatal-temporal Radom Process P. Rugbaapha

### A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time

Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral

### ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil

ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable

### Numerical Comparisons of Quality Control Charts for Variables

Global Vrtual Coferece Aprl, 8. - 2. 203 Nuercal Coparsos of Qualty Cotrol Charts for Varables J.F. Muñoz-Rosas, M.N. Pérez-Aróstegu Uversty of Graada Facultad de Cecas Ecoócas y Epresarales Graada, pa

### 22. The accompanying data describe flexural strength (Mpa) for concrete beams of a certain type was introduced in Example 1.2.

. The accompayg data descrbe flexural stregth (Mpa) for cocrete beams of a certa type was troduced Example.. 9. 9.7 8.8 0.7 8.4 8.7 0.7 6.9 8. 8.3 7.3 9. 7.8 8.0 8.6 7.8 7.5 8.0 7.3 8.9 0.0 8.8 8.7.6.3.8.7

### A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree

, pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal

### STOCHASTIC approximation algorithms have several

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 60, NO 10, OCTOBER 2014 6609 Trackg a Markov-Modulated Statoary Degree Dstrbuto of a Dyamc Radom Graph Mazyar Hamd, Vkram Krshamurthy, Fellow, IEEE, ad George

### The Analysis of Development of Insurance Contract Premiums of General Liability Insurance in the Business Insurance Risk

The Aalyss of Developmet of Isurace Cotract Premums of Geeral Lablty Isurace the Busess Isurace Rsk the Frame of the Czech Isurace Market 1998 011 Scetfc Coferece Jue, 10. - 14. 013 Pavla Kubová Departmet

### Induction Proofs. ) ( for all n greater than or equal to n. is a fixed integer. A proof by Mathematical Induction contains two steps:

CMPS Algorthms ad Abstract Data Types Iducto Proofs Let P ( be a propostoal fucto, e P s a fucto whose doma s (some subset of) the set of tegers ad whose codoma s the set {True, False} Iformally, ths meas

### An Effectiveness of Integrated Portfolio in Bancassurance

A Effectveess of Itegrated Portfolo Bacassurace Taea Karya Research Ceter for Facal Egeerg Isttute of Ecoomc Research Kyoto versty Sayouu Kyoto 606-850 Japa arya@eryoto-uacp Itroducto As s well ow the

### Hypothesis Testing on the Parameters of Exponential, Pareto and Uniform Distributions Based on Extreme Ranked Set Sampling

Mddle-East Joural of Scetfc Research (9): 39-36, ISSN 99-933 IDOSI Publcatos, DOI:.589/dos.mejsr...9.87 Hypothess Testg o the Parameters of Expoetal, Pareto ad Uform Dstrbutos Based o Extreme Raed Set

### Estimating Volatilities and Correlations

Estatg Volatltes ad Correlatos Chapter 7 7. Stadard Approach to Estatg Volatlty 7. Defe as the volatlty per day betwee day - ad day, as estated at ed of day - Defe S as the value of arket varable at ed

### On Savings Accounts in Semimartingale Term Structure Models

O Savgs Accouts Semmartgale Term Structure Models Frak Döberle Mart Schwezer moeyshelf.com Techsche Uverstät Berl Bockehemer Ladstraße 55 Fachberech Mathematk, MA 7 4 D 6325 Frakfurt am Ma Straße des 17.

### STOCK INVESTMENT MANAGEMENT UNDER UNCERTAINTY. Madalina Ecaterina ANDREICA 1 Marin ANDREICA 2

"AROACHES IN ORGANISATIONA MANAGEMENT" 15-16 Noveber 01, BCHAREST, ROMANIA STOCK INVESTMENT MANAGEMENT NDER NCERTAINTY Madaa Ecatera ANDREICA 1 Mar ANDREICA ABSTRACT Ths paper presets a stock vestet aageet

### A Brief Survey of Just-In-Time Sequencing for Mixed-Model Systems

Iteratoa Joura of Operatos Research Iteratoa Joura of Operatos Research Vo., No., 38 47 (005) A Bref Survey of Just-I-Tme Sequecg for Mxed-Mode Systems Taka Nath hamaa * ad Wesaw Kubak Facuty of Busess

### Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK

Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag

### The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0

Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may

### Econ107 Applied Econometrics Topic 4: Hypothesis Testing (Studenmund, Chapter 5)

Page Eco07 Appled Ecoometrcs Topc 4: Hypothess Testg (Studemud, Chapter 5). Statstcal ferece: Revew Statstcal ferece... draws coclusos from (or makes fereces about) a populato from a radom sample take

### Generalized principle of inclusion2exclusion and its application

44 1 ( ) Vo. 44 No. 1 Joura of Shadog Uversty(Natura Scece) 2009 1 Ja. 2009 :167129352 (2009) 0120083208 (, 637002) :,,, :;;; :O157 :A Geerazed prcpe of cuso2excuso ad ts appcato TANG Sha2gag (Coege of

### Chapter 12 Polynomial Regression Models

Chapter Polyomal Regresso Models A model s sad to be lear whe t s lear parameters. So the model ad y = + x+ x + β β β ε y= β + β x + β x + β x + β x + β xx + ε are also the lear model. I fact, they are

### A particle Swarm Optimization-based Framework for Agile Software Effort Estimation

The Iteratoal Joural Of Egeerg Ad Scece (IJES) olume 3 Issue 6 Pages 30-36 204 ISSN (e): 239 83 ISSN (p): 239 805 A partcle Swarm Optmzato-based Framework for Agle Software Effort Estmato Maga I, & 2 Blamah

### 10.5 Future Value and Present Value of a General Annuity Due

Chapter 10 Autes 371 5. Thomas leases a car worth \$4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of \$330 each at the begg of every moth. What s the buyout prce (resdual value of the

### DIRAC s BRA AND KET NOTATION. 1 From inner products to bra-kets 1

DIRAC s BRA AND KET NOTATION B. Zwebach October 7, 2013 Cotets 1 From er products to bra-kets 1 2 Operators revsted 5 2.1 Projecto Operators..................................... 6 2.2 Adjot of a lear operator.................................

### Overview. Eingebettete Systeme. Model of periodic tasks. Model of periodic tasks. Echtzeitverhalten und Betriebssysteme

Overvew Egebettete Systeme able of some kow preemptve schedulg algorthms for perodc tasks: Echtzetverhalte ud Betrebssysteme 5. Perodsche asks statc prorty dyamc prorty Deadle equals perod Deadle smaller

### Probability, Statistics, and Reliability for Engineers and Scientists MULTIPLE RANDOM VARIABLES

CHAPTR Probablt, Statstcs, ad Relablt or geers ad Scetsts MULTIPL RANDOM VARIABLS Secod dto A. J. Clark School o geerg Departmet o Cvl ad vrometal geerg 6b Probablt ad Statstcs or Cvl geers Departmet o

### Numerical Methods with MS Excel

TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how

### The Digital Signature Scheme MQQ-SIG

The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese

### Finito: A Faster, Permutable Incremental Gradient Method for Big Data Problems

Fto: A Faster, Permutable Icremetal Gradet Method for Bg Data Problems Aaro J Defazo Tbéro S Caetao Just Domke NICTA ad Australa Natoal Uversty AARONDEFAZIO@ANUEDUAU TIBERIOCAETANO@NICTACOMAU JUSTINDOMKE@NICTACOMAU

### We investigate a simple adaptive approach to optimizing seat protection levels in airline

Reveue Maagemet Wthout Forecastg or Optmzato: A Adaptve Algorthm for Determg Arle Seat Protecto Levels Garrett va Ryz Jeff McGll Graduate School of Busess, Columba Uversty, New York, New York 10027 School

### A Robust Two-Step Method for Solving Interval Linear Programming Problems within an Environmental Management Context

ISEIS Joura of Evrometa Iformatcs 9() -9 () Joura of Evrometa Iformatcs wwwsesorg/e A Robust Two-Step Method for Sovg Iterva Lear Programmg Probems wth a Evrometa Maagemet Cotet Y R Fa ad G H Huag * Isttute

### Fundamentals of Mass Transfer

Chapter Fudametals of Mass Trasfer Whe a sgle phase system cotas two or more speces whose cocetratos are ot uform, mass s trasferred to mmze the cocetrato dffereces wth the system. I a mult-phase system

### Constrained Cubic Spline Interpolation for Chemical Engineering Applications

Costraed Cubc Sple Iterpolato or Chemcal Egeerg Applcatos b CJC Kruger Summar Cubc sple terpolato s a useul techque to terpolate betwee kow data pots due to ts stable ad smooth characterstcs. Uortuatel

### The Time Value of Money

The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : \$24.00, FV of \$24 @ 6%: FV = \$24 (1+0.06) 388 = \$158.08 bllo Opto 1 0 1 2 3 4 5 t (\$519.37) 0 0 0 0 \$1,000 Opto

### Integrating Production Scheduling and Maintenance: Practical Implications

Proceedgs of the 2012 Iteratoal Coferece o Idustral Egeerg ad Operatos Maagemet Istabul, Turkey, uly 3 6, 2012 Itegratg Producto Schedulg ad Mateace: Practcal Implcatos Lath A. Hadd ad Umar M. Al-Turk

### Fuzzy Reliability of a Marine Power Plant Using Interval Valued Vague Sets

Iteratoal Joural of Appled Scece ad Egeerg 006. 4 : 7-8 uzzy Relablty of a Mare Power Plat Usg Iterval alued ague Sets Amt Kumar a Shv Prasad Yadav a * ad Suredra Kumar b a Departmet of Mathematcs Ida

### Three Dimensional Interpolation of Video Signals

Three Dmesoal Iterpolato of Vdeo Sgals Elham Shahfard March 0 th 006 Outle A Bref reve of prevous tals Dgtal Iterpolato Bascs Upsamplg D Flter Desg Issues Ifte Impulse Respose Fte Impulse Respose Desged

### Efficient Traceback of DoS Attacks using Small Worlds in MANET

Effcet Traceback of DoS Attacks usg Small Worlds MANET Yog Km, Vshal Sakhla, Ahmed Helmy Departmet. of Electrcal Egeerg, Uversty of Souther Calfora, U.S.A {yogkm, sakhla, helmy}@ceg.usc.edu Abstract Moble

### n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.

UMEÅ UNIVERSITET Matematsk-statstska sttutoe Multvarat dataaalys för tekologer MSTB0 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multvarat dataaalys för tekologer B, 5 poäg.

### FINANCIAL MATHEMATICS 12 MARCH 2014

FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.

### Speeding up k-means Clustering by Bootstrap Averaging

Speedg up -meas Clusterg by Bootstrap Averagg Ia Davdso ad Ashw Satyaarayaa Computer Scece Dept, SUNY Albay, NY, USA,. {davdso, ashw}@cs.albay.edu Abstract K-meas clusterg s oe of the most popular clusterg

### M. Salahi, F. Mehrdoust, F. Piri. CVaR Robust Mean-CVaR Portfolio Optimization

M. Salah, F. Mehrdoust, F. Pr Uversty of Gula, Rasht, Ira CVaR Robust Mea-CVaR Portfolo Optmzato Abstract: Oe of the most mportat problems faced by every vestor s asset allocato. A vestor durg makg vestmet

### Methods and Data Analysis

Fudametal Numercal Methods ad Data Aalyss by George W. Colls, II George W. Colls, II Table of Cotets Lst of Fgures...v Lst of Tables... Preface... Notes to the Iteret Edto...v. Itroducto ad Fudametal Cocepts....

### RQM: A new rate-based active queue management algorithm

: A ew rate-based actve queue maagemet algorthm Jeff Edmods, Suprakash Datta, Patrck Dymod, Kashf Al Computer Scece ad Egeerg Departmet, York Uversty, Toroto, Caada Abstract I ths paper, we propose a ew