Lecture 7. Norms and Condition Numbers

Size: px
Start display at page:

Download "Lecture 7. Norms and Condition Numbers"

Transcription

1 Lecture 7 Norms ad Codto Numbers To dscuss the errors umerca probems vovg vectors, t s usefu to empo orms. Vector Norm O a vector space V, a orm s a fucto from V to the set of o-egatve reas that obes three postuates: > 0 0, C λ = λ λ R, V + +, V ( Traguar Iequat) we ca thk of as the egth or magtude of the vector. The most famar orm o R s the Eucdea -orm defed b -orm defed b = ma = / -orm defed b = I geera p-orm, defed b p -orm defed b p = p / p for p >0ad-vector Eampe : Usg the orm, compare the egths of the foowg three vectors R. Repeat t for other orms =(,,-,) T, v = (0, 5, 5, 5) T, w = (6, 0, 0, 0) T Souto: X 6 8 v w 6 6 6

2 To uderstad these orms better, t s structve to cosder R. For the three orms gve above, we sketches Fgure of the set : R, { } Ths set s caed the ut ce or the ut ba two-dmesoa vector space. (0,) (,) (0,) (,0) (,0) (-,-) Fgure : Ut ces R for three orms I geera, for a vector R, Matr Norm Matr orm correspodg to gve vector orm defed b = ma 0 Norm of matr measures mamum stretchg matr does to a vector gve vector orm. Matr orm correspodg to vector -orm s mamum absoute coum sum = ma a j j Matr orm correspodg to vector - orm s mamum absoute row sum, Propertes of Matr Norm matr orm satsfes:. > O O. γ = γ for a scaar vaue γ = ma j= a j

3 3. + B + B Matr orm aso satsfes. B B 5. for a vector Matr Codto Number Codto umber of square osguar matr defed b cod( ) = B coveto, cod () = sguar Eampe: = 0 = 6 = = =.5 = cod ()=6.5=7 cod ()=83.5=8 The umerca vaue of the codto umber of a matr depeds o the partcuar orm used (dcated b the correspodg subscrpt), but because of the equvaece of the uderg vector orms, these vaues ca dfer b at most a fed costat (whch depeds o ), ad hece the are equa usefu as quattatve measure of codtog. Sce = ma 0 m 0 The codto umber of the matr measures the rato of the mamum reatve stretchg to the mamum reatve shrkg that matr does to a o ero vectors. other wa to sa that the codto umber of a matr measures the amout of dstorto of the ut sphere ( the correspodg vector orm) uder the trasformato b the matr. The arger the codto umber, the more dstorted (reatve og ad th) the ut sphere becomes whe trasformed b the matr.

4 I two dmesos, for eampe, the ut crce the -orm becomes ad creasg cgar shaped epse, ad wth the -orm or - orm, the ut sphere s trasformed from a square to creasg skewed paraeogram as the codto umber creases. The codto umber a measure of how cose a matr s to beg sguar: a matr wth arge codto umber s ear sguar, whereas a matr wth codto umber cose to s far from beg sguar. It s obvous from the defto that a osguar matr ad ts verse have the same codto umber. Note: Large codto umber of mea s ear sguar. Propertes of the codto umber. For a matr, cod (). For dett matr, cod (I) = 3. For a matr ad scaar γ, cod (γ ) = cod (). For a dagoa matr D = Dag(d ), cod (D) = (ma d )/(m d ) Computg Codto umber Defto of codto umber voves matr verse, so otrva to compute Computg codto umber from the defto woud requre much more work tha computg souto whose accurac to be assessed. I practce, codto umber estmated epesve as bproduct of souto process Matr orm ca be eas computed as mamum absoute coum sum (or row sum, depedg o orm used) But, estmatg at ow cost more chaegg Computg Codto Number We w ow see the usefuess of the codto umber assessg the accurac of the souto to ear sstem. I fact, to compute the codto umber drect from defto woud requre substata more work tha sovg the ear sstem whose accurac s to be assessed. I practce, therefore the codto umber s mere estmated, to perhaps wth a order of magtude, as a reatve epesve bproduct of the souto procedure. From the propertes of orm, we kow that s the souto of = the

5 = So that ad ths boud s assocate for some optma chose vector. Thus, we ca choose a vector such that the rato w have reasoabe estmate for. s as arge as possbe, the we Eampe: 0.93 = If we choose = [ 0,.5] T, the = [-7780, 0780] T So that ad hece cod.38 0 ( ) = = whch turs out to be eact to the umber of dgts show. The vector ths eampe was chose to produce the mamum possbe rato,ad hece the correct vaue for. Fdg such a optmum vaue woud be prohbtve epesve. I geera, but a usefu appromato ca be obtaed much more cheap. Oe heurstc s to choose as the souto to the sstem T =c. c s a vector whose compoets are ± wth sg chose successve to make as arge as possbe.

The simple linear Regression Model

The simple linear Regression Model The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg

More information

APPENDIX III THE ENVELOPE PROPERTY

APPENDIX III THE ENVELOPE PROPERTY Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :

T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are : Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of

More information

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there

More information

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis 6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces

More information

Finite Difference Method

Finite Difference Method Fte Dfferece Method MEL 87 Computatoa Heat rasfer --4) Dr. Praba audar Assstat Professor Departmet of Mechaca Egeerg II Deh Dscretzato Methods Requred to covert the geera trasport equato to set of agebrac

More information

Curve Fitting and Solution of Equation

Curve Fitting and Solution of Equation UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed

More information

Application of GA with SVM for Stock Price Prediction in Financial Market

Application of GA with SVM for Stock Price Prediction in Financial Market Iteratoa Joura of Scece ad Research (IJSR) ISSN (Oe): 39-7064 Impact Factor (0): 3.358 Appcato of GA wth SVM for Stock Prce Predcto Faca Market Om Prakash Jea, Dr. Sudarsa Padhy Departmet of Computer Scece

More information

MEASURES OF CENTRAL TENDENCY

MEASURES OF CENTRAL TENDENCY MODULE - 6 Statstcs Measures of Cetral Tedecy 25 MEASURES OF CENTRAL TENDENCY I the prevous lesso, we have leart that the data could be summarsed to some extet by presetg t the form of a frequecy table.

More information

An SVR-Based Data Farming Technique for Web Application

An SVR-Based Data Farming Technique for Web Application A SVR-Based Data Farmg Techque for Web Appcato Ja L 1 ad Mjg Peg 2 1 Schoo of Ecoomcs ad Maagemet, Behag Uversty 100083 Bejg, P.R. Cha Ja@wyu.c 2 Isttute of Systems Scece ad Techoogy, Wuy Uversty, Jagme

More information

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected

More information

Load and Resistance Factor Design (LRFD)

Load and Resistance Factor Design (LRFD) 53:134 Structural Desg II Load ad Resstace Factor Desg (LRFD) Specfcatos ad Buldg Codes: Structural steel desg of buldgs the US s prcpally based o the specfcatos of the Amerca Isttute of Steel Costructo

More information

Online Appendix: Measured Aggregate Gains from International Trade

Online Appendix: Measured Aggregate Gains from International Trade Ole Appedx: Measured Aggregate Gas from Iteratoal Trade Arel Burste UCLA ad NBER Javer Cravo Uversty of Mchga March 3, 2014 I ths ole appedx we derve addtoal results dscussed the paper. I the frst secto,

More information

Using Phase Swapping to Solve Load Phase Balancing by ADSCHNN in LV Distribution Network

Using Phase Swapping to Solve Load Phase Balancing by ADSCHNN in LV Distribution Network Iteratoal Joural of Cotrol ad Automato Vol.7, No.7 (204), pp.-4 http://dx.do.org/0.4257/jca.204.7.7.0 Usg Phase Swappg to Solve Load Phase Balacg by ADSCHNN LV Dstrbuto Network Chu-guo Fe ad Ru Wag College

More information

Randomized Load Balancing by Joining and Splitting Bins

Randomized Load Balancing by Joining and Splitting Bins Radomzed Load Baacg by Jog ad Spttg Bs James Aspes Ytog Y 1 Itoducto Cosde the foowg oad baacg sceao: a ceta amout of wo oad s dstbuted amog a set of maches that may chage ove tme as maches o ad eave the

More information

CSSE463: Image Recognition Day 27

CSSE463: Image Recognition Day 27 CSSE463: Image Recogto Da 27 Ths week Toda: Alcatos of PCA Suda ght: roject las ad relm work due Questos? Prcal Comoets Aalss weght grth c ( )( ) ( )( ( )( ) ) heght sze Gve a set of samles, fd the drecto(s)

More information

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira sedgh@eetd.ktu.ac.r,

More information

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time. Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E

More information

Credibility Premium Calculation in Motor Third-Party Liability Insurance

Credibility Premium Calculation in Motor Third-Party Liability Insurance Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53

More information

Innovation and Production in the Global Economy Online Appendix

Innovation and Production in the Global Economy Online Appendix Iovato ad Producto te Goba Ecoomy Oe Appedx Costas Aroas Prceto, Yae ad NBER Nataa Ramodo Arzoa State Adrés Rodríguez-Care UC Bereey ad NBER Stepe Yeape Pe State ad NBER December 204 Abstract I ts oe Appedx

More information

Simple Linear Regression

Simple Linear Regression Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8

More information

Sequences and Series

Sequences and Series Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.

More information

1. The Time Value of Money

1. The Time Value of Money Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg

More information

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,

More information

CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID

CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID CH. ME56 STTICS Ceter of Gravt, Cetrod, ad Momet of Ierta CENTE OF GITY ND CENTOID 5. CENTE OF GITY ND CENTE OF MSS FO SYSTEM OF PTICES Ceter of Gravt. The ceter of gravt G s a pot whch locates the resultat

More information

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute

More information

Measures of Dispersion, Skew, & Kurtosis (based on Kirk, Ch. 4) {to be used in conjunction with Measures of Dispersion Chart }

Measures of Dispersion, Skew, & Kurtosis (based on Kirk, Ch. 4) {to be used in conjunction with Measures of Dispersion Chart } Percetles Psych 54, 9/8/05 p. /6 Measures of Dsperso, kew, & Kurtoss (based o Krk, Ch. 4) {to be used cojucto wth Measures of Dsperso Chart } percetle (P % ): a score below whch a specfed percetage of

More information

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R = Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are

More information

Average Price Ratios

Average Price Ratios Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or

More information

Classic Problems at a Glance using the TVM Solver

Classic Problems at a Glance using the TVM Solver C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the

More information

Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases

Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases Locally Adaptve Dmesoalty educto for Idexg Large Tme Seres Databases Kaushk Chakrabart Eamo Keogh Sharad Mehrotra Mchael Pazza Mcrosoft esearch Uv. of Calfora Uv. of Calfora Uv. of Calfora edmod, WA 985

More information

Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization

Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve

More information

OPTIMAL KNOWLEDGE FLOW ON THE INTERNET

OPTIMAL KNOWLEDGE FLOW ON THE INTERNET İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 5 Sayı:0 Güz 006/ s. - OPTIMAL KNOWLEDGE FLOW ON THE INTERNET Bura ORDİN *, Urfat NURİYEV ** ABSTRACT The flow roblem ad the mmum sag tree roblem are both fudametal

More information

ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. yayli@science.ankara.edu.tr. evrenziplar@yahoo.

ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. yayli@science.ankara.edu.tr. evrenziplar@yahoo. ON SLANT HELICES AND ENERAL HELICES IN EUCLIDEAN -SPACE Yusuf YAYLI Evre ZIPLAR Departmet of Mathematcs Faculty of Scece Uversty of Akara Tadoğa Akara Turkey yayl@sceceakaraedutr Departmet of Mathematcs

More information

Numerical Comparisons of Quality Control Charts for Variables

Numerical Comparisons of Quality Control Charts for Variables Global Vrtual Coferece Aprl, 8. - 2. 203 Nuercal Coparsos of Qualty Cotrol Charts for Varables J.F. Muñoz-Rosas, M.N. Pérez-Aróstegu Uversty of Graada Facultad de Cecas Ecoócas y Epresarales Graada, pa

More information

CHAPTER 2. Time Value of Money 6-1

CHAPTER 2. Time Value of Money 6-1 CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show

More information

Questions? Ask Prof. Herz, herz@ucsd.edu. General Classification of adsorption

Questions? Ask Prof. Herz, herz@ucsd.edu. General Classification of adsorption Questos? Ask rof. Herz, herz@ucsd.edu Geeral Classfcato of adsorpto hyscal adsorpto - physsorpto - dsperso forces - Va der Waals forces - weak - oly get hgh fractoal coerage of surface at low temperatures

More information

Reinsurance and the distribution of term insurance claims

Reinsurance and the distribution of term insurance claims Resurace ad the dstrbuto of term surace clams By Rchard Bruyel FIAA, FNZSA Preseted to the NZ Socety of Actuares Coferece Queestow - November 006 1 1 Itroducto Ths paper vestgates the effect of resurace

More information

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has

More information

Settlement Prediction by Spatial-temporal Random Process

Settlement Prediction by Spatial-temporal Random Process Safety, Relablty ad Rs of Structures, Ifrastructures ad Egeerg Systems Furuta, Fragopol & Shozua (eds Taylor & Fracs Group, Lodo, ISBN 978---77- Settlemet Predcto by Spatal-temporal Radom Process P. Rugbaapha

More information

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag

More information

Compressive Sensing over Strongly Connected Digraph and Its Application in Traffic Monitoring

Compressive Sensing over Strongly Connected Digraph and Its Application in Traffic Monitoring Compressve Sesg over Strogly Coected Dgraph ad Its Applcato Traffc Motorg Xao Q, Yogca Wag, Yuexua Wag, Lwe Xu Isttute for Iterdscplary Iformato Sceces, Tsghua Uversty, Bejg, Cha {qxao3, kyo.c}@gmal.com,

More information

Chapter Eight. f : R R

Chapter Eight. f : R R Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,

More information

Aggregation Functions and Personal Utility Functions in General Insurance

Aggregation Functions and Personal Utility Functions in General Insurance Acta Polytechca Huarca Vol. 7, No. 4, 00 Areato Fuctos ad Persoal Utlty Fuctos Geeral Isurace Jaa Šprková Departmet of Quattatve Methods ad Iformato Systems, Faculty of Ecoomcs, Matej Bel Uversty Tajovského

More information

Measuring the Quality of Credit Scoring Models

Measuring the Quality of Credit Scoring Models Measur the Qualty of Credt cor Models Mart Řezáč Dept. of Matheatcs ad tatstcs, Faculty of cece, Masaryk Uversty CCC XI, Edurh Auust 009 Cotet. Itroducto 3. Good/ad clet defto 4 3. Measur the qualty 6

More information

On Cheeger-type inequalities for weighted graphs

On Cheeger-type inequalities for weighted graphs O Cheeger-type equaltes for weghted graphs Shmuel Fredlad Uversty of Illos at Chcago Departmet of Mathematcs 851 S. Morga St., Chcago, Illos 60607-7045 USA Rehard Nabbe Fakultät für Mathematk Uverstät

More information

Relaxation Methods for Iterative Solution to Linear Systems of Equations

Relaxation Methods for Iterative Solution to Linear Systems of Equations Relaxato Methods for Iteratve Soluto to Lear Systems of Equatos Gerald Recktewald Portlad State Uversty Mechacal Egeerg Departmet gerry@me.pdx.edu Prmary Topcs Basc Cocepts Statoary Methods a.k.a. Relaxato

More information

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral

More information

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree , pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal

More information

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable

More information

STOCHASTIC approximation algorithms have several

STOCHASTIC approximation algorithms have several IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 60, NO 10, OCTOBER 2014 6609 Trackg a Markov-Modulated Statoary Degree Dstrbuto of a Dyamc Radom Graph Mazyar Hamd, Vkram Krshamurthy, Fellow, IEEE, ad George

More information

The Analysis of Development of Insurance Contract Premiums of General Liability Insurance in the Business Insurance Risk

The Analysis of Development of Insurance Contract Premiums of General Liability Insurance in the Business Insurance Risk The Aalyss of Developmet of Isurace Cotract Premums of Geeral Lablty Isurace the Busess Isurace Rsk the Frame of the Czech Isurace Market 1998 011 Scetfc Coferece Jue, 10. - 14. 013 Pavla Kubová Departmet

More information

An Effectiveness of Integrated Portfolio in Bancassurance

An Effectiveness of Integrated Portfolio in Bancassurance A Effectveess of Itegrated Portfolo Bacassurace Taea Karya Research Ceter for Facal Egeerg Isttute of Ecoomc Research Kyoto versty Sayouu Kyoto 606-850 Japa arya@eryoto-uacp Itroducto As s well ow the

More information

Hypothesis Testing on the Parameters of Exponential, Pareto and Uniform Distributions Based on Extreme Ranked Set Sampling

Hypothesis Testing on the Parameters of Exponential, Pareto and Uniform Distributions Based on Extreme Ranked Set Sampling Mddle-East Joural of Scetfc Research (9): 39-36, ISSN 99-933 IDOSI Publcatos, DOI:.589/dos.mejsr...9.87 Hypothess Testg o the Parameters of Expoetal, Pareto ad Uform Dstrbutos Based o Extreme Raed Set

More information

On Savings Accounts in Semimartingale Term Structure Models

On Savings Accounts in Semimartingale Term Structure Models O Savgs Accouts Semmartgale Term Structure Models Frak Döberle Mart Schwezer moeyshelf.com Techsche Uverstät Berl Bockehemer Ladstraße 55 Fachberech Mathematk, MA 7 4 D 6325 Frakfurt am Ma Straße des 17.

More information

STOCK INVESTMENT MANAGEMENT UNDER UNCERTAINTY. Madalina Ecaterina ANDREICA 1 Marin ANDREICA 2

STOCK INVESTMENT MANAGEMENT UNDER UNCERTAINTY. Madalina Ecaterina ANDREICA 1 Marin ANDREICA 2 "AROACHES IN ORGANISATIONA MANAGEMENT" 15-16 Noveber 01, BCHAREST, ROMANIA STOCK INVESTMENT MANAGEMENT NDER NCERTAINTY Madaa Ecatera ANDREICA 1 Mar ANDREICA ABSTRACT Ths paper presets a stock vestet aageet

More information

The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0

The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0 Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may

More information

10.5 Future Value and Present Value of a General Annuity Due

10.5 Future Value and Present Value of a General Annuity Due Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the

More information

Overview. Eingebettete Systeme. Model of periodic tasks. Model of periodic tasks. Echtzeitverhalten und Betriebssysteme

Overview. Eingebettete Systeme. Model of periodic tasks. Model of periodic tasks. Echtzeitverhalten und Betriebssysteme Overvew Egebettete Systeme able of some kow preemptve schedulg algorthms for perodc tasks: Echtzetverhalte ud Betrebssysteme 5. Perodsche asks statc prorty dyamc prorty Deadle equals perod Deadle smaller

More information

Load Balancing Control for Parallel Systems

Load Balancing Control for Parallel Systems Proc IEEE Med Symposum o New drectos Cotrol ad Automato, Chaa (Grèce),994, pp66-73 Load Balacg Cotrol for Parallel Systems Jea-Claude Heet LAAS-CNRS, 7 aveue du Coloel Roche, 3077 Toulouse, Frace E-mal

More information

Regression Analysis. 1. Introduction

Regression Analysis. 1. Introduction . Itroducto Regresso aalyss s a statstcal methodology that utlzes the relato betwee two or more quattatve varables so that oe varable ca be predcted from the other, or others. Ths methodology s wdely used

More information

Numerical Methods with MS Excel

Numerical Methods with MS Excel TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how

More information

Probability, Statistics, and Reliability for Engineers and Scientists MULTIPLE RANDOM VARIABLES

Probability, Statistics, and Reliability for Engineers and Scientists MULTIPLE RANDOM VARIABLES CHAPTR Probablt, Statstcs, ad Relablt or geers ad Scetsts MULTIPL RANDOM VARIABLS Secod dto A. J. Clark School o geerg Departmet o Cvl ad vrometal geerg 6b Probablt ad Statstcs or Cvl geers Departmet o

More information

The Digital Signature Scheme MQQ-SIG

The Digital Signature Scheme MQQ-SIG The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese

More information

We investigate a simple adaptive approach to optimizing seat protection levels in airline

We investigate a simple adaptive approach to optimizing seat protection levels in airline Reveue Maagemet Wthout Forecastg or Optmzato: A Adaptve Algorthm for Determg Arle Seat Protecto Levels Garrett va Ryz Jeff McGll Graduate School of Busess, Columba Uversty, New York, New York 10027 School

More information

Finito: A Faster, Permutable Incremental Gradient Method for Big Data Problems

Finito: A Faster, Permutable Incremental Gradient Method for Big Data Problems Fto: A Faster, Permutable Icremetal Gradet Method for Bg Data Problems Aaro J Defazo Tbéro S Caetao Just Domke NICTA ad Australa Natoal Uversty AARONDEFAZIO@ANUEDUAU TIBERIOCAETANO@NICTACOMAU JUSTINDOMKE@NICTACOMAU

More information

THE McELIECE CRYPTOSYSTEM WITH ARRAY CODES. MATRİS KODLAR İLE McELIECE ŞİFRELEME SİSTEMİ

THE McELIECE CRYPTOSYSTEM WITH ARRAY CODES. MATRİS KODLAR İLE McELIECE ŞİFRELEME SİSTEMİ SAÜ e Blmler Dergs, 5 Clt, 2 Sayı, THE McELIECE CRYPTOSYSTEM WITH ARRAY CODES Vedat ŞİAP* *Departmet of Mathematcs, aculty of Scece ad Art, Sakarya Uversty, 5487, Serdva, Sakarya-TURKEY vedatsap@gmalcom

More information

Fundamentals of Mass Transfer

Fundamentals of Mass Transfer Chapter Fudametals of Mass Trasfer Whe a sgle phase system cotas two or more speces whose cocetratos are ot uform, mass s trasferred to mmze the cocetrato dffereces wth the system. I a mult-phase system

More information

The Time Value of Money

The Time Value of Money The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto

More information

Integrating Production Scheduling and Maintenance: Practical Implications

Integrating Production Scheduling and Maintenance: Practical Implications Proceedgs of the 2012 Iteratoal Coferece o Idustral Egeerg ad Operatos Maagemet Istabul, Turkey, uly 3 6, 2012 Itegratg Producto Schedulg ad Mateace: Practcal Implcatos Lath A. Hadd ad Umar M. Al-Turk

More information

Constrained Cubic Spline Interpolation for Chemical Engineering Applications

Constrained Cubic Spline Interpolation for Chemical Engineering Applications Costraed Cubc Sple Iterpolato or Chemcal Egeerg Applcatos b CJC Kruger Summar Cubc sple terpolato s a useul techque to terpolate betwee kow data pots due to ts stable ad smooth characterstcs. Uortuatel

More information

Three Dimensional Interpolation of Video Signals

Three Dimensional Interpolation of Video Signals Three Dmesoal Iterpolato of Vdeo Sgals Elham Shahfard March 0 th 006 Outle A Bref reve of prevous tals Dgtal Iterpolato Bascs Upsamplg D Flter Desg Issues Ifte Impulse Respose Fte Impulse Respose Desged

More information

A particle Swarm Optimization-based Framework for Agile Software Effort Estimation

A particle Swarm Optimization-based Framework for Agile Software Effort Estimation The Iteratoal Joural Of Egeerg Ad Scece (IJES) olume 3 Issue 6 Pages 30-36 204 ISSN (e): 239 83 ISSN (p): 239 805 A partcle Swarm Optmzato-based Framework for Agle Software Effort Estmato Maga I, & 2 Blamah

More information

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom. UMEÅ UNIVERSITET Matematsk-statstska sttutoe Multvarat dataaalys för tekologer MSTB0 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multvarat dataaalys för tekologer B, 5 poäg.

More information

Efficient Traceback of DoS Attacks using Small Worlds in MANET

Efficient Traceback of DoS Attacks using Small Worlds in MANET Effcet Traceback of DoS Attacks usg Small Worlds MANET Yog Km, Vshal Sakhla, Ahmed Helmy Departmet. of Electrcal Egeerg, Uversty of Souther Calfora, U.S.A {yogkm, sakhla, helmy}@ceg.usc.edu Abstract Moble

More information

FINANCIAL MATHEMATICS 12 MARCH 2014

FINANCIAL MATHEMATICS 12 MARCH 2014 FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.

More information

Speeding up k-means Clustering by Bootstrap Averaging

Speeding up k-means Clustering by Bootstrap Averaging Speedg up -meas Clusterg by Bootstrap Averagg Ia Davdso ad Ashw Satyaarayaa Computer Scece Dept, SUNY Albay, NY, USA,. {davdso, ashw}@cs.albay.edu Abstract K-meas clusterg s oe of the most popular clusterg

More information

DIRAC s BRA AND KET NOTATION. 1 From inner products to bra-kets 1

DIRAC s BRA AND KET NOTATION. 1 From inner products to bra-kets 1 DIRAC s BRA AND KET NOTATION B. Zwebach October 7, 2013 Cotets 1 From er products to bra-kets 1 2 Operators revsted 5 2.1 Projecto Operators..................................... 6 2.2 Adjot of a lear operator.................................

More information

M. Salahi, F. Mehrdoust, F. Piri. CVaR Robust Mean-CVaR Portfolio Optimization

M. Salahi, F. Mehrdoust, F. Piri. CVaR Robust Mean-CVaR Portfolio Optimization M. Salah, F. Mehrdoust, F. Pr Uversty of Gula, Rasht, Ira CVaR Robust Mea-CVaR Portfolo Optmzato Abstract: Oe of the most mportat problems faced by every vestor s asset allocato. A vestor durg makg vestmet

More information

Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks

Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks Optmal Packetzato Iterval for VoIP Applcatos Over IEEE 802.16 Networks Sheha Perera Harsha Srsea Krzysztof Pawlkowsk Departmet of Electrcal & Computer Egeerg Uversty of Caterbury New Zealad sheha@elec.caterbury.ac.z

More information

RQM: A new rate-based active queue management algorithm

RQM: A new rate-based active queue management algorithm : A ew rate-based actve queue maagemet algorthm Jeff Edmods, Suprakash Datta, Patrck Dymod, Kashf Al Computer Scece ad Egeerg Departmet, York Uversty, Toroto, Caada Abstract I ths paper, we propose a ew

More information

DETERMINISTIC AND STOCHASTIC MODELLING OF TECHNICAL RESERVES IN SHORT-TERM INSURANCE CONTRACTS

DETERMINISTIC AND STOCHASTIC MODELLING OF TECHNICAL RESERVES IN SHORT-TERM INSURANCE CONTRACTS DETERMINISTI AND STOHASTI MODELLING OF TEHNIAL RESERVES IN SHORT-TERM INSURANE ONTRATS Patrck G O Weke School of Mathematcs, Uversty of Narob, Keya Emal: pweke@uobacke ABSTART lams reservg for geeral surace

More information

R. Zvan. P.A. Forsyth. paforsyth@yoho.uwaterloo.ca. K. Vetzal. kvetzal@watarts.uwaterloo.ca. University ofwaterloo. Waterloo, ON

R. Zvan. P.A. Forsyth. paforsyth@yoho.uwaterloo.ca. K. Vetzal. kvetzal@watarts.uwaterloo.ca. University ofwaterloo. Waterloo, ON Robust Numercal Methods for PDE Models of sa Optos by R. Zva Departmet of Computer Scece Tel: (59 888-4567 ext. 6 Fax: (59 885-8 rzvayoho.uwaterloo.ca P.. Forsyth Departmet of Computer Scece Tel: (59 888-4567

More information

Automated Alignment and Extraction of Bilingual Ontology for Cross-Language Domain-Specific Applications

Automated Alignment and Extraction of Bilingual Ontology for Cross-Language Domain-Specific Applications Automated Agmet ad Extracto of gua Otoogy for Cross-Laguage Doma-Specfc Appcatos Ju-Feg Yeh, Chug-Hse Wu, Mg-Ju Che ad Lag-Chh Yu Departmet of Computer Scece ad Iformato Egeerg Natoa Cheg Kug Uversty,

More information

MDM 4U PRACTICE EXAMINATION

MDM 4U PRACTICE EXAMINATION MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths

More information

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50

More information

Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software

Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software J. Software Egeerg & Applcatos 3 63-69 do:.436/jsea..367 Publshed Ole Jue (http://www.scrp.org/joural/jsea) Dyamc Two-phase Trucated Raylegh Model for Release Date Predcto of Software Lafe Qa Qgchua Yao

More information

Vibration and Speedy Transportation

Vibration and Speedy Transportation Research Paper EAEF (3) : 8-5, 9 Path Plag of Tomato Cluster Harvestg Robot for Realzg Low Vbrato ad Speedy Trasportato Naosh KONDO *, Koch TANIHARA *, Tomowo SHIIGI *, Hrosh SHIMIZU *, Mtsutaka KURITA

More information

Fast, Secure Encryption for Indexing in a Column-Oriented DBMS

Fast, Secure Encryption for Indexing in a Column-Oriented DBMS Fast, Secure Ecrypto for Idexg a Colum-Oreted DBMS Tgja Ge, Sta Zdok Brow Uversty {tge, sbz}@cs.brow.edu Abstract Networked formato systems requre strog securty guaratees because of the ew threats that

More information

of the relationship between time and the value of money.

of the relationship between time and the value of money. TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp

More information

Mathematics of Finance

Mathematics of Finance CATE Mathematcs of ace.. TODUCTO ths chapter we wll dscuss mathematcal methods ad formulae whch are helpful busess ad persoal face. Oe of the fudametal cocepts the mathematcs of face s the tme value of

More information

Future Value of an Annuity

Future Value of an Annuity Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%

More information

A Parallel Transmission Remote Backup System

A Parallel Transmission Remote Backup System 2012 2d Iteratoal Coferece o Idustral Techology ad Maagemet (ICITM 2012) IPCSIT vol 49 (2012) (2012) IACSIT Press, Sgapore DOI: 107763/IPCSIT2012V495 2 A Parallel Trasmsso Remote Backup System Che Yu College

More information

Methods and Data Analysis

Methods and Data Analysis Fudametal Numercal Methods ad Data Aalyss by George W. Colls, II George W. Colls, II Table of Cotets Lst of Fgures...v Lst of Tables... Preface... Notes to the Iteret Edto...v. Itroducto ad Fudametal Cocepts....

More information

STATIC ANALYSIS OF TENSEGRITY STRUCTURES

STATIC ANALYSIS OF TENSEGRITY STRUCTURES SI NYSIS O ENSEGIY SUUES JUIO ES OE HESIS PESENED O HE GDUE SHOO O HE UNIVESIY O OID IN PI UIEN O HE EQUIEENS O HE DEGEE O SE O SIENE UNIVESIY O OID o m mother for her fte geerost. KNOWEDGENS I wat to

More information

A Smart Machine Vision System for PCB Inspection

A Smart Machine Vision System for PCB Inspection A Smart Mache Vso System for PCB Ispecto Te Q Che, JaX Zhag, YouNg Zhou ad Y Lu Murphey Please address all correspodece to Departmet of Electrcal ad Computer Egeerg Uversty of Mchga - Dearbor, Dearbor,

More information

Taylor & Francis, Ltd. is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Experimental Education.

Taylor & Francis, Ltd. is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Experimental Education. The Statstcal Iterpretato of Degrees of Freedom Author(s): Wllam J. Mooa Source: The Joural of Expermetal Educato, Vol. 21, No. 3 (Mar., 1953), pp. 259264 Publshed by: Taylor & Fracs, Ltd. Stable URL:

More information

Banking (Early Repayment of Housing Loans) Order, 5762 2002 1

Banking (Early Repayment of Housing Loans) Order, 5762 2002 1 akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of

More information